排列与组合课件
合集下载
人教版三年级数学上册《排列组合》PPT课件
穿法二
穿法三
穿法四
穿法五
穿法六
2×3﹦6(种)
要求:小组中一人记录,其他同学陈述自己的点。
用1,2,3可以组合成哪些两位数?
B
A
小组合作讨论二:
12
13
21
23
31
32
十位
十位
十位
个位
个位
个位
猜一猜:
我今年读九年级了,我的班级是由1、2、3这三个数字组成的一个三位数,请你猜一猜我读的是多少班?
有的问题需要考虑到顺序,也就是结果和顺序有关,例如组成几位数这样的问题等
今后我们在遇到这些问题的时候一定要认真审题,看清楚问题的“隐含条件”
这节课我们学了什么
作业:
同学们回家后仔细观察周围环境中可搭配和组合的实物,自己搭配和组合。
123
132
213
231
312
321
考考你:饮料和点心只能各选一样,有几种不同的搭配方式?
3×2=6(种)
⑥
①
②
③
④
⑤
下
M
能组成哪几个不同的两位数呢?
48 96 98
28
26
46
43
93
从宁波到北京一共有几种走法?
北京 上海 火车 火车 8种
轮船
宁波
飞机
火车
飞机
汽车
我们知道了:
有的问题不用考虑到顺序,也就是说结果和顺序无关,例如握手、比赛等问题
排列与组合
点击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
学习目标:
01
我能找出简单事物的组合数。
02
我能用排列与组合的知识解决生活中的实际问题。
高考数学-14-2排列与组合课件-人教版
• 3.(2010·北京,4)8名学生和2位老师站成一排合影,2位 老师不相邻的排法种数为( )
• A.A88A92
B.A88C92
• C.A88A72
D.A88C72
• [解析] 不相邻问题用插空法,8名学生先排有A88种,产 生9个空,2位老师插空有A92种排法,所以最终有A88·A92种 排法.故选A.
• (3)排列与组合的共同点与区别:两者都是从n个不同元素 中取出m(m≤n)个元素,这是排列、组合的共同点.两者的 不同点是,排列与元素的顺序有关,组合与元素的顺序无关.
• 4.组合数的定义和组合数公式
• (1) 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的
所有不同组合的个数 ,叫ห้องสมุดไป่ตู้从n个不同元素中取出m个元
n! n-m!.
• 全排列数公式:Ann=n(n-1)(n-2)…3·2·1=n!.也叫做 n的阶乘.
• (3)记住下列几个阶乘:0!=1,1!=1,2!=2,3!=6,4! =24,5!=120,6!=720,7!=5040.
• 3.组合的定义
• (1)一般地,从n个不同元素中取出m(m≤n)个元素合成一组 ,叫做从n个不同元素中取出m个元素的 一个组合. • (2)只要两个组合的 元素相同 ,不论元素的顺序如何, 都是 相同的组合.
(5)由于甲站在乙的左边(可不相邻)和甲站在乙的右边的 排法数相同,故共有A277=2520 种排法.也可以就甲的站法 分为 6 类,所求排法数为 A55(6+5+4+3+2+1)=2520 种.
(6)甲站在中间,只有一种排法.把乙、丙看成一个整体, 当成一个元素,在甲的左、右两边各有两个位置让他们排, 故共有 C41A22A44=192 种排法.
人教A版高中数学选择性必修第三册6.2排列与组合 教学课件
例如, 在问题1中, “甲乙”与“甲丙”的元素不完全相
同, 它们是不同的排列;“甲乙”与“乙甲”虽然元素完全
相同,但元素的排列顺序不同,它们也是不同的排列.
又如,在问题2中,123与134的元素不完全相同,它们
是不同的排列;123与132虽然元素完全相同,但元素的排
列顺序不同,它们也是不同的排列.
6.2 排列与组合
6.2.1 排列
6.2.2 排 列 数 P15
6.2.3 组合 P33
6.2.4 组合数
在上节例8中我们看到,用分步乘法计数原理解决这
个问题时,因做了一些重复性工作而显得繁琐. 能否对这
一类计数问题给出一种简捷的方法呢?为此,先来分析
两个具体的问题.
