高中数学必修4知识点总结培训资料
高二年级数学必修四知识点复习
![高二年级数学必修四知识点复习](https://img.taocdn.com/s3/m/37a488a35ff7ba0d4a7302768e9951e79b8969d2.png)
高二年级数学必修四知识点复习(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修四知识点复习本店铺高二频道为你整理了《高二年级数学必修四知识点复习》希望对你有所帮助!1.高二年级数学必修四知识点复习(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。
数学必修四知识点(15篇)
![数学必修四知识点(15篇)](https://img.taocdn.com/s3/m/00f97a21f08583d049649b6648d7c1c708a10baf.png)
数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。
虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。
学生们不得不预习课本。
我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。
在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。
同时,在课堂上安排笔记也是必要的。
在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。
这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。
(完整版)高中数学必修4知识总结(完整版),推荐文档
![(完整版)高中数学必修4知识总结(完整版),推荐文档](https://img.taocdn.com/s3/m/8e83ef0bc8d376eeafaa31a9.png)
高中数学必修四知识点总结正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.第一象限角的集合为第二象限角的集合为k 360o90o k 360o 180o,k第三象限角的集合为k 360o o180 k 360o270o,k第四象限角的集合为k 360o270o k 360o360o,k终边在X轴上的角的集合为180o, k终边在y轴上的角的集合为180o 90o,k终边在坐标轴上的角的集合为k 90o,k3、与角终边相同的角的集合为k 360o4、已知是第几象限角,确定一n 半轴的上方起,依次将各区域标上-所在象限的方法:先把各象限均分n等份,再从x轴的正三、四,则原来是第几象限对应的标号即为一终边n所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度的角.6半径为r的圆的圆心角所对弧的长为I,则角的弧度数的绝对值是7、弧度制与角度制的换算公式:2360o,1o180,1o型57.3。
.8、若扇形的圆心角为为弧度制,半径为r,弧长为I,周长为C,面积为S,,C 2r I,9、(一)设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1) y叫做的正弦,记做sin ,即sin y ; (2) x叫做的余弦,记做cos ,即cos x ; (3) $叫做的正切,记做tan ,即xtan —(x 0) ox设是一个任意大小的角, 的终边上任意一点的坐标是x, y ,它与原点的距离是k 360o k 360o 90o,k的图象;再将函数y sin x 的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数y sin x 的图象0, 0 .(二)函数y sinx 的图象上所有点的横坐标伸长(缩短)到原来的 丄倍(纵坐标不变),得到函 数y sinx 的图象;再将函数y sin x 的图象上所有点向左(右)平移 一个单位长度(>0是 左移;<0是右移);得到函数y sin x 的图象;再将函数y sin x 的图象上所有点的 纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数y sin x 的图象 0, 0 .一 2 1①振幅;②周期:一;③频率:f —;④相位:x ;⑤初相:10、 三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象 限余弦为正. 11、 三角函数线:sin , cos 12、 同角三角函数的基本关系式: 1 sin 1 2 cos 2 1 sin 2 1 cos 2 ,tan ,cos 2 1 sin 2 2 竺 tan sin tan cos cos ,cossin tan 1 sin 2k si n ,cos 2k cos , tan 2k tan k2 sin si n ,cos cos ,tantan3 sinsin , cosco s,tantan- 4 sinsin ,coscos , tantan口诀:函数名称不变, 付号看象限.5 sin — co s,cos —sin6 sin _ c os22213、三角函数的诱导公式: cos 一2sin口诀:函数名改变,符号看象限. 14、图像变换的两种方式: (一)函数y sin x 的图象上所有点向左(右)平移 (>0是左移; <0是右移);再将函数y sin x 个单位长度, 得到函数y sin x 的图象 的图象上所有点的横坐标伸长(缩短)到原函数y sin x0, 0的性质:2 函数y sin x,当x 为时,取得最小值为丫皿山;当x x ?