高考之【圆锥曲线篇】-秒杀技巧切线方程

合集下载

圆锥曲线中切线问题的秒杀策略

圆锥曲线中切线问题的秒杀策略

圆锥曲线中切线问题的秒杀策略圆锥曲线中的切线问题是高考压轴题的一大类型,共分下面四种题型,在高考中主要以考查重要结论为主,且重要结论的证明步骤固定,所以要求考生熟记下面的步骤,在高考中直接套用即可。

『秒杀策略』:当抛物线开口向上或开口向下时(此时抛物线可看作函数),主要利用导数解决,当抛物线开口向左或开口向右时利用解决。

椭圆利用解决。

【题型一】:过曲线上一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆上一点作切线,则切线方程为:。

证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与椭圆方程联立,利用。

熟记:②过抛物线上一点作切线,则切线方程为:。

证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与抛物线方程联立,利用。

若为开口向上或开口向下的抛物线,求导,代点,求出切线的斜率,利用点斜式求出切线的方程 。

〖母题〗抛物线上到直线的距离最小的点的坐标是 ( )A. B. C. D.0=D 0=D 12222=+by a x ()00,y x P 12020=+byy a x x ()00,y x P ()00x x k y y -=-0=D px y 22=()00,y x P )(00x x p y y +=()00,y x P ()00x x k y y -=-0=D 2y x =24x y -=11,24æöç÷èø()1,139,24æöç÷èø()2,4【解析】:法一:设P ,则,当时最小,选B 。

法二:设切点为,则切线方程为:,,即切点为,由点到直线的距离可求得,选B 。

法三:设P ,过P 的切线与直线平行,切点为所求的点,,,选B 。

1.(高考题)抛物线上的点到直线距离的最小值是 ( ) A. B. C. D.3 【解析】:法一:设抛物线上的点,到直线的距离为,,当时,最小值为。

圆锥曲线的切线方程

圆锥曲线的切线方程

圆锥曲线的切线方程点击此处添加副标题作者:鲜海东微信:xhd143848832211),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+by y a x x M b y a x y x M by y a x x y x M b a b y a x r b y b y a x a x M y x M rb y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程:点切线有两条:切点弦在圆外,过若切线方程:则过一点为圆上,若的方程::若圆心不在原点,圆结论。

弦所在直线方程为,过两切点的点引切线有且只有两条在圆外时,过当。

的切线方程为上一点:经过圆结论。

两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。

又因、:两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明:11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202002020222222=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a by a x by y a x x x x y a x b y y y a x b x x y b y y a x x b y a x)(),()0(2);(),()0(2)2()(),()0(2);(),()0(2)1(511),(1),()00(140000200002000020000220202222002020002222y y p x x y x M p py x y y p x x y x M p py x x x p y y y x M p px y x x p y y y x M p px y by y a x x M b y a x y x M by y a x x y x M b a b y a x +==+==+==+===-=-=-=-弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线:结论。

高考数学二级结论快速解题:专题14 圆锥曲线的切线问题(解析版)

高考数学二级结论快速解题:专题14 圆锥曲线的切线问题(解析版)