6.2.1 排列
问题1:从甲、乙、丙3名同学中选出2名参加一项活
421,423,431,432。
同样,问题2可以归结为:
从4个不同的元素a,b,c,d中任取3个,并按照一
定的顺序排成一列,共有多少种不同的排列方法?
所有不同的排列是
a b c, a b d, a c b, a c d, a d b, a d c;
b a c, b a d, b c a, b c d, b d a, b d c;
例2 (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同
学每人从中各取1盘菜,共有多少种不同的取法?
(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同
学每人从中选一种,共有多少种不同的选法?
分析:3名同学每人从5盘不同的菜中取1盘菜;可看作
是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一
个排列;
排成一个三位数,共可得到多少个不同的三位数?
显然, 从4个数字中, 每次取出3个, 按“百位”“十位”
同, 它们是不同的排列;“甲乙”与“乙甲”虽然元素完全
相同,但元素的排列顺序不同,它们也是不同的排列.
又如,在问题2中,123与134的元素不完全相同,它们
是不同的排列;123与132虽然元素完全相同,但元素的排
列顺序不同,它们也是不同的排列.
6.2 排列与组合
6.2.1 排列
6.2.2 排 列 数 P15
6.2.3 组合 P33
6.2.4 组合数
在上节例8中我们看到,用分步乘法计数原理解决这
个问题时,因做了一些重复性工作而显得繁琐. 能否对这
一类计数问题给出一种简捷的方法呢?为此,先来分析
两个具体的问题.
6.2.1 排列
问题1:从甲、乙、丙3名同学中选出2名参加一项活
421,423,431,432。
同样,问题2可以归结为:
从4个不同的元素a,b,c,d中任取3个,并按照一
定的顺序排成一列,共有多少种不同的排列方法?
所有不同的排列是
a b c, a b d, a c b, a c d, a d b, a d c;
b a c, b a d, b c a, b c d, b d a, b d c;
例2 (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同
学每人从中各取1盘菜,共有多少种不同的取法?
(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同
学每人从中选一种,共有多少种不同的选法?
分析:3名同学每人从5盘不同的菜中取1盘菜;可看作
是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一
个排列;
排成一个三位数,共可得到多少个不同的三位数?
显然, 从4个数字中, 每次取出3个, 按“百位”“十位”
组合数学课件-第一章:排列与组合
积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。
排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
排列组合—组合(初等数学课件)
(2) Cnm1 是从 n 1 个元素中取出 m 个元素的组合数,另一方面,设a 是
n 1个相异元素中的某一特定元素,对 a 而言,这些组合可以分为两类:一类
组合 含有 a
,其组合数为 Cnm-1
,另一类不含a
,其组合数为
Cnm
,
故有∴
C
m n 1
=
C
m n
+
C
m 1 n
。
例题讲解
例 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4 张,从中任取3张,要求这3张卡片不能是同一颜色,且红色卡片至多 1张,则不同取法共有多少种?
解 从 16 张卡片中任取 3 张共有C136 种取法,其中 3 张颜色相同的取法有
4C43 种,3 张中有 2 张是红色的有 C42C112 种取法,故共有 C136 - 4C43 C42C112 472 种 取法。
初等数学研究
相异元素的无重复组合
相异元素的无重复组合
定义 从 n 个不同元素中,不重复地任取 m m n 个元素并成一组,叫做
从 n 个不同元素中做从 n 个不同元素中取出 m 个元素的组.合.数.。
用符号 Cnm 表示。
定理 1
C
m n
Anm m!
n! m!(n m)!
通常 规定Cn0 1
相异元素的无重复组合
定理2 组合数的性质: (1) Cnm Cnnm ;
(2) Cnm Cnm1 Cnm1
相异元素的无重复组合
上述性质可以这样解释:
(1)从 n 个相应元素中取出一个 m 个元素组合的同时,必留下一个n m
个元素的组合,二者一一对应,故有Cnm Cnnm ;
n 1个相异元素中的某一特定元素,对 a 而言,这些组合可以分为两类:一类
组合 含有 a
,其组合数为 Cnm-1
,另一类不含a
,其组合数为
Cnm
,
故有∴
C
m n 1
=
C
m n
+
C
m 1 n
。
例题讲解
例 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4 张,从中任取3张,要求这3张卡片不能是同一颜色,且红色卡片至多 1张,则不同取法共有多少种?