时,取得最大值为y max ,则ymaxymin,ymaxymin , x 2 % %X215、正弦函数、余弦函数和正切函数的图象与性质:函ii图象y31/1\ :L22 BJf3 鼻o1寻定义域值域最值周期 奇偶性单调性R 1,1 当x 2k k2 y max1 ;当 x 2k2k 时,y min2 奇函数 在 2k—,2kR 1,1 当x 2k k 时,y max 1 ;当 x 2kk 时,y min 1 • 2偶函数在 2k ,2k k 增函数;在2k ,2 k k上是减函数.上是x x k —, k2R既无最大值也无最小值奇函数在k , k2 2k上是增函数.数性质y sin xy cosx y tanx对称中心k ,0 k对称中心k ,0 k对称性对称轴x k k22对称轴x k k 对称中心—,0 k2无对称轴函数y A sin( x )为奇函数的条件为k ,k Z 16.三角函数奇偶性规律总结(A 0, 0 )规定:零向量与任一向量平行.18、向量加法:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.19、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向减向量的终点指向被减向量终点.(见上图)(2)坐标运算:设 a x 1,y , , b x 2,y 2 ,贝U ab x 1 x 2,y 1 y 2 .uuur设、两点的坐标分别为 为,% , x 2, y 2,贝Ux 1 x 2, y 1y 2 20、向量数乘运算: ⑴实数 与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a .21向量共线条件:(1)向量a a 0与b 共线,当且仅当有唯一一个实数,使& a .函数y Asin( x)为偶函数的条件为 k,k 2 Z 函数 y Acos( x )为奇函数的条件为 k —,k 2Z . 函数 y Acos( x )为偶函数的条件为 k ,k Z函数y Ata n( x)为奇函数的条件为k 2-,k Z 它不可能是偶函数.17. 向量:既有大小, 又有方向的量.数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.相等向量:长度相等且方向相同的向量. 相反向量:长度相等且 方向相反的向量.⑷运算性质:①交换律:5bb②结合律:a b c a b c ; r a;r r r r r ③ a 0 0 a a .r r umr uuu uuura b CC⑸坐标运算:设ay1ra则y2X2①| a \ ||a ;②当o 时,a 的方向与a 的方向相同;当o 时,a 的方向与a 的方向相反; rr当 0时,a 0 . 0a = 0 ⑵运算律: ③ a b a b .⑶坐标运算:设a①r aa ;② a r a r a;x,y,则a x, yx, y .r LT a 0则a -表示与a 同方向的单位向量ar rx 2,y 2,其中b 0 ,则当且仅当x 1y 2 x 2y 1 0时,向量a 、 ,甘 LULT ULLT —「八、 ULUT ULULT十 LUUT UULT 亠一如图,OA 、OB 不共线,且AP t AB (t R),用OAOB 表示 UULTUULT UULTUUUTUULT UUUTUULTOPOA=t( OB OA),贝U OP=(1-t) OA tOB结论:已知0、A B 三点不共线, 若点P 在直线AB 上,则UULTUULT UULT OP mOA nOB,且 m n 1.IT UU22、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任rr UT UTUT UU意向量a ,有且只有一对实数1> 2,使a 1e (2e 2 .(不共线的向量q 、e 2叫做这一平面内所有向量的一组基底)UT UULT UU UT UU小结论:(1)若e 、e 2是同一平面内的两个不共线向量,xq ye 2 mqnq,则x=m ,y=nUT UU IT UU IT(2)若e 、e 2是同一平面内的两个不共线向量,xe 1 ye 2 0则x=y=0luuluir 23、 分点坐标公式:设点是线段1 2上的一点,1、2的坐标分别是为,% , x 2, y 2 ,当1 2时,可推出点 的坐标是 冬空,上 上.(会写出向量坐标,会运算。
数学必修4知识点归纳总结
![数学必修4知识点归纳总结](https://img.taocdn.com/s3/m/75165139ed630b1c58eeb517.png)
数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。
练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。
求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。
过去我们研究了0°~360°(00360α≤<)范围的角。
如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。
角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。
高三数学必修四知识点归纳总结
![高三数学必修四知识点归纳总结](https://img.taocdn.com/s3/m/0c0c5e5811a6f524ccbff121dd36a32d7275c777.png)
高三数学必修四知识点归纳总结高三数学必修四知识点归纳总结篇一二项式定理①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中必修四数学知识点总结篇二集合的运算运算类型交集并集补集定义域R定义域R值域0值域0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则; 取遍所有正数当且仅当;(3)对于指数函数,总有;对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:( — 底数,— 真数,— 对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式。