专题14圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0 来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0 来求解;对于抛物线的切线问题,可以联立,有时也可以通过求导来求解.而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C:222()()x a y b R上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R .2.过椭圆22221x y a b 上一点00(,)P x y 的切线方程为00221x x y y a b.3.已知点00(,)M x y ,抛物线C :22(0)y px p 和直线l :00()y y p x x .(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为 222210x y a b a b ,则椭圆在其上一点 00,A x y 处的切线方程为00221x x y y a b ,试运用该性质解决以下问题;椭圆221:12x C y ,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为()A .1BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y ,由题意得,过点B 的切线l 的方程为:1112x xy y ,令0y ,可得12(,0)C x ,令0x ,可得11(0,)D y ,所以OCD 面积111112112S x y x y,又点B 在椭圆上,所以221112x y ,所以121111121111122x y S x y x y x x y y 当且仅当11112x yy x,即111,2x y 时等号成立,所以OCD故选:C【反思】过椭圆 222210x y a b a b上一点 00,A x y 作切线,切线方程为:00221x x y y a b ,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n上一点 00,P x y 的切线方程为001x x y y m n .过椭圆221124x y 上的点 3,1A 作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为()A .30x yB .-20x yC .2330x yD .3100x y 【答案】B 【详解】过椭圆221124x y 上的点 3, 1A 的切线l 的方程为 31124y x ,即40x y ,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为 13y x ,即20x y .故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n注意不要带错,通过对比本题信息,12m ,4n ,03x ,01y ,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点 1,1P 作圆22:2C x y 的切线交坐标轴于点A 、B ,则PA PB_________.【答案】2 【详解】圆C 的圆心为 0,0C ,10110CP k,因为22112 ,则点P 在圆C 上,所以,PC AB ,所以,直线AB 的斜率为1AB k ,故直线AB 的方程为 11y x ,即20x y ,直线20x y 交x 轴于点 2,0A ,交y 轴于点 0,2B ,所以, 1,1PA , 1,1PB ,因此,112PA PB.故答案为:2 .另解:过圆C :222()()x a y b R 上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R .可知01x ,01y ;0a b ,22R ,代入计算得到过点 1,1P 作圆22:2C x y 的切线为:(10)(0)(10)(0)2x y ,整理得:20x y ,直线20x y 交x 轴于点 2,0A ,交y 轴于点 0,2B ,所以, 1,1PA , 1,1PB ,因此,112PA PB.故答案为:2 .【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。