解 从 16 张卡片中任取 3 张共有C136 种取法,其中 3 张颜色相同的取法有
4C43 种,3 张中有 2 张是红色的有 C42C112 种取法,故共有 C136 - 4C43 C42C112 472 种 取法。
初等数学研究
相异元素的无重复组合
相异元素的无重复组合
定义 从 n 个不同元素中,不重复地任取 m m n 个元素并成一组,叫做
从 n 个不同元素中做从 n 个不同元素中取出 m 个元素的组.合.数.。
用符号 Cnm 表示。
定理 1
C
m n
Anm m!
n! m!(n m)!
通常 规定Cn0 1
相异元素的无重复组合
定理2 组合数的性质: (1) Cnm Cnnm ;
(2) Cnm Cnm1 Cnm1
相异元素的无重复组合
上述性质可以这样解释:
(1)从 n 个相应元素中取出一个 m 个元素组合的同时,必留下一个n m
个元素的组合,二者一一对应,故有Cnm Cnnm ;
新高考一轮复习人教A版第九章第二讲排列与组合课件(52张)
(8)从除甲、乙以外的 3 人中选 1 人排在甲、乙中间的 排法有 3 种,甲、乙和其余 2 人排成一排且甲、乙相邻的 排法有 A22A33种,最后再把选出的 1 人的排列插入到甲、乙 之间即可,共有 3A22A33=36 种.
答案:(1)72 (2)36 (3)12 (4)20 (5)78 (6)72 (7)120 (8)36
)
答案:(1)× (2)× (3)× (4)√ (5)√
题组二 走进教材
2.(教材改编题)有 6 名男医生、5 名女医生,从中选出
2 名男医生、1 名女医生组成一个医疗小组,则不同的选法
共有( )
A.60 种 B.70 种
C.75 种
D.150 种
答案:C
3.(教材改编题)已知某公园有 4 个门,从一个门进,另 一个门出,则不同的走法的种数为( )
题组一 走出误区
1.判断下列结论正误(在括号内打“√”或“×”) (1)所有元素完全相同的两个排列为相同排列.( ) (2)一个组合中取出的元素讲究元素的先后顺序.
()
(3)若组合式 Cxn=Cnm,则 x=m 成立.( )
(4)(n+1)!-n!=n·n!.( )
(5)kCkn=nCkn--11.(
素中取出 m 个元素的组合数.
的排列数.用符号“ Anm ” 表示
用符号“ Cnm ”表示
(续表)
内容
排列数
Anm=n(n-1)(n-
计算 2)…(n-m+1)= 公式 n-n!m!(n,m∈
N*,且 m≤n)
组合数
Cnm=AAmnmm=nn-1n-m2!…n-m+1 =m!nn!-m!(n,m∈N*,且 m≤n)
解:(1)从余下的 34 种商品中,选取 2 种有 C234=561 (种),∴某一种假货必须在内的不同取法有 561 种.
排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
高中数学排列与组合 PPT课件 图文
则甲、乙两人不都入选的不同选法种数共有( D)
A
.C
2 5
A33
B.2C
3 5
A33
C
.A
3 5
D.2C52A33 A53
课堂练习:
5、在如图7x4的方格纸上(每小方格均为正方形) (1)其中有多少个矩形? (2)其中有多少个正方形?
小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
方 法 二 : C 1 5 2 C 3 0 C 9 56 6 6
例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生参加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
。
3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果
其中至少有2名男医生和至少有2名女医生,则不同的选法种数
为( C )
A.(C8 3C7 2)(C7 3C82)
B .(C 8 3C 7 2)(C 7 3C 8 2)
C.C83C72C73C82
D.C83C72C111
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,
abd bad dab adb bda dba
acd cad dac
你发现a了dc cda dca 什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
A 求3可 分 两 步 考 虑 :
求4P
3 4
可分两步考虑:
C 第 一 步 ,3( 4 ) 个 ; 4
人教A版数学选修2-31.2排列与组合课件
取1个元素,不同方法的种数
mn
是
.
