04-非线性回归模型的线性化

合集下载

计量经济学基础-非线性回归模型

计量经济学基础-非线性回归模型

第四节 非线形回归模型一、 可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。

在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。

1.倒数模型我们把形如:u xb b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。

设:xx 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。

倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。

有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。

2.对数模型模型形式:u x b b y ++=ln ln 10 (3.4.2)(该模型是将ub e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。

上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。

因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。

令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3)变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。

模型特点:斜率1b 度量了y 关于x 的弹性:xdx y dy x d y d b //)(ln )(ln 1== (3.4.4) 它表示x 变动1%,y 变动了多少,即变动了1b %。

模型适用对象:对观测值取对数,将取对数后的观测值(lnx ,lny )描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x 与y 的变量关系。

课件:第4章 非线性回归模型

课件:第4章 非线性回归模型
计量经济学
第四章 非线性回归模型
1
§4.1 非线性回归模型的类 型
一、非线性回归模型的特点
非线性回归模型的特点, 是与线性回归模型相比得到的特点
考虑标准线性回归模型: Y 0 1X1 2 X 2 k X k u
特点: (1)被解释变量是解释变量的线性函数 (2)被解释变量是回归系数的线性函数 非线性回归模型,则不满足以上两条之一, 或全部 或者说被解释变量是解释变量和回归系数的非线性函数 其一般形式为
根据最小二乘准则,使残差平方和e’e最小
寻找ˆ1
,
ˆ2
,,
ˆ
,使
p
minQ [Yi f ( X1i , X 2i ,, X ki; ˆ1, ˆ2,, ˆp )]2
18
(二)估计方法
1、求解方程组
Q
ˆ1
0
Q
ˆ2
...
Q
ˆk
0 0
问题: (1)偏导不一定好求 (2)方程组很难求解
19
• 将f在新的参数值附近展开,得到一个新的线性 模型,再次用OLS估计,…
• 直到收敛为止, i,l1 i,l (允许误差)
i,l
22
(3)实例
• 课本例3,非线性消费模型 C 0 1Y 2 u
取初始点(0,0 , 1,0 , 2,0)(1,1,1)
f (0 , 1, 2 ) 0 1Y 2
(3)估计: (4)图形:
(5)应用:X Y(Y变化弱)
12
4、指数函数(Y单ln)
(1)模型:Y Ae1X12 X 2 u
(2)线性化:lnY ln A 1X1 2 X 2 u 变量替换为: Y * 0 1X 12 X 2 u
(3)应用:X Y变化强

4 第四章 非线性回归模型

4  第四章 非线性回归模型

解:根据经济理论,二者之间的关系可以用双曲线模 型来表示
1 y = β 0 + β1 + µ x
令 则
z = 1 x
y = β 0 + β1 z + µ
运用Eviews进行回归, 操作步骤为:quickempty groupprocsmake equation, 输出结果如下: 输出结果如下4.1.2
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线 例如, 拉弗曲线:抛物线 拉弗曲线 s = a + b r + c r2 c<0 s:税收; r:税率 设 z1 = r, z2 = r2, 则原方程变换为 s = a + b z1+ c z2 c<0
例4.1.1 某生产企业在1981-1995年间每年的产量和 总成本如下表(表4.1.1),试用回归分析法确定其 成本函数。 表4.1.1




1 x
s = (1.0086)(4.6794) t = (−0.2572)(4.3996**)
3、半对数模型和双对数模型 、 把函数形式为
ln y = β0 + β1x + µ
(4.1.5) (4.16)
y = β + β ln x + µ
称为半对数模型。 把函数形式为
ln y = ln β0 + β1 ln x + µ
第四章 非线性 回归模型
前面我们讨论的经济问题,都是假定作为因变量的经 济变量与作为解释变量的经济变量之间存在着线性关 系。由此建立线性回归模型进行线性回归分析。这里 所说的线性是指:(1)解释变量线性。(2)参数线 性。但是,在众多的经济现象中,分析经济变量之间 的关系,根据某种经济理论和对实际经济问题的分析, 所建立的经济模型往往不符合上面的线性要求,即模 型是非线性的,称为非线性模型(Non-linear Model)。 非线性模型的参数如何进行估计,如何进行分析,是 本章所要讨论的问题。