两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数.指数式与对数式的互化幂值真数= N = b底数指数对数(二)对数的运算性质如果,且,,,那么:○1 + ;○2 - ;○3 .注意:换底公式:( ,且; ,且; ).利用换底公式推导下面的结论:(1) ;(2) .(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
必修4 数学最全 知识点梳理(完整版)
![必修4 数学最全 知识点梳理(完整版)](https://img.taocdn.com/s3/m/6887592c83c4bb4cf7ecd14c.png)
高中数学必修4 知识点总结第一章:三角函数§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π.§1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan y xα= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,§1.2.2、同角三角函数的基本关系式 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =. §1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- 4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛- 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质12、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变 ()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+平移||B 个单位()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式 1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=. 2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=. 变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2++.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()≠与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θcos .3、 2=.4、=.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x b a +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= ⑷1221//0a b a b x y x y λ⇔=⇔-= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 2cos a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量. (如图)2 用向量方法判定空间中的平行关系设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=. 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线. 3、用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=. 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直. ⑶面面垂直若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=. 即:两平面垂直两平面的法向量垂直. 4、利用向量求空间角 ⑴求异面直线所成的角A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BDθ⋅=⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .ina ua uϕθ⋅==①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: ◆如果θ是锐角,则cos cos m n m nθϕ⋅==;◆ 如果θ是钝角,则cos cos m n m nθϕ⋅=-=-.5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l 距离为1(||||h a b a =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.即cos ,d MP n MP =n MP MP n MP⋅=⋅n MP n⋅=⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n⋅=⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=⑸异面直线间的距离高中数学必修四 知识梳理 10设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值.即.n MP d n⋅=6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