5.一名同学有4本不同的数学书,5本不同的物理书,3本不
同的化学书,现要将这些书放在一个单层的书架上.
(1)如果要选其中的6本书放在书架上,那么有多少种不同的
放法?
(2)如果要将全部的书放在书架上,且不使同类的书分开,那
么有多少种不同的放法?
答案:(1)665280;
A.
B.
C.
D.
D
A.
B.
C.
D.
4.求证:
(1)
)
(2
3.一个火车站有8股岔道,如果每股道只能停放1列火车,现
要停故4列不同的火车,共有多少种不同的停放方法?
答案:
1680.
排列数的两个公式
(1)排列数的第一个公式
n(n-1)(n-2)…(n-m+1)适用m
已知的排列数的计算以及排列数的方程和不等式.在运用时要注意
解: (1)
(2)
(3)
B
A.
B.
C.
D.
C
A.
B.
C.
D.
B
A.
B.
C.
D.
150
A
A.
B.
C.
D.
A
A.
B.
C.
D.
1.先计算,然后用计算工具检验
。(1)
(2)
(3)
)
答案:(1)15;
(2)36;
(3)20;
(4)148.
(4
2.有政治、历史、地理、物理、化学、生物这6门学科的学业
?
1.某省中学生足球赛预选赛每组有6 支队,每支队都要与同组
的其他各队在主、客场分别比赛1场,那么每组共进行多少场比
mn
是
.
5.一名同学有4本不同的数学书,5本不同的物理书,3本不
同的化学书,现要将这些书放在一个单层的书架上.
(1)如果要选其中的6本书放在书架上,那么有多少种不同的
放法?
(2)如果要将全部的书放在书架上,且不使同类的书分开,那
么有多少种不同的放法?
答案:(1)665280;
A.
B.
C.
D.
D
A.
B.
C.
D.
4.求证:
(1)
)
(2
3.一个火车站有8股岔道,如果每股道只能停放1列火车,现
要停故4列不同的火车,共有多少种不同的停放方法?
答案:
1680.
排列数的两个公式
(1)排列数的第一个公式
n(n-1)(n-2)…(n-m+1)适用m
已知的排列数的计算以及排列数的方程和不等式.在运用时要注意
解: (1)
(2)
(3)
B
A.
B.
C.
D.
C
A.
B.
C.
D.
B
A.
B.
C.
D.
150
A
A.
B.
C.
D.
A
A.
B.
C.
D.
1.先计算,然后用计算工具检验
。(1)
(2)
(3)
)
答案:(1)15;
(2)36;
(3)20;
(4)148.
(4
2.有政治、历史、地理、物理、化学、生物这6门学科的学业
?
1.某省中学生足球赛预选赛每组有6 支队,每支队都要与同组
的其他各队在主、客场分别比赛1场,那么每组共进行多少场比
精品课件:排列与组合
解析 (1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故 先安排甲,左、右、中共三个位置可供甲选择,有 A13种,其余 6 人全排 列,有 A66种.
由分步乘法计数原理得 A13A66=2 160(种). (2)位置分析法(特殊位置优先安排),先排最左边,除去甲外,有 A16种, 余下的 6 个位置全排有 A66种,但应剔除乙在最右边的排法数 A15A55种. 则符合条件的排法共有 A16A66-A51A55=3 720(种). (3)捆绑法.将男生看成一个整体,进行全排列,再与其他元素进行 全排列,共有 A33A55=720(种).
A77=N×A33,∴N=AA7733=840(种). (7)与无任何限制的排列相同,有 A77=5 040(种). (8)从除甲、乙以外的 5 人中选 3 人排在甲、乙中间的排法有 A53种,
甲、乙和其余 2 人排成一排且甲、乙相邻的排法有 A22A33种,最后再把选 出的 3 人的排列插入到甲、乙之间即可,共有 A53×A22×A33=720(种).
24 种,于是符合题意的排法共有 144-24=120 种.