计量经济学第四章非线性回归模型的线性化

计量经济学第四章非线性回归模型的线性化

第四章 非线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是非线性的。

例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述非线性回归模型是无法用最小二乘法估计参数的。

可采用非线性方法进行估计。

估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。

计算机的出现大大方便了非线性回归模型的估计。

专用软件使这种计算变得非常容易。

但本章不是介绍这类模型的估计。

另外还有一类非线性回归模型。

其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。

称此类模型为可线性化的非线性模型。

下面介绍几种典型的可以线性化的非线性模型。

4.1 可线性化的模型⑴ 指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。

显然x t 和y t 的关系是非线性的。

对上式等号两侧同取自然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。

其中u t 表示随机误差项。

010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u t (4.4)b >0和b <0两种情形的图形分别见图4.3和4.4。

x t 和y t 的关系是非线性的。

令x t * = Lnx t , 则y t = a + b x t * + u t (4.5)变量y t 和x t * 已变换成为线性关系。

图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u e (4.6)b 取不同值的图形分别见图4.5和4.6。

浅谈非线性回归模型的线性化

浅谈非线性回归模型的线性化

浅谈非线性回归模型的线性化广东省惠州市惠阳区崇雅中学高中部 卢瑞勤(516213)回归分析在各个领域中都有十分重要的作用,比如:在财务中可以用回归分析进行财务预测;在医疗检验中可以用回归分析进行病理预报等等。

高中新课标教材就在《必修3》和《选修2-3》中分别增加了《线性回归》和《回归分析》的内容,介绍了求线性回归方程的方法。

但在实际问题中,变量间的关系并非总是线性关系,本文结合本人的教学实践,对教材中的这两部分内容进行适当延伸,谈谈对一些可线性化的非线性回归模型的线性化问题,供各位同行在教学时参考。

一、什么是可线性化的非线性回归模型线性回归模型的基本特征是预报变量可以表示成解释变量和一个系数相乘的和,即预报变量y 可以表示成解释变量i x (i =1,2,3,……)的如下形式:0112233y a a x a x a x =++++,其中变量ix 是以其原型(而不是以ni x 或其它)的形式出现,变量y 是各变量i x 的线性函数。

而有些回归模型不具备这个特点,但是可以通过适当的代数变换转化成这种形式,我们称这类回归模型为可线性化的回归模型。

在本文中,我们只讨论只有一个解释变量可线性化的非线性回归模型的线性化。

二、非线性回归模型的线性化的基本思路非线性回归模线性化的基本思路是:由已知数据,确定解释变量和预报变量,作出散点图,根据经验,确定回归曲线的类型,然后作适当的代数变换,若变换后散点图体现较好的线性关系,即可将其化成线性形式求解,最后还原到原来的回归曲线。

如果回归曲线可用多种形式表示,可以各自将其线性化后求解,再用相关系数2R 进行拟合效果分析,2R 越大,拟合效果越好,所求的回归方程也就越精确。

三、非线性回归模型的线性化的常用方法可线性化的非线性回归模型有以下几种常见类型:(1)双曲线型,其形式为1a b y x =+,其变换为1y y '=, 1x x'=,变换后的形式为y b ax ''=+ (2)幂函数型,其形式为by ax = ,可以变形为ln ln ln y a b x =+,作变换ln y y '= ,ln x x '= ,变换后的形式为y a bx ''=+(3)指数函数型,其形式为bxy ae = ,以变形为ln ln y a bx =+,作变换ln y y '=,ln a a '= ,变换后的形式为y a bx ''=+(4)对数函数型,其形式为ln y a b x =+,作变换ln x x '=,变换后的形式为y a bx '=+ 下面以高中新课标数学教材《选修2-3》一道习题为例加以说明【例】在某地区的一段时间内观察到的不小于某震级x 的地震个数y 数据如下表,试建立回归方程表述二者之间的关系。