数学必修四知识点总结
![数学必修四知识点总结](https://img.taocdn.com/s3/m/bded29ee970590c69ec3d5bbfd0a79563d1ed445.png)
数学必修四知识点总结一、函数与导数1. 函数的概念- 函数的定义- 函数的表示方法:解析式、图象、表格- 函数的域与值域- 函数的奇偶性2. 函数的运算- 函数的四则运算- 复合函数- 反函数- 分段函数3. 函数的性质- 单调性- 周期性- 有界性- 极限的概念与计算4. 导数的概念- 导数的定义- 导数的几何意义- 导数的物理意义5. 导数的运算- 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导二、导数的应用1. 函数的极值与最值- 极值的定义与条件- 最大值与最小值的求解 - 应用题的求解2. 曲线的凹凸性与拐点- 凹凸性的定义- 拐点的求解3. 洛必达法则- 洛必达法则的适用情况 - 洛必达法则的应用4. 函数的渐近线- 水平渐近线- 垂直渐近线三、不等式与极值1. 不等式的性质- 不等式的基本性质- 不等式的解集表示2. 不等式的解法- 一次不等式- 二次不等式- 绝对值不等式- 分式不等式3. 极值问题- 极值与不等式的关系 - 利用导数求解极值问题四、数列1. 数列的概念- 数列的定义- 有穷数列与无穷数列 - 等差数列与等比数列2. 数列的极限- 极限的概念- 极限的性质- 极限的四则运算3. 无穷数列的和- 无穷等比数列的和- 级数的概念- 收敛与发散的概念五、级数1. 级数的概念- 级数的定义- 级数的收敛性2. 等差级数与等比级数- 等差级数的求和公式- 等比级数的求和公式3. 级数的收敛判别法- 比较判别法- 比值判别法- 根值判别法六、空间解析几何1. 空间直角坐标系- 空间直角坐标系的建立- 点的坐标表示2. 向量的概念与运算- 向量的定义- 向量的加法、数乘、数量积 - 向量的叉积与点积3. 平面与直线的方程- 平面的方程- 直线的方程- 点、线、面之间的关系4. 几种常见曲面的方程- 圆柱面- 圆锥面- 球面七、概率与统计1. 随机事件与概率- 随机事件的定义- 概率的定义与性质- 条件概率与独立事件2. 随机变量及其分布- 随机变量的定义- 离散型随机变量与连续型随机变量- 概率分布与概率密度函数3. 统计量与抽样分布- 样本与总体- 统计量的概念- 抽样分布的概念4. 假设检验与置信区间- 假设检验的基本思想- 置信区间的计算以上是数学必修四的知识点总结,每个部分都包含了该章节的核心概念、性质、公式和应用。
数学必修4知识点总结
![数学必修4知识点总结](https://img.taocdn.com/s3/m/f2664c1e2a160b4e767f5acfa1c7aa00b52a9ddc.png)
数学必修4知识点总结一、函数与导数1. 函数的概念与性质- 函数定义:描述变量间依赖关系的一种数学表达方式。
- 函数的域与范围:自变量的取值集合称为函数的定义域,因变量的取值集合称为函数的值域。
- 函数的奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
2. 函数的极限与连续性- 极限定义:描述函数值趋近某一点的行为。
- 连续函数:在定义域内任意一点都连续的函数。
3. 导数与微分- 导数定义:描述函数在某一点处的变化率。
- 微分:函数在某一点的线性主部,用于近似计算函数值的变化。
- 常见函数的导数公式:如多项式、指数函数、对数函数、三角函数的导数。
4. 高阶导数- 高阶导数:对一阶导数再次求导得到的导数。
- 常见高阶导数的计算方法。
二、一元函数微积分1. 不定积分- 不定积分的概念:求函数原函数的过程。
- 基本积分表:掌握常见的积分公式。
- 积分技巧:换元积分法、分部积分法等。
2. 定积分- 定积分的概念:计算曲线与x轴之间的有界区域的面积。
- 定积分的性质:对称性、可加性等。
- 定积分的应用:物理、几何问题中的计算。
3. 微分方程- 微分方程的概念:含有未知函数及其导数的方程。
- 常微分方程的解法:分离变量法、常数变易法等。
- 偏微分方程简介:涉及多个自变量的函数的导数问题。
三、向量代数与空间解析几何1. 向量的运算- 向量的加法、数乘、数量积(点积)和向量积(叉积)。
- 向量的坐标表示与线性运算。
2. 平面解析几何- 平面直角坐标系中的曲线方程:圆、椭圆、双曲线、抛物线等。
- 圆锥曲线的性质和方程。
3. 空间解析几何- 空间直角坐标系与向量表示。
- 直线与平面的方程。
- 常见立体图形的体积与表面积计算。
四、概率论与数理统计1. 随机事件与概率- 随机事件的定义与分类。
- 概率的计算:加法公式、条件概率、独立事件等。
- 贝叶斯定理。
2. 随机变量及其分布- 随机变量的定义:将随机事件映射到实数轴上的变量。
人教版高中数学必修四常见公式及知识点总结(完整版)
![人教版高中数学必修四常见公式及知识点总结(完整版)](https://img.taocdn.com/s3/m/eecfcfdb08a1284ac8504331.png)
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
必修四数学知识点总结
![必修四数学知识点总结](https://img.taocdn.com/s3/m/1f29403a26284b73f242336c1eb91a37f1113216.png)
必修四数学知识点总结有关必修四数学知识点总结复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。
显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