• 答案:B
• 角度二 特殊元素、特殊位置问题
• 2.1名老师和5位同学站成一排照相,老 师不站在两端的排法共有( )
• A.450种
B.460种
• C解.析:4解8法0一种 (元素分析法)先排老师D有.A14种50方0法种,再排学生有 A55
(3)无序均匀分组问题. 先分三步,则应是 C62C24C22种方法,但是这里出现了重复.不妨记六 本书为 A,B,C,D,E,F,若第一步取了 AB,第二步取了 CD,第三 步取了 EF,记该种分法为(AB,CD,EF),则 C26C24C22种分法中还有(AB, EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB, CD),共有 A33种情况,而这 A33种情况仅是 AB,CD,EF 的顺序不同,因 此只能作为一种分法,故分配方式有C26AC2433C22=15(种). (4)有序均匀分组问题. 在(3)的基础上再分配给 3 个人, 共有分配方式C62AC2433C22·A33=C62C24C22=90(种).
高中数学选修2-3《排列与组合》全部课件
从n个不同元素中取出m(m≤n)个元素的所 有组合的个数,叫做从n个不同元素中取出m个
元素的组合数,用符号Cnm表示。
注意:1.m个元素必须从这n个元素中取出;
2.组合问题,哪些是排列问题?
1、从a,b,c,d四名学生中选2名学生完成一件工作,
1.排列 定义:一般地,从 n 个不同元素中,任取 m (m≤n) 个元素,按照一定的顺序排成一列, 叫做从 n 个不同元素中取出 m 个元素的 一个排列.
说明:①一次性取出m个元素;②将这m个
元素按一定的顺序排成一列.③ m≤n
注:(相同排列:元素相同,顺序相同.)
例1.下列问题是不是排列问题? 1.某学校的高二(1)班有50名同学,从 中选出5人组成班委会,共有多少种选法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
4)甲不排头,也不排尾,共有几种排法?
甲
5)甲只能排头或排尾,共有几种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
6)甲不排头,乙不排尾,共有多少种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩,三 家是女孩,现将这七个小孩站成一排照相留念。
1)甲站在正中间的排法有几种?
甲
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
2)甲乙两人必须站在两端的排法有几种?
甲
乙
3)甲乙两人不能站在两端的排法有几种?
有多少种不同的选法?
组合
2、从a,b,c,d四名学生中选2名学生完成两件不同的
元素的组合数,用符号Cnm表示。
注意:1.m个元素必须从这n个元素中取出;
2.组合问题,哪些是排列问题?
1、从a,b,c,d四名学生中选2名学生完成一件工作,
1.排列 定义:一般地,从 n 个不同元素中,任取 m (m≤n) 个元素,按照一定的顺序排成一列, 叫做从 n 个不同元素中取出 m 个元素的 一个排列.
说明:①一次性取出m个元素;②将这m个
元素按一定的顺序排成一列.③ m≤n
注:(相同排列:元素相同,顺序相同.)
例1.下列问题是不是排列问题? 1.某学校的高二(1)班有50名同学,从 中选出5人组成班委会,共有多少种选法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
4)甲不排头,也不排尾,共有几种排法?
甲
5)甲只能排头或排尾,共有几种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
6)甲不排头,乙不排尾,共有多少种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩,三 家是女孩,现将这七个小孩站成一排照相留念。
1)甲站在正中间的排法有几种?
甲
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
2)甲乙两人必须站在两端的排法有几种?
甲
乙
3)甲乙两人不能站在两端的排法有几种?
有多少种不同的选法?
组合
2、从a,b,c,d四名学生中选2名学生完成两件不同的
人教A版高中数学选择性必修第三册6.2排列与组合_教学课件
(4)某商场有四个大门,若从一个大门进去,购买物品后,再从另一个大门出 来,不同的出入方式有多少种? (5)有红球、黄球、白球各一个,现从这三个小球中任取两个,分别放入甲、乙 两个盒子里,有多少种不同的放法? 【思维导引】与“顺序”有关是排列问题,与“顺序”无关不是排列问题.