专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法

专题14  圆锥曲线切线方程  微点1  圆锥曲线切线方程的求法

专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法 【微点综述】圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的方法及常用结论. 一、圆锥曲线切线方程方法 1.向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程. 例11.已知圆O 的方程是()()222x a y b r -+-=,求经过圆上一点()00,M x y 的圆的切线l 的方程. 2.变换法设椭圆方程为22221x y a b +=,我们作变换:,,x au y bv =⎧⎨=⎩则可把椭圆化为单位圆:221u v +=,从而可将求椭圆的切线方程问题转化为求圆的切线问题. 例22.求过椭圆221169x y +=上一点M ⎛ ⎝⎭的切线l 方程. 3.判别式法可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.思维导图:设切线方程⇒联立切线与椭圆的方程⇒消去y (或x )得到关于x (或y )的一元二次方程⇒Δ0=求切线斜率⇒写出切线方程. 注意:过双曲线的对称中心不可能作出直线与双曲线相切. 例33.求经过点()2,1M 的双曲线:2222x y -=的切线l 的方程. 4.导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程. 例44.设为,A B 曲线2:4x C y =上两点,,A B 的横坐标之和为4.设M 为曲线C 上一点,C在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 例55.证明:过椭圆C :22221x y m n+=(m >n >0)上一点Q (x 0,y 0)的切线方程为00221x x y y m n +=.5.几何性质法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:(1)若焦点为12,F F 的椭圆或双曲线上有一点M ,则12F MF ∠的平分线一定与圆锥曲线相切;(2)若焦点为F 的抛物线上有一点M ,过M 作准线的垂线,垂足为N ,则FN 的中点P 与M 的连线PM 必与抛物线相切.据此,我们也可以利用圆锥曲线的几何性质作出其切线,然后再求出切线的方程. 例66.求抛物线2:8C y x =上经过点()8,8M 的切线l 的方程. 例77.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 例8(2022乙卷理科)8.已知抛物线C :()220x py p =>的焦点为F ,且F 与圆M :()2241y x ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 【强化训练】(2022桃城区校级模拟)9.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭(2022聊城一模)10.已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B .则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫- ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭(2022迎泽区校级月考)11.已知圆()22:14C x y -+=.动点P 在直线280x y +-=上,过点P 引圆的切线,切点分别为,A B ,则直线AB 过定点______.12.过圆2216x y +=外一点P (4,2)向圆引切线. (1)求过点P 的圆的切线方程;(2)若过点P 的直线截圆所得的弦长为(3)若过P 点引圆的两条切线,切点分别为1P 、2P ,求过切点1P 、2P 的直线方程. (2021春·黑龙江期中)13.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y+= B .111099x y += C .11133x y += D .199110x y += (2020.新课标△)14.已知△M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作△M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=(2022宿州期末)15.定义:若点()00,P x y 在椭圆()222210x y a b a b+=>>上,则以 P 为切点的切线方程为:00221x x y y a b +=.已知椭圆 22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线 MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11,23⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .12,23⎛⎫- ⎪⎝⎭D .12,23⎛⎫- ⎪⎝⎭(2022金安区校级期末)16.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1BCD .2(2022吉安期末理)17.过圆222x y r +=上一定点(),o o P x y 的圆的切线方程为20o x x y y r +=.此结论可推广到圆锥曲线上.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l .则过A 点且与直线l 垂直的直线方程为( ) A .20?x y +-= B .30x y --= C .2330x y +-= D .3100x y --=(2022大连期末)18.已知()11,M x y 为圆22:1C x y +=上一点,则过C 上点M 的切线方程为________,若()22,N x y 为椭圆2222:1(0)x y E a b a b+=>>上一点,则过E 上点N 的切线方程为_____________. (2022泸县校级一模)19.