高中数学必修4知识点总结(精华实用版)
![高中数学必修4知识点总结(精华实用版)](https://img.taocdn.com/s3/m/b9887c1cff00bed5b9f31d5c.png)
第一章 三角函数{1、任意角正角: 负角: 零角:2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 如:-1350( )1350( )950( )-950( )-6300( )6300( )-7000( )7000( )第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为3、与角α终边相同的角的集合为 4 、1弧度的角:半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是α= .5、弧度制与角度制的换算公式:π=( )0,180157.3π⎛⎫=≈ ⎪⎝⎭.1800= rad ,10= rad 如:150= rad, 512π= 06、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l = ,2C r l =+,S = = .7、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()r r =>,则sin α= ,cos α= ,()tan 0x α=≠ .8、三角函数在各象限的符号:9、同角三角函数的基本关系:()221sin cos 1αα+=(变式: , );()sin 2tan cos ααα=.(变式: , )10、三角函数的诱导公式:(口诀:函数名称不变,符号看象限.)()()1sin 2k πα+= ,()cos 2k πα+= ,()tan 2k πα+= . ()()2sin πα+= ,()cos πα+= ,()tan πα+= . ()()3sin α-= ,()cos α-= ,()tan α-= . ()()4sin πα-= ,()cos πα-= ,()tan πα-= .()5sin 2πα⎛⎫-=⎪⎝⎭ ,cos 2πα⎛⎫-= ⎪⎝⎭ .()6sin 2πα⎛⎫+= ⎪⎝⎭ ,cos 2πα⎛⎫+= ⎪⎝⎭ .1112、(课本52页第二段)关于ωϕA 、、对()()sin 0,0y x ωϕω=A +A >>的影响 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅A ;②周期2πωT =;③频率12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m ax m in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<第二章 平面向量1、向量: 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.如:A B 记作零向量:长度为 的向量.记作 单位向量:长度等于1个单位的向量. 平行向量(共线向量): 的非零向量.零向量与任一向量 .记作 相等向量: . 2、向量加法运算:⑴三角形法则的特点:首尾相连.首尾连⑵平行四边形法则的特点:共起点.共起点之对角线⑶三角形不等式: a b a b a b -≤+≤+r r r r r r⑷运算性质:①交换律: a b b a +=+r r r r ;②结合律: ()()a b c a b c ++=++r r r r rr ;③00a a a +=+=r r r r r⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则a b +=rr ( ).3、向量减法运算:⑴减去一个向量相当于加上这个向量的相反向量。
高中数学必修4知识点(完美版)
![高中数学必修4知识点(完美版)](https://img.taocdn.com/s3/m/362da4e1b8f3f90f76c66137ee06eff9aef84930.png)
高中数学必修4知识点(完美版)高中数学必修4第一章三角函数角是指由两条射线(或直线)共同端点所组成的图形。
按照旋转方向,角可以分为正角、负角和零角。
其中,正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。
如果一个角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,就称这个角为第几象限角。
各象限角的集合可以表示为:第一象限角的集合为:α ∈ {α | k360° < α < k360° + 90°,k∈Z};第二象限角的集合为:α ∈ {α | αk360° + 90° < α < k360° + 180°,k∈Z};第三象限角的集合为:α ∈ {α | αk360° + 180° < α < αk360° + 270°,k∈Z};第四象限角的集合为:α ∈ {α | αk360° + 270° < α < αk360° + 360°,k∈Z};终边在x轴上的角的集合为:α ∈{α | α = k180°,k∈Z};终边在y轴上的角的集合为:α ∈ {α | α = k180° + 90°,k∈Z};终边在坐标轴上的角的集合为:α ∈ {α | α = k90°,k∈Z}。
根据终边所在的象限,可以将角分为四个象限。
第一象限角的终边落在第一象限,第二象限角的终边落在第二象限,以此类推。
在第一象限,角的值在0°到90°之间;在第二象限,角的值在90°到180°之间;在第三象限,角的值在180°到270°之间;在第四象限,角的值在270°到360°之间。
高中数学必修四知识点总结(合集20篇)
![高中数学必修四知识点总结(合集20篇)](https://img.taocdn.com/s3/m/f7306e8d85254b35eefdc8d376eeaeaad1f316cb.png)