【解析】(1)不是.加法运算满足交换律,所以选出的2个元素做加法时,与两个 元素的位置无关,所以不是排列问题. (2)是.由于取出的两数组成的点的坐标与哪一个数为横坐标,哪一个数为纵坐 标的顺序有关,所以这是一个排列问题. (3)不是.因为任何一种从10名同学中抽取2名同学去学校开座谈会的方式不需要 考虑两个人的顺序,所以这不是排列问题.
3.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插 法共有________种(请用数字作答). 【解析】我们可以一本一本插入,先插入一本可以在原来5本书形成的6个空隙中 插入,共有6种插入方法;同理再插入第二本共有7种插入方法,插入第三本共有 8种插入方法,所以共有6×7×8=336(种)不同的插法. 答案:336
课堂素养达标
1.从2,3,5,7四个数中任选两个分别相除,则得到的结果有( ) A.6个 B.10个 C.12个 D.16个 【解析】选C.从2,3,5,7四个数中任选两个数分别相除,被除数有4种不同选 法,除数有3种不同选法,所以共有4×3=12个.
2.由1,2,3,4,5组成没有重复数字且1,2都不与5相邻的五位数的个数是 ________. 【解析】先排3,4有2种排法,再插空排5有3种排法,再插空排1有2种排法,插 空排2有3种排法,所以共有2×3×2×3=36个. 答案:36
(3)第一问不是排列问题,第二问是排列问题.从5个数中取3个数,与顺序无 关;若这3个数字组成不同的三位数,则与顺序有关.
《排列与组合自》课件
组合可以看作排列的一个特例
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
数学课件(新教材人教A版)第十章102排列与组合
命题点2 定序问题 例4 有4名男生,3名女生,其中3名女生高矮各不相同,将7名学生排成 一行,要求从左到右,女生从矮到高排列(不一定相邻),不同的排法共有 ___8_4_0___种.
7 名学生的排列共有 A77种,其中女生的排列共有 A33种,按照从左到右, 女生从矮到高的排列只是其中的一种,故有AA7733=A47=840(种)不同的排法.
(1)0!= 1 ;Ann=__n_!__. 性质 (2)Cmn =Cnn-m;Cmn+1=_C_mn_+__C__mn _-_1
常用结论
1.排列数、组合数常用公式 (1)Amn =(n-m+1)Amn -1. (2)Amn =nAmn--11. (3)(n+1)!-n!=n·n!. (4)kCkn=nCkn--11. (5)Cmn +Cmn-1+…+Cmm+1+Cmm=Cmn++11.
(2)在某场新闻发布会上,主持人要从5名国内记者与4名国外记者中依次
选出3名来提问,要求3人中既有国内记者又有国外记者,且不能连续选
国内记者,则不同的选法有
种种种种
√
根据题意,分2种情况讨论, ①选出的3人中有1名国外记者、2名国内记者, 则有 C25C14A22=80(种)选法, ②选出的3人中有2名国外记者、1名国内记者, 则有 C15C24A33=180(种)选法, 由分类加法计数原理可知,共有80+180=260(种)选法.
根据题意,雪上技巧项目必须由女队员展示,有 2 种情况,剩下 3 人 表演其他 3 个项目,有 A33=6(种)情况,而 4 个项目之间的排法有 A44 =24(种)顺序,则有 2×6×24=288(种)展示方案.
(2)用0,1,2,3,4,5这六个数字可以组成_1_1_0__个无重复数字且不大于4 310的 四位偶数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fra bibliotek汉堡包返回
饮料: 八宝粥 牛奶 豆浆
点心: 薯条 蛋糕
汉堡包
返回
饮料: 八宝粥 牛奶 豆浆
点心: 饼干 薯条 蛋糕
汉堡包
返回
从儿童乐园回到家中有几条路可走? 你会选择那条路呢?
A——C A——D A——E
B——C B——D B——E
儿童乐园 Α Β
C
D
家
E
用 7 、 3 、 9 能组成多少个不同的 三位数?
返回
大家好,我叫 童童,很高兴认 识大家。
妈妈要带我去 儿童乐园,我想 穿的漂亮些,可 是衣柜里有好多 衣服我都不知该 穿哪套了,大家 能帮帮我吗?