非线性回归模型的线性化讲解

非线性回归模型的线性化讲解

( b1>0, b2>0)
(b1<0, b2 <0
(2) 双曲函数模型
1 1 ui 双曲函数模型的一般形式为: Yi Xi 1 1 令 * * Yi , Xi Yi Xi
则可将原模型化为标准的线性回归模型
Yi X ui
* * i
双曲线函数还有另一种表达方式,
ln GDP i ln A ln Ki ln Li ui
Yi ln GDP i , X 1i ln Ki , X 2i ln Li
0 ln A, 1 , 2 则可将C-D生产函数模型转换成标准的二元线性回归模型
Yi 0 1 X1i 2 X 2i ui

Z p f p ( X1, X 2 ,, X k )
Y 0 1Z1 2 Z2 p Z p u
7
下面介绍在经济问题时经常遇到的几种非标准线性 回归模型 (1)多项式函数模型
多项式函数模型的一般形式为:
Yi 0 1 X i 2 X i2 k X ik ui
首先对上式做倒数变换得:
1 e X i ui Yi

1 Yi , X i* e X i Yi
*
则可将原模型化为标准的线性回归模型
Yi* X i* ui
15
2 可线性化的非线性回归模型的线性化方法
下面几种在研究经济问题时经常遇到的可线性化的非线性 回归模型 (1)指数函数模型
yt = b0 +b1 x 1t + b2 x 2t + b3 x 3t + ut 这是一个三元线性回归模型。如经济学中的总成本与产 品产量曲线与左图相似。

非线性回归的线性化处理

非线性回归的线性化处理

例10.7 某钢厂出钢时所用的盛钢水的钢包,由于钢水对耐火材 料的侵蚀,容积不断扩大. 通过试验,得到了使用次数x 和钢包增 大的容积y 之间的17组数据,如表10-6 . 求使用次数x 与增大容积y 的回归方程.
解 散点图如图10 - 8.
看起来y 与x 呈倒指数关系
ln y a b 1
其中a , b , σ2 为与t无关的未知参数,只要令x=sint , 即可将 (10.29)化为(10.1).
y a bt ct2 , N (0 , 2 )
(10.30)
其中a , b , c , σ2 为与t无关的未知参数,只要令x1=t , x2=t2得
y a bx1 cx2 , N (0 , 2 )
概率学与数理统计
非线性回归的线性化处理
前面讨论了线性回归问题,对线性情形我们有了一整套 的理论与方法. 在实际中常会遇见更为复杂的非线性回归问 题,此时一般是采用变量代换法将非线性模型线性化,再 按照线性回归方法进行处理. 举例如下:
y a bsin t , N (0 , 2 )
(10.29)
x

y ' ln y , x ' 1
x
求出x ′ y′的值,表10-7所示.
作(x ′ , y′)的散点图,如图10-9所示.
可见各点基本上在一直线上,故可设
y ' a bx ' , (0 , 2 )
经计算,得
x ' 0.1464 , y ' 2.2963
n
(x 'i )2 0.5902 ,
i 1
n
( y 'i )2 89.93;i y 'i 5.4627 ,