椭圆223144x y +=上点P (1,1)处的切线方程是______.(2022金安区校级模拟)20.一般情况下,过二次曲线Ax2+By2=C (ABC ≠0)上一点M (x0,y0)的切线方程为Ax0x+By0y=C ,.若过双曲线22221(0,0)x y a b a b -=>>上一点M (x0,y0)(x0<0)作双曲线的切线l ,已知直线l 过点N 0,2b ⎛⎫⎪⎝⎭,且斜率的取值范围是⎣,则该双曲线离心率的取值范围是______. (2022兴庆区校级一模)21.已知()00,P x y 是抛物线()220y px p =>上的一点,过P 点的切线方程的斜率可通过如下方式求得在22y px =两边同时求导,得:2'2yy p =,则'py y=,所以过P 的切线的斜率0p k y =.试用上述方法求出双曲线22y x 12-=在P 处的切线方程为_________.(2022亳州期末)22.已知椭圆C 的方程为()222210x y a b a b+=>>,离心率12e =,点P (2,3)在椭圆上.(1)求椭圆C 的方程(2)求过点P 的椭圆C 的切线方程(3)若从椭圆一个焦点发出的光线照到点P 被椭圆反射,证明:反射光线经过另一个焦点.(2022福州二模)23.已知椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t R ∈,切点分别是A 、B ,试利用结论:在椭圆22221x y a b+=上的点()00,x y 处的椭圆切线方程是00221x x y y a b +=,证明直线AB 恒过椭圆的右焦点2F ;(3)试探究2211AF BF +的值是否恒为常数,若是,求出此常数;若不是,请说明理由. (2022香坊区校级三模)24.已知点1(,2)2D -,过点D 作抛物线21:C x y =的两切线,切点为,A B .(1)求两切点,A B 所在的直线方程;(2)椭圆22221(0)x y a b a b +=>>(1)中直线AB 与椭圆交于点P ,Q ,直线,,PQ OP OQ 的斜率分别为k ,1k ,2k ,若123k k k +=,求椭圆的方程. (2022渝中区校级月考)25.已知椭圆22122:1x y C a b+=()0a b >>的离心率为12,过点)E的椭圆1C 的两条切线相互垂直.(△)求椭圆1C 的方程;(△)在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由. (2022杭州模拟)26.已知曲线1C 上任意一点到()0,1F 的距离比到x 轴的距离大1,椭圆2C 的中心在原点,一个焦点与1C 的焦点重合,长轴长为4.(1)求曲线1C 和椭圆2C 的方程;(2)椭圆2C 上是否存在一点M ,经过点M 作曲线1C 的两条切线,MA MB (,A B 为切点)使得直线AB 过椭圆的上顶点,若存在,求出切线,MA MB 的方程,不存在,说明理由.参考答案:1.()()()()200x a x a y b y b r --+--=【分析】设切线l 上任意一点N 的坐标是(),x y ,利用0OM ON ⋅=化简整理可得. 【详解】设切线l 上任意一点N 的坐标是(),x y ,由已知得圆心(),O a b ,()()0000,,,OM x a y b MN x x y y ∴=--=--,又0OM ON ⋅=,即()0000()()()0x x x a y y y b --+--= 所以()()()()()()00000x a x a x a y b y b y b ----+----=⎡⎤⎡⎤⎣⎦⎣⎦, △过圆上的点()00,M x y 的圆的切线l 的方程是:()()()()()()220000x a x a y b y b x a y b --+--=-+-,又()()22200x a y b r -+-=,△所求圆的切线l 的方程为()()()()200x a x a y b y b r --+--=.2.340x y +-=【分析】令,43yx u v ==,利用伸缩变换求得椭圆和点M 在新坐标系下的方程和坐标,然后由圆的切线方程和伸缩变换公式可得.【详解】令,43y x u v ==,则椭圆在新坐标系uOv 下的方程是:221u v +=,点M ⎛ ⎝⎭在新坐标系uOv 下的坐标是:⎝⎭,设过圆221u v +=上的点⎝⎭的切线方程为(22v k u -=-(易得斜率必存在),即(v k u =221u v +=整理得2221(1)(1)(21)02k u k u k k +-+--=由题意可知,22222(1)2(1)(21)0k k k k k =--+--=Δ,整理得2(1)0k +=即1k =-,所以切线方程为(v u =-,即:u v +=∴过椭圆上一点M 的切线l的方程是:43x y+340x y +-=. 3.10x y --=【分析】设直线,与双曲线联立,结合判别式分析,即得解【详解】若直线斜率不存在,过点()2,1M 的直线方程为:2x =,代入2222x y -=可得21y =,与双曲线有两个交点,不是切线;若直线斜率存在,设l 的方程是:()12y k x -=-,即:21y kx k =-+,将它代入方程2222x y -=整理得:()()()222214218840k x k k x k k ---+-+=,由已知20210,k -∆=≠,即()()()2224214218840k k k k k -----+=⎡⎤⎣⎦,解得:1k =,故所求切线l 的方程为:21y x =-+,即:10x y --=. 4.7y x =+【分析】在求得直线AB 的斜率后,便可运用导数法对抛物线的方程求导,得出点M 的坐标,再根据韦达定理和弦长公式求得切线的方程.【详解】设()()1122,,,A x y B x y ,则2212121212,,,444x x x x y y x x ≠==+=,于是直线AB 的斜率为121212121212()()14()4y y x x x x x x k x x x x -+-+====--, 由24x y =,得2x y '=. 设()33,M x y ,由题意可知:312x =,解得32x =,()2,1M ∴. 