高中数学必修四知识点总结(合集20篇)篇1:高中数学必修四知识点总结高中数学必修四知识点总结高中数学必修四知识点总结角的概念的推广弧度制任意角的三角函数同角三角函数的基本关系正余弦诱导公式两角和与差二倍角的正弦、余弦、正切正余弦函数的.图像和性质函数y=Asin(ωx+φ)的图像正切函数的图像和性质已知三角函数值求角平面向量的基本概念向量的加法与减法实数与向量的积平面向量的坐标计算线段的定比分点平面向量的数量积与运算律平面向量数量积得坐标表示平移篇2:高中数学必修知识点总结一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:直线与直线―平行、相交、异面;直线与平面―平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面―平行、相交。
3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
高中数学必修四知识点总结归纳
![高中数学必修四知识点总结归纳](https://img.taocdn.com/s3/m/27d7e42e83c4bb4cf7ecd192.png)
高中数学必修四第一章:三角函数1.1任意角和弧度制考点1:任意角的概念考点2:终边相同的角考点3:象限角与轴线角1.1.2弧度制考点1:弧度制考点2:弧度制与角度制考点3:用弧度表示有关角考点4:扇形的弧长与面积1.2任意角的三角函数1.2.1任意角的三角函数考点1:任意角的三角函数的定义考点2:三角函数值的符号考点3:诱导公式(一)考点4:三角函数式的化简与证明考点5:三角函数线考点6:三角函数的定义域与值域1.2.2同角三角函数的基本关系考点1:同角三角函数的基本关系考点2:三角函数式的化简考点3:利用sinα,cosα,sinαcos α之间的关系求值考点4:三角函数恒等式的证明1.3三角函数的诱导公式考点1:诱导公式考点2:运用诱导公式化简、求值考点3:诱导公式的综合运用1.4三角函数的图像与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数。
余弦函数的性质考点1:函数的周期性考点2:正弦函数与余弦函数的图像考点3:正弦函数与余弦函数的定义域和值域考点4:正弦函数与余弦函数的奇偶性考点5:正弦函数与余弦函数的单调性考点6:正弦函数与余弦函数的对称性1.4.3正切函数的性质与图像考点1:正切函数的图像考点2:正切函数的性质考点3:正切函数的综合问题1.5函数y=Asin(ωx+φ)的综合应用考点1:用“五点法”作函数y=Asin(ωx+φ)的图像考点2:用变换作图法作函数y=Asin(ωx+φ)的图像考点3:由函数y=Asin(ωx+φ)的部分图像确定其解析式考点4:简谐运动的有关概念考点5:函数y=Asin(ωx+φ)的综合应用1.6三角函数模型的简单应用考点1:利用三角函数定义建立三角函数模型考点2:用拟合法建立三角函数模型考点3:三角函数模型应用的综合问题考法整合:考法1:任意角三角函数定义的灵活运用考法2:山脚函数图像的对称性考法3:三角函数的值域与最值问题考法4:利用图像解题第二章:平面向量2.1平面向量的事件背景及基本概念考点1:平面向量的概念考点2:平行向量(共线向量)、相等向量与相反向量考点3:平面向量的应用2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其集合意义考点1:向量的加法考点2:向量的减法考点3:向量的化简考点4:响亮的加减法应用2.2.3向量数乘运算及其集合意义考点1:向量的数乘运算考点2:向量的线性运算考点3:向量的共线问题考点4:利用向量解决平面几个问题2.3平面向量的基本定理及坐标表示2.3.1平面向量的基本定理考点1:平面向量的基本定理考点2:平面向量基本定理的应用考点3:两个平面向量的夹角2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示考点1:平面向量的坐标表示考点2:平面向量的坐标运算考点3:平面向量贡献的坐标表示考点4:线段的定比分点考点5:平面向量坐标表示的应用2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义考点1:平面向量的数量积考点2:数量积的性质及其运算律考点3:两向量的夹角考点4:数量积的应用2.4.2平面向量数量积的坐标表示。
高中数学必修4知识点(完美版)
![高中数学必修4知识点(完美版)](https://img.taocdn.com/s3/m/73e70c836bec0975f465e2b9.png)
高中数学必修 4第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r >,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15 周期问题◆()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yR ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭第二章平面向量16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑷运算性质:①交换律:a b b a+=+;②结合律:()()a b c a b c++=++;③00a a a+=+=.⑸坐标运算:设()11,a x y=,()22,b x y=,则()1212,a b x x y y+=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.baCBA⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y = ,其中0b ≠,则当且仅当12210x y x y -=时,向量a、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y =,则1212a b x x y y ⋅=+.