计量经济学-第四章-非线性回归模型的线性化25页

计量经济学-第四章-非线性回归模型的线性化25页

(1)指数函数模型
Yi AebXiui 取对数 ln Y i ln AbiX ui

Y* i
lnYi,alnA则
Yi*abX i ui

(2)幂函数模型
Y i A1 i1 X X 2 2 i1 X k kieui
lY i n lA n 1 lX n 1 i 2 lX n 2 i k lX n k i u i
2. 非线性回归模型可分为几类?
第一类:非标准的线性回归模型; 第二类:可线性化的非线性回归模型; 第三类:不可线性化的非线性回归模型。
第一节 变量间的非线性关系
第一类:非标准的线性化模型 Y与解释变量 X1,X2,,Xk 之间不存在线性关系,
但与未知参数 0,1,2,之,间p 存在线性关系。
Y 01f1 (X 1 ,X 2 , ,X k)2f2 (X 1 ,X 2 , ,X k) 举例:总成 本 函数pf模k(X 型1 ,X 2 , ,X k) u
C 01 X 2 X 23 X 3 u
第一节 变量间的非线性关系
第二类:可线性化的非线性回归模型
此类模型可通过适当的变换化为标准的线性回归模型。 如,柯布—道格拉斯(Cobb-Dauglas)生产函数模型,简 称C-D生产函数模型:
YA K Leu
其中,Y 表示产出量,K 表示资金投入量,L 表示劳动投入
Y i AiK L ieui,i1 ,2 , ,n
其中,Y 表示产出量,K 表示资金投入量,L表示劳
动投入量,u 表示随机误差项,A、、为未知参
数。试利用天津市1980年~2019年间的有关统计资 料,估计天津市全社会的C-D生产函数模型。 解:详见教材。
第二节 线性化方法
3. 不可线性化的非线性回归模型的线性化估计方法

04-非线性回归模型的线性化.

04-非线性回归模型的线性化.

对此方程采用对数变换 logM=loga+blog(r-2)
令Y=logM, X=log(r-2), β1= loga, β2=b
则变换后的模型为:
β β Y = + X + u 2020/10/1
t 1 2t t
15
将OLS法应用于此模型,可求得β1和β2的估计
值 ˆ1, ˆ2,从而可通过下列两式求出a和b估计值:
log(aˆ) ˆ1 (aˆ eˆ1 ) bˆ ˆ2
应当指出,在这种情况下,线性模型估计量 的性质(如BLUE,正态性等)只适用于变换后的参 数估计量 ˆ1和ˆ2 ,而不一定适用于原模型参数的估
计量 aˆ 和 bˆ 。
是重要的,因为变量的非线性可通过适当的重新
定义来解决。例如,对于
Y 1X12 2
X2
3
X3 X4
...
只需定义
Z1
X
2 1
,
Z2
X2 ,
Z3
X3 X4
...
该关系即可以重写为:
Y 1Z1 2Z2 3Z3 ... 此方程的变量和参数都是线性的。
2020/10/1
13
参数的非线性是一个严重得多的问题,因为它不
(2)参数的线性
因变量Y是各参数的线性函数。
2020/10/1
3
4.1.2. 非线性模型中变量间的关系
非线性模型的一般形式是 Yt f ( X1t , X 2t ,..., X kt ; 1, 2 ,..., m ) ut
其中f是关于解释变量和未知参数的一个非线性函
数。
上式中解释变量的个数k与参数个数m不一定相 等,
模型形式:
2表020示/10什/1 么意义呢?(思考)

第四章 非线性回归模型的线性化

第四章 非线性回归模型的线性化

变量间的非线性关系
(1)非标准线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k 之间 不存在线性关系,但与未知参数 0 1...... k 之间 存在线性关系。例如: 根据平均成本与产量为U型曲线理论,总成本C 可以用产量X的三次多项式来近似表示,得到总成 本函数模型如下: C 0 1 X 2 X 2 3 X 3
-10.46385643
1.287009777
-8.130362812
1.1E-06
X Variable 1
1.021123591
0.029404208
34.72712407
5.5E-15
X Variable 2
1.471943365
0.239290421
6.151284117
2.5E-05
(2)Eviews3.1结果:
0 =lnA 1 =
2 =
X1=lnK
X2=lnL
新生成的线性回归模型为: Y= 0 +1X1+ 2 X2+
对于非线性模型的解决方法:以生产函数为例
案例分析:见Excel表格
解答: (1)Excel回归 (2)Eviews3.1

(1)EXcel回归结果
回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 0.99930353 1 0.99860754 8 0.99840862 6 0.02991798 5 17
第四章 非线性回归模型的线性化
陈修兰
线性回归模型 最小二乘法求解 若不是线性回归模型,又该如何求解呢?
(一)变量关系非线性问题:
若:(1)、变量