设直线AB 的方程为y x m =+,故线段的中点为()2,2N m +,1MN m =+将y x m =+代入24x y =得2440x x m --=,当()1610m ∆=+>,即当1m >-时,12x =+22x =-从而可得12AB x =-= 因为AM BM ⊥,且BN AN =,因为直角三角形斜边上的中线等于斜边的一半, 所以BN AN MN ==,所以2AB MN =,即()21m =+, 解得7m =,直线AB 的方程为7y x =+. 5.证明见解析【分析】方法一:分0y >,0y <和0y =,当0y >,0y <时,利用导数求切线方程可得; 方法二:设直线方程联立椭圆方程,利用判别式等于0求切点横坐标,然后可得切线方程. 【详解】法一:由椭圆C :22221x y m n+=,则有22221y x n m =-当0y >时,y =2nx y m '=-,△当00y >时,2000222001x n n n k x x y mm m y n =-=-=-⋅. △切线方程为()200020x n y y x x m y -=-⋅-,整理为:222222220000n x x m y y m y n x m n +=+=,两边同时除以22m n 得:00221x x y ym n+=. 同理可证:00y <时,切线方程也为00221x x y ym n+=. 当0=0y 时,切线方程为x m =±满足00221x x y ym n+=. 综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 法二:当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,△由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 化简可得:2222t m k n =+,△式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m k y n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n+=在点00(,)x y 处的切线方程为00221x x y y m n +=.6.280x y -+=【分析】根据线段NF 的垂直平分线经过点M 即可求得切线方程.【详解】由抛物线2:8C y x =可得其焦点()2,0F , 准线方程为:2x =-, 过点()8,8M 作准线的垂线,设垂足为N ,则N 的坐标为()2,8-, 又设FN 的中点为P ,则P 的坐标为()0,4,如图所示:故直线PM 的方程为:84480y x --=-, 即280x y -+=,△切线l 的方程为280x y -+=. 7.答案见解析.【分析】根据两切线方程分别为:()11y y p x x =+,()22y y p x x =+,且均过均过点P ,可知弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭.【详解】以22y px =(p >0)为例说明.设点00(,)Q x y 是抛物线22y px =上的任意一点,则过点00(,)Q x y 且与抛物线相切的直线方程为00()y y k x x -=-,联立2002()y pxy y k x x ⎧=⎨-=-⎩得:222222000000(222)20k x k x p ky x k x y kx y -+-++-=,因为二者相切,所以Δ0=,即222222000000(222)4(2)0k x p ky k k x y kx y +--+-=,化简得:0p k y =,又2002y px =, 代入00()y y k x x -=-得:()00y y p x x =+,即抛物线22y px =在00(,)Q x y 处的切线方程为()00yy p x x =+. 设准线上任一点0,2p P y ⎛⎫- ⎪⎝⎭,切点分别为()11,A x y 、()22,B x y ,则切线方程分别为:()11y y p x x =+,()22y y p x x =+两切线均过点P ,则满足1012p y y p x ⎛⎫=-+ ⎪⎝⎭,2022p y y p x ⎛⎫=-+ ⎪⎝⎭.故过两切点的弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭,则弦AB 过焦点.【点睛】(1)点()00,P x y 是抛物线()220y mx m =≠上一点,则抛物线过点P 的切线方程是:()00y y m x x =+;(2)点()00,P x y 是抛物线()220x my m =≠上一点,则抛物线过点P 的切线方程是:()00x x m y y =+.8.(1)p =2(2)【分析】(1)先求42pFM =+,点F 到圆M 上的点的距离的最小值即为FM r -. (2)求出AB =和点P 到直线AB的距离d =322(6)2144PABb S ⎛⎫--+= ⎪⎝⎭△,根据b 的范围即可求最大值.(1)0,2p F ⎛⎫⎪⎝⎭到圆心4(0,)M -的距离42p FM +,所以点F 到圆M 上的点的距离的最小值为4142pFM r -=+-=, 解得p =2; (2)由(1)知,抛物线的方程为24x y =, 即214y x =,则12y x '=, 设切点()11,A x y ,()22,B x y , 则易得PA l :21124x x y x =-,△PB l :22224x x y x =-,△联立△△可得1212,24x x x x P +⎛⎫⎪⎝⎭,设AB l :y kx b =+,联立抛物线方程,消去y 并整理可得2440x kx b --=, △216160k b ∆=+>,即20k b +>, 且124x x k +=,124x x b =-, △(2,)P k b -△AB ==点P 到直线AB 的距离d =△()322142PABS AB d k b ==+△△,又点(2,)P k b -在圆M :()2241y x ++=上, 故()22144b k --=,代入△得,332222(6)2112154444PAB b b b S ⎛⎫--+⎛⎫-+-== ⎪ ⎪⎝⎭⎝⎭△, 而[]5,3p y b =-∈--,△当b =5时,()max=PAB S【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 9.A【分析】设(2,)P t ,圆心C 的坐标为(0,0),可得以线段PC 为直径的圆N 的方程,两圆方程作差,得两圆公共弦AB 的方程可得答案. 