测试题一、选择题1.若三点(2,3),(3,),(4,)A B a C b 共线,则有( )A .3,5a b ==-B .10a b -+=C .23a b -=D .20a b -= 2.设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是( )A .2B .3C .23D .32 3.下列命题正确的是( )A .单位向量都相等B .若与是共线向量,与是共线向量,则与是共线向量( )C .|||b -=+,则0a b ⋅=D .若0a 与0b 是单位向量,则001a b ⋅=4.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( )A .7B .10C .13D .45.已知向量a ,b 满足1,4,a b ==且2a b ⋅= ,则a 与b 的夹角为A .6π B .4π C .3π D .2π 6.若平面向量b 与向量)1,2(=a 平行,且52||=b ,则=b ( )A .)2,4(B .)2,4(--C .)3,6(-D .)2,4(或)2,4(-- 二、填空题1.若||1,||2,a b c a b ===+ ,且c a ⊥ ,则向量a 与b的夹角为 .2.已知向量(1,2)a →=,(2,3)b →=-,(4,1)c →=,若用→a 和→b 表示→c ,则→c =____。
高中数学必修4知识点总结
![高中数学必修4知识点总结](https://img.taocdn.com/s3/m/259d0e6b86c24028915f804d2b160b4e767f813b.png)
高中数学必修4知识点总结
三角函数:这是必修4的重要内容,包括正角、负角和零角的概念,以及角度的象限划分。
此外,还有任意角的三角函数、同角三角函数的基本关系、正余弦诱导公式、两角和与差、二倍角的正弦、余弦、正切等内容。
平面向量:平面向量的基本概念、向量的加法与减法、实数与向量的积、平面向量的坐标计算、线段的定比分点、平面向量的数量积与运算律等也是必修4的重要知识点。
复数:复数的表示、复数的代数形式、复数的实部和虚部、以及复数的周期性等也是必修4的一部分内容。
集合:集合的基本性质、子集、真子集、集合的相等、空集等概念也是必修4的重要知识点。
以上就是高中数学必修4的主要知识点,需要学生在理解的基础上熟练掌握,并能够应用到解题中。
人教版高中数学必修四知识点归纳总结
![人教版高中数学必修四知识点归纳总结](https://img.taocdn.com/s3/m/a91d18d07c1cfad6185fa719.png)
人教版高中数学必修四知识点归纳总结1.1.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AOαα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式)Z (tan )2tan()Z (cos)2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4
第一章三角函数
一、任意角和弧度制
1.任意角
(1)角的概念:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角,射线的起始位置叫做角的始边,终止位置叫做角的终边.按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果射线没有作任何旋转,则形成零角.在坐标系内,使角的顶点与原点重合,角的终边与x轴的正半轴重合,则角的终边在第几象限,就说这个角是第几象限角.
(2)终边相同的角:所有与α终边相同的角,连同α在内,可构成一个集合
{360}
==⋅+∈
S k,k Z
ββα
(3)坐标轴上的角:
2.弧度制
(1)定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角.
(2)计算:如果半径为r的圆的圆心角α所对弧的长为l,那么角α弧度数的绝对值是
=l r
α
其中,α的正负由角α的终边的旋转方向决定.
注意:弧长公式: =l r α.
扇形面积公式: 211
22
=
=S lr r α. (3)换算:360°=2π
180°=π
1001745180π
≈=.o 180
1=(
)5730≈.o o π
说明:①1800
=π是所有换算的关键,如ππ====,o
o o
o 18018030456644;②πm
n
形式的角当n =2,3,4,6时都是特殊角.
二、任意角的三角函数
1.任意角三角函数的定义
(1)定义:设P (x , y )是角α终边上任意一点, =>OP r 0,则有
sin α=
y r
cos α=x r tan α=y
x
(2)三角函数值的符号:
口诀:一全二正弦,三切四余弦.
注:一二三四指象限,提到的函数为正值,未提到的为负值. 2.同角三角函数的基本关系
sin 2α+cos 2α=1
sin tan cos α
α=
α
三、三角函数的诱导公式
1.诱导公式
sin(2)sin cos(2)cos tan(2)tan +=+=+=k k k πααπααπαα
sin()cos 2cos()sin 2
+=+=-π
αα
π
αα
口诀2:函数名改变,符号看象限.
四、三角函数的图象与性质
1.正、余弦函数的图象
2.正、余弦函数的性质
(2)最值
①y =sin x :当22
=+
x k ππ时,取得最大值1,
当322
=+
x k π
π时,取得最小值-1. ②y =cos x :当x =2kπ时,取得最大值1,
当x =2kπ+π时,取得最小值-1.