第4章非线性回归模型的

第4章非线性回归模型的
p
• 移项整理后得到
p f f Y f ( X 1 , X 2 , X k ; 1, 0 , 2, 0 , p , 0 ) i , 0 i i 1 i 0 i 1 i 0 p
• 令
f Y Y f ( X 1 , X 2 , X k ; 1,0 , 2,0 , p , 0 ) i , 0 i 0 i 1
• 不断重复上述过程,直至参数估计值收 敛为止。即l+1组参数估计值与第l组参数 估计值没有显著差别时为止。 • 这个方法的一个优点是计算效率比较高, 另一个优点是因为每一次迭代都是一次 线性回归,因此可以进行标准的显著性 检验、拟合优度检验等各种统计检验。
具体步骤
• 第一步, • 根据经济理论和历史统计资料,选定 ( , , ) 作为未知参数(1, , 2, , p, )的一组初始估计值。接 着将模型 Y f ( X1, X 2 , X k ; 1, 2 , p ) 中的非线 性函数f在这组初始估计值附近作泰勒极数展开, 得 (*)
第4章非线性回归模型的线性化
1 变量间的非线性关系 2 线性化方法 3 案例分析
4.1 变量间的非线性关系
对于非线性回归模型,按其形式和估计方法的不 同,可以分为三种类型: 1 非标准线性回归模型 Y 例: f ( X , X ,, X ) f ( X , X ,, X ) f ( X , X ,, X ) 2 可线性化的非线性回归模型 例: Y AK L e 3 不可线性化的非线性回归模型 x x 例: Y 0 1e 2e
p
f f f Z1 , Z2 ,Zp p 0 1 0 2 0

4非线性回归模型的线性

4非线性回归模型的线性
第四章 非线性回归模型的线性化
变量间的非线性关系 变量非线性 变量与参数非线性(可线性化) 变量与参数非线性(不可线性化) 线性化方法(可线性化模型)
变量替换法 函数变换法 级数展开法
案例分析
第一节 变量间的非线性关系
一般的非线性回归模型的表示形式:
Y f ( X 1 , X 2 , , X k , 0 , 1 , , k ) u
i
ui
当b>0和b<0时的图形如图,Xt与Yt的关系是非线性的。
Y i a bLnX
i
ui
(b 0)
Y i a bLnX
i
ui
(b 0)
令LnXi = Xi*,则
Yi = a + bXi* + ui
变量Yi和Xi*已变换成为线性关系。
4、S-型曲线模型
Yi 1
*
* 0
1 X 1i 2 X 2i u i
* *
——线性模型
用OLS法估计后,再返回到原模型。若参数:
1 + 2 = 1,称模型为规模报酬不变型; 1 + 2 > 1,称模型为规模报酬递增型;
1 + 2 < 1,称模型为规模报酬递减型。
对于对数线性模型,LnYi = Ln0 + 1 LnX1i + 2 LnX2i + ui ,1和2称作弹
性系数。以1为例:
1
LnY LnX
i 1i

Yi
1
Yi
X 1i X 1i
1

X i Yi Yt X 1 i

Yi / Yi X 1i / X 1i

计量经济学第四章非线性回归模型的线性化

计量经济学第四章非线性回归模型的线性化

第四章 非线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是非线性的。

例如 y t = 0 +11βt x + u ty t =0 tx e 1α+ u t上述非线性回归模型是无法用最小二乘法估量参数的。

可采纳非线性方式进行估量。

估量进程超级复杂和困难,在20世纪40年代之前几乎不可能实现。

运算机的显现大大方便了非线性回归模型的估量。

专用软件使这种计算变得超级容易。

但本章不是介绍这种模型的估量。

另外还有一类非线性回归模型。

其形式是非线性的,但能够通过适当的变换,转化为线性模型,然后利用线性回归模型的估量与查验方式进行处置。

称此类模型为可线性化的非线性模型。

下面介绍几种典型的能够线性化的非线性模型。

可线性化的模型⑴ 指数函数模型 y t = tt u bx ae+b >0 和b <0两种情形的图形别离见图和。

显然x t 和y t 的关系是非线性的。

对上式等号双侧同取自然对数,得Lny t = Lna + b x t + u t令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t 变量y t * 和x t 已变换成为线性关系。