1
要配成一套衣服有多 少种不同的搭配方法?
先确定上装,再确定下装。
黄短袖
紫长裤 绿长裙 红短裙
蓝长袖
紫长裤 绿长裙 红短裙
答:童童要配成一套衣服有6 种不同的搭配方法。
先确定下装,再确定上装。
黄短袖 紫长裤
蓝长袖
黄短袖 绿裙子
蓝长袖
黄短袖 红短裙
蓝长袖
答:童童要配成一套衣服有6种不同的搭配方法。
1 2 3 45 6
12
34
6 5
饮料: 牛奶 豆浆 1 3 45 6 2
点心: 薯条 蛋糕 汉堡包
饮料: 牛奶 豆浆
1 2 34 5 6
点心: 薯条 蛋糕
数学广角
三年级 上册
内容介绍
教学内容:人教版数学三上数学广角——简单的排列 组合 教学目标: 1、通过观察、猜测、比较、实验等活动,找出最简 单的事物的排列数和组合数。 2、初步培养有序地全面地思考问题的能力。 3、培养初步的观察、分析、及推理能力。 教学重点:经历探索简单事物排列与组合规律的过程 教学难点:初步理解简单事物排列与组合的不同
百十个
9 73 37
7 39 93
3 79 97
排一排,读一读,你会哪 些不同的排法?
蜜花采 蜂
蜜花 采 蜂
蜜花 蜂 采 蜜采花 蜂 蜜 采 蜂花 蜜 蜂 花采 蜜蜂 采花
4×6=24
2 × 4 = 8 (张)
返回
回头看:
在今天数学广角中你又有什么 收获?感觉自己表现得如何?还 有什么问题?
饮料: 八宝粥 牛奶 豆浆
点心: 薯条 蛋糕
汉堡包
返回
饮料: 八宝粥 牛奶 豆浆
点心: 饼干 薯条 蛋糕
汉堡包
返回
从儿童乐园回到家中有几条路可走? 你会选择那条路呢?
A——C A——D A——E
B——C B——D B——E
儿童乐园 Α Β
C
D
家
E
用 7 、 3 、 9 能组成多少个不同的 三位数?
返回
大家好,我叫 童童,很高兴认 识大家。
妈妈要带我去 儿童乐园,我想 穿的漂亮些,可 是衣柜里有好多 衣服我都不知该 穿哪套了,大家 能帮帮我吗?
1
要配成一套衣服有多 少种不同的搭配方法?
先确定上装,再确定下装。
黄短袖
紫长裤 绿长裙 红短裙
蓝长袖
紫长裤 绿长裙 红短裙
答:童童要配成一套衣服有6 种不同的搭配方法。
先确定下装,再确定上装。
黄短袖 紫长裤
蓝长袖
黄短袖 绿裙子
蓝长袖
黄短袖 红短裙
蓝长袖
答:童童要配成一套衣服有6种不同的搭配方法。
1 2 3 45 6
12
34
6 5
饮料: 牛奶 豆浆 1 3 45 6 2
点心: 薯条 蛋糕 汉堡包
饮料: 牛奶 豆浆
1 2 34 5 6
点心: 薯条 蛋糕
数学广角
三年级 上册
内容介绍
教学内容:人教版数学三上数学广角——简单的排列 组合 教学目标: 1、通过观察、猜测、比较、实验等活动,找出最简 单的事物的排列数和组合数。 2、初步培养有序地全面地思考问题的能力。 3、培养初步的观察、分析、及推理能力。 教学重点:经历探索简单事物排列与组合规律的过程 教学难点:初步理解简单事物排列与组合的不同
百十个
9 73 37
7 39 93
3 79 97
排一排,读一读,你会哪 些不同的排法?
蜜花采 蜂
蜜花 采 蜂
蜜花 蜂 采 蜜采花 蜂 蜜 采 蜂花 蜜 蜂 花采 蜜蜂 采花
4×6=24
2 × 4 = 8 (张)
返回
回头看:
在今天数学广角中你又有什么 收获?感觉自己表现得如何?还 有什么问题?