(3)对称性
①y =sin x :对称轴:2
=+
x k ππ,对称中心:(kπ , 0).
②y =cos x :对称轴:x = kπ,对称中心:(,0)2
+
k π
π.
3.正切函数的图象与性质 (1)图象 如右图. (2)性质
定义域:.2
≠+x k ππ
值域:R. 奇偶性:奇函数
周期性:最小正周期为π 单调性:在(,)2
2
-
+
k k ππππ上是增函数.
五、y =A sin(ωx + φ)图象与性质
1.图象 (1)图象变换
注:x 值不需记忆,针对具体问题计算即可,但应注意五个值成等差数列. 2.性质
定义域:R 值域:[,]-A A 周期:2=T π
ω
振幅:A
频率:12=
=
f T ω
π
. 相位:ωx +φ 初相:φ 单调性:将ωx +φ当成一个整体,利用y =sin x 的单调区间求出.
第二章 平面向量
一、平面向量基本概念
(1)既有大小又有方向的量叫做向量.
(2)向量可以用有向线段表示.向量AB u u u r 的大小,也就是向量AB u u u r
的长度(或称模),记作AB u u u r
.长度为0的向量叫做零向量,记作0.长度等于1个单位的向量,叫做单位向量.
(3)方向相同或相反的非零向量叫做平行向量,也叫共线向量. 规定:零向量与任一向量平行.
长度相等且方向相同的向量叫做相等向量.
2.减法
(1)与a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .零向量的相反向量仍是零向量.
(2)任一向量与其相反向量的和是零向量,即a +(- a )=(- a )+a =0.
(3)定义:a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.
(4)已知a ,b ,在平面内任取一点O ,作=OA a u u u r ,=OB b u u u r ,则=-BA a b u u u r
,即-a b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.
3.数乘
(1)定义:我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记
作λa ,它的长度与方向规定如下:
①|λa |=|λ||a |;
②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. (2)运算律 设λ、μ为实数,那么 ①λ(μa )=(λμ)a ; ②(λ+μ)a =λa +μa ; ③λ(a +b )=λa +λb . (3)向量共线条件
a ,
b 共线(a ≠0)⇔有且只有一个实数λ,使b =λa .
a =xi +yj ,
我们把有序数对(x , y )叫做向量a 的(直角)坐标,记作a =(x , y ). (2)平面向量的坐标运算 ①设a =(x 1 , y 1),b =(x 2 , y 2),则有 a +b =(x 1+x 2 , y 1+y 2) a -b =(x 1-x 2 , y 1-y 2) λa =(λx 1 , λy 1)
②设A (x 1 , y 1),B (x 2 , y 2),则有2121(,)AB x x y y =--u u u r
)
③向量共线的坐标表示
设a =(x 1 , y 1),b =(x 2 , y 2),则有a ,b 共线12210x y x y ⇔-=. ④中点公式
设A (x 1 , y 1),B (x 2 , y 2),P 为AB 中点,则对任一点O ,有
12121(),.222x x y y OP OA OB ++⎛⎫=+= ⎪⎝⎭
u u u r u u u r u u u r
四、平面向量的数量积
1.定义:已知两个非零向量a ,b ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积).
2.坐标表示:设a =(x 1 , y 1),b =(x 2 , y 2),则
a ·
b =x 1x 2+y 1y 2.
3.垂直条件:设a ,b 为非零向量,则
121200.a b a b x x y y ⊥⇔⋅=⇔+=
第三章 三角恒等变换
一、两角和与差的三角函数
sin(α+β)=sin α cos β+cos α sin β sin(α-β)=sin α cos β-cos α sin β cos(α+β)=cos α cos β-sin α sin β cos(α-β)=cos α cos β+sin α sin β tan tan tan()1tan tan αβ
αβαβ++=-
tan tan tan()1tan tan αβ
αβαβ
--=
+
二、二倍角的三角函数
sin2α=2sin α cos α
cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α
22tan tan21tan α
αα
=
-
补充公式:。