其中u t 表示随机误差项。

010203040501234XY 1图 y t =tt u bx ae+, (b > 0) 图 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u tb >0和b <0两种情形的图形别离见图和。

x t 和y t 的关系是非线性的。

令x t * = Lnx t , 则y t = a + b x t * + u t变量y t 和x t * 已变换成为线性关系。

图 y t = a + b Lnx t + u t , (b > 0) 图 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u eb 取不同值的图形别离见图和。

第四章非线性回归模型的线性化

第四章非线性回归模型的线性化
L
1 0 ln A, 1 m , 2 m(1 ), 3 m (1 ) 2
• 得到一个简单的线性回归模型
Z 0 1 X1 2 X 2 3 X 3
1、CES函数的参数估计
• 其中:
ˆ ˆ Ae 0
ˆ
ˆ ˆ 1 2
(1)多项式函数模型
• 多项式函数模型的一般形式:
Yi 0 1 X i 2 X i 2 ... k X k k
令:
Z1i X i ,...Zki X ik
则原模型化为标准的线性回归模型:
Yi 0 1Z1i 2 Z2i ... k Zki
第四章 非线性回归模型的线性化
第一节 变量间的非线性关系 第二节 线性化方法 第三节 案例分析
第一节 变量间的非线性关系
1、第一种类型(非标准线性回归模型) 2、第二种类型(可线性化的非线性回归模型) 3、第三种类型(不可线性化的非线性回归模型)
第一节 变量间的非线性关系
在实际经济活动中,经济变量的关系是复杂的,直 接表现为线性关系的情况并不多见。 如著名的恩格尔曲线(Engle curves)表现为幂函数曲线 形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现 为双曲线形式等。 但是,大部分非线性关系又可以通过一些简单的数学 处理,使之化为数学上的线性关系,从而可以运用线性回 归的方法进行计量经济学方面的处理。
1、第一种类型(非标准线性回归模型)
• 非标准线性回归模型一般可以表示成如下形式:
Z1 f1 ( X 1 , X 2 ,... X K ) Z 2 f 2 ( X 1 , X 2 ,... X K ) ...... Z f ( X , X ,... X ) P 1 2 K p Y 0 f1 ( X 1 , X 2 ,... X K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4.1:平均成本与产品产量的关系(课本93页, file:li-4-1 )
Cˆt = 105.1- 0.06 xt + 0.00006 xt2 xt (42.5) (-8.7) (12.8) R2 = 0.97, N = 15
(第4版教材第93页)
(2) 双曲线函数模型
(第4版教材第93页)
yt = a + b/xt + ut
第4章 非线性回归模型的线性化
有时候变量之间的关系是非线性的。虽然其形式是非 线性的,但可以通过适当的变换,转化为线性模型,然后利 用线性回归模型的估计与检验方法进行处理。称此类模型为 可线性化的非线性模型。
以下非线性回归模型是无法用最小二乘法估计参数的。 可采用非线性方法进行估计。估计过程非常复杂和困难,计 算机的出现大大方便了非线性回归模型的估计。专用软件使 这种计算变得非常容易。但本章不是介绍这类模型的估计。
案例2:炼钢厂钢包容积Y与钢包使用次数X的关系(file:5nonli7)
建立线性模型并估计 y = 7.85 + 0.27 x
(19.6) (5.7) R2 = 0.71, N = 15
建立对数模型并估计 y = 6.16 + 1.83 Lnx
(16.0) (10.1) R2 = 0.89, N = 15
yt = 0 + 1 xt 1 + ut
yt = 0 e1xt + ut
下面介绍几种典型的可以做线性化处理的非线性模型。
(1)多项式函数模型(1)
多项式方程
(第4版教材第90页)
yt = b0 +b1 xt + b2 xt2 + b3 xt3 + ut 令xt 1 = xt,xt 2 = xt2,xt 3 = xt3,上式变为
4
3
2
1
0 50 100 150 200 250 300 350 400
yt = a + b Lnxt + ut , (b > 0)
7
6 (b < 0)
5 4 3 2 1
50 100 150 200 250 300 350 400
yt = a + b Lnxt + ut , (b < 0)
令xt* = Lnxt, 则 yt = a + b xt* + ut
第4章 非线性回归模型的线性化
(1)多项式函数模型 (2)双曲线函数模型 (3)对数函数模型 (4)生长曲线 (logistic) 模型
(比教材中的模型复杂些)
(5)指数函数模型 (6)幂函数模型
file:li-4-1 file:5nonli7 file:5nonli3 file:case2 file:li-4-2 file:5nonli14
(1.8) (12.0) (-2.8)
(9.6)
R2 = 0.9998, N = 15
(第4版教材第92页)
案例1:厦门市贷款总额与GDP的关系分析
(1990~2003)
案例1:厦门市贷款总额与GDP的关系分析
(1990~2003)
从散点图看,用多项式方程拟合比较合理。
Loant = 0 +1 GDPt + 2 GDPt 2 + 3 GDPt3 + ut
yt = b0 + b1 xt + b2 xt2 + ut 令xt 1 = xt,x t 2 = xt 2,上式线性化为,
(第4版教材第93页)
注意:拟合时不要丢了b1 xt项。
yt = b0 + b1 xt1 + b2 xt2 + ut
如经济学中的边际成本曲线、平均成本曲线与左图相似。
(1)多项式方程模型(2)
案例2:炼钢厂钢包容积Y与钢包使用次数X的关系(file:5nonli7)
双倒数线性化
双倒数模型
建立倒数模型并用114组数据估计,
1/y = 0.081 + 0.1339 (1/x)
(42.1) (14.1) R2 = 0.94, N = 15
倒数模型的估计结果最好。
(3) 对数函数模型
5
(b > 0)
9.0 LOG(FOOD)
8.5
8.0
7.5
7.0
6.5
6.0 LOG(LOG(INCOME))
5.5 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30
28个省市自治区19852005年城镇居民人均食品支出(food)与人均收入(income)的关系
yt = b0 +b1 xt + b2 xt2 + b3 xt3 + ut
估计结果见下页