【详解】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 10.A【分析】由P A △AC ,PB △BC 可知点A 、B 在以PC 为直径的圆上,设点P 坐标,写出以PC 为直径的圆的方程,然后可得直线AB 方程,再由直线方程可确定所过定点. 【详解】根据题意,P 为直线l :20x y ++=上的动点,设P 的坐标为(),2t t --, 过点P 作圆C 的两条切线,切点分别为A ,B ,则P A △AC ,PB △BC , 则点A 、B 在以PC 为直径的圆上,又由C (0,0),(),2P t t --,则以PC 为直径的圆的方程为:()()20x x t y y t -+++=,变形可得:()2220x y tx t y +-++=,则有22221(2)0x y x y tx t y ⎧+=⎨+-++=⎩,联立可得:()120tx t y -++=,变形可得:()120y t x y +--=, 即直线AB 的方程为()120y t x y +--=,变形可得:()120y t x y +--=,则有1200y x y +=⎧⎨-=⎩,解可得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故直线AB 过定点11,22⎛⎫-- ⎪⎝⎭. 故选:A . 11.118,77⎛⎫ ⎪⎝⎭【分析】根据题意,设P 的坐标为(82,)t t -,由圆的切线的性质分析可得则A 、B 在以CP 为直径的圆上,进而可得该圆的方程,进而分析可得直线AB 为两圆的公共弦所在直线的方程,由圆与圆的位置关系分析可得直线AB 的方程,据此分析可得答案. 【详解】根据题意,动点P 在直线280x y +-=上,设P 的坐标为(82,)t t -, 圆22:(1)4C x y -+=,圆心为(1,0),过点P 引圆的切线,切点分别为A ,B ,则PA CA ⊥,PB CB ⊥,则A 、B 在以CP 为直径的圆上,该圆的方程为(1)[(82)](0)()0x x t y y t ---+--=, 变形可得:22(92)(82)0x y t x ty t +---+-=,又由A 、B 在圆C 上,即直线AB 为两圆的公共弦所在直线的方程,则有2222230(92)(82)0x y x x y t x ty t ⎧+--=⎨+---+-=⎩, 则直线AB 的方程为(711)(22)x t x y -=--,则有7110220x x y -=⎧⎨--=⎩,解可得:11787x y ⎧=⎪⎪⎨⎪=⎪⎩;故直线AB 恒过定点11(7,8)7;故答案为:11(7,8)7.【点睛】本题考查直线与圆的位置关系、公共弦方程求法、直线过定点问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两圆相减可得公共弦直线方程的应用. 12.(1)x =4或34200x y +-= (2)y =2或43100x y --= (3)280x y +-=【分析】(1)分k 不存在和k 存在两种情况讨论,利用圆心到直线距离等于半径,求解即可;(22,结合圆心到直线距离公式,可得解; (3)由题意12,,,P O P P 四点共圆,且PO 为直径,写出圆的方程,过切点1P 、2P 的直线即为圆22420x y x y +--=与圆2216x y +=的交线,求解即可. (1)当切线斜率不存在时,过点P (4,2)的直线为x =4,圆心到直线距离等于半径,故x =4为切线;当切线的斜率存在时,设切线方程为()24y k x -=-,即420kx y k --+=.4=,即430k +=解得:34k =-,此时切线方程为34200x y +-=.△过点P 的圆的切线方程为x =4或34200x y +-=; (2)由(1)知,所求切线斜率存在,设直线方程为420kx y k --+=.△r =4,且弦长为△圆心到直线420kx y k --+=的距离2d ==,即2340k k -= 解得k =0或43k =.△所求直线方程为y =2或43100x y --=; (3)由题意,1122,OP PP OP PP ⊥⊥ 故12,,,P O P P 四点共圆,且PO 为直径 △P (4,2),△以PO 为直径的圆圆心为(2,1),半径||2PO r == 故圆的方程为()()22215x y -+-=,由于12,P P 也在圆2216x y +=上,故过切点1P 、2P 的直线为圆22420x y x y +--=与圆2216x y +=的公共弦 两圆方程作差可得过1P 、2P 的直线方程为280x y +-=. 13.C【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上, 故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099x y +=,整理可得11133x y+=. 故选:C.【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 14.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小. △()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 15.C【解析】设()26,M t t +,()11,A x y ,()22,B x y ,即可表示出MA 的方程,又M 在MA 上,即可得到()1126132x t y t++=,即可得到直线AB 的方程,从而求出直线AB 过的定点; 【详解】解:因为点M 在直线260x y --=上,设()26,M t t +,()11,A x y ,()22,B x y ,所以MA 的方程为11132x x y y+=,又M 在MA 上,所以()1126132x t y t ++=△,同理可得()2226132x t y t ++=△; 由△△可得AB 的方程为()26132x t yt++=,即()22636x t yt ++=,即()()431260x y t x ++-=,所以4301260x y x +=⎧⎨-=⎩,解得1223x y ⎧=⎪⎪⎨⎪=-⎪⎩,故直线恒过定点12,23⎛⎫- ⎪⎝⎭故选:C 16.C【解析】设1111(,),(0,0)B x y x y >>,根据题意,求得过点B 的切线l 的方程,即可求得C 、D 坐标,代入面积公式,即可求得OCD 面积S 的表达式,利用基本不等式,即可求得答案. 