例4.1:总成本与产品产量的关系(课本92页, file:li-4-1)
Cˆ t = 2434.7+ 85.7 xt - 0.028 xt2 + 0.00004 xt3
loan= -24.5932 +1.6354 GDPt - 0.0026GDPt 2 + 0.0000027 GDPt 3
(-2.0) (11.3)
(-6.3)
(7.9)
R2=0.9986, DW=2.6
(1)多项式方程模型(2)
( b1>0, b2>0)
(b1<0, b2 <0
另一种多项式方程的表达形式是
1/yt = a + b/xt + ut
1/yt = a + b/xt + ut 或 yt = 1/ (a + b/xt + ut) 令yt* = 1/yt, xt* = 1/xt,得 yt* = a + b xt* + ut 已变换为线性回归模型。双曲线函数还有另一种表达方式, yt = a + b/xt + ut 令xt* = 1/xt,得 yt = a + b xt* + ut 上式已变换成线性回归模型。
变量yt 和xt* 已变换成为线性关系。
(第4版教材第93页)
案例:28个省市自治区19852005年城镇居民 人均食品支出(food)与人均收入(income)的关系
9.0 LOG(Cfood)
8.5
8.0
7.5
7.0
6.5
6.0 LOG(CINCOME)
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
yt = b0 +b1 xt 1 + b2 xt 2 + b3 xt 3 + ut 这是三元线性回归模型。经济学中的总成本与产品产量曲线与左图相似。
( b1>0, b2>0, b3>0)
(b1<0, b2>0, b3<0)
(1)多项式函数模型(1)
例4.1:总成本与产品产量的关系(课本91页, file:li-4-1)
相关文档
最新文档