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x y y x =,即111,x y ==时等号成立, 所以OCD. 故选:C【点睛】解题的关键是根据题意,直接写出过点B 的切线方程,进而求得面积S 的表达式,再利用基本不等式求解,考查分析理解,计算化简的能力,属基础题. 17.A【解析】根据类比推理,可得直线l 的方程,然后根据垂直关系,可得所求直线方程.【详解】过椭圆221124x y +=上的点()3,1A -的切线l 的方程为31124x y-+=, 即40x y --=,切线l 的斜率为1, 与直线l 垂直的直线的斜率为-1, 过A 点且与直线l 垂直的 直线方程为(13)y x +=-一, 即20x y +-=. 故选:A【点睛】本题考查类比推理以及直线的垂直关系,属中档题. 18. 111x x y y +=22221x x y ya b+= 【分析】由OM 垂直切线可求出切的斜率,再利用点斜式可求出过C 上点M 的切线方程;利用导数的几何意义在点()22,N x y 处切线的斜率,再利用点斜式求出直线方程 【详解】解:因为11OM y k x =,切线与直线OM , 所以所求切线的斜率为11x y -, 所以所求的切线方程为1111()x y y x x y -=--,即221111y y y x x x -=-+,得221111x x y y x y +=+,因为点()11,M x y 为圆22:1C x y +=上一点,所以22111x y +=,所以过C 上点M 的切线方程为111x x y y +=; 当20y >时,设0y >,由22221x y a b +=得22221y x b a=- 22222y a x b a -= △22222()b y a x a =-△y = △1'222()(2)2b y a x x a-=-⋅-1222()bx a x a -=--=△过点()22,N x y的切线的斜率为△过点()22,N x y的切线的方程为22)y y x x -=-△点()22,N x y 在椭圆上,△2222221x y a b+=,222222222,a y a y b x a b b=+=, △2222()bx b y y x x a ay -=-⋅-, 即222222()b xy y x x a y -=-- 2222222222a y y a y b x x b x -=-+,2222222222a y y b x x a y b x +=+,△222222a y y b x x a b +=,△所求的切线方程为22221x x y ya b+=, 当20y <时,同理可得其切线方程为22221x x y ya b+=所以过E 上点()22,N x y 的切线方程为22221x x y ya b+=, 故答案为:111x x y y +=;22221x x y ya b+= 【点睛】此题考查圆锥曲线的切线方程的求法,属于中档题 19.340x y +-=【分析】由导数的几何意义即可求得切线方程.【详解】△椭圆223144x y +=,△y >0时,y △23xy -'=, △x =1时,13y '=-,即切线斜率13k =-,△椭圆223144x y +=上点P (1,1)处的切线方程是()1113y x -=--,即340x y +-=. 故答案为:340x y +-=. 20.【分析】求得切线方程,将N 代入切线方程,即可求得M 点坐标,求得切线方程,根据斜率公式及离心率公式即可求得答案. 【详解】双曲线在M (x 0,y 0)的切线方程为00221x x y ya b-=,将N 代入切线方程, 解得y 0=﹣2b ,代入双曲线方程解得:x 0,21y b =,即y2bx +,由斜率的取值范围是⎣1≤b a ≤2, 由双曲线的离心率e =c a1≤22b a ≤4,∴双曲线离心率的取值范围, 故答案为:.【点睛】本题考查双曲线的切线方程的应用及离心率公式,考查转化思想,属于中档题.21.20-=x y【详解】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对2212y x =-两边同时求导得,22x yy x y y '∴'==,,0002|2x x x k y y =∴='=, △切线方程为2(y x ,整理为一般式即:20x y -.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 22.(1)2211612x y +=;(2)280x y +-=; (3)证明见解析.【分析】(1)根据已知条件列方程组即可求出,,a b c .(2)由直线与椭圆相切,根据判别式Δ0=即可求出直线斜率k . (3)利用向量数量积证明直线1PF 与2F P 关于直线m 对称即可;【详解】(1)由题意可得:2222212491c a a b c a b ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得216a =,212b =,△椭圆C 的方程为:2211612x y +=;(2)显然,过点P (2,3)的切线存在斜率, 设切线l 的斜率为k ,则l :3(2)y k x -=-,由22116123(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得()()222348231648120k x k kx k k +--+--=, 因为直线l 与椭圆C 相切,∴()()()2222Δ64234341648120k k k k k =--+--=,化为:24410k k ++=,解得12k =-.△求过点P 的椭圆切线方程为280x y +-=. (3)证明:△椭圆C 的方程为:2211612x y +=, 则椭圆左右焦点分别为()12,0F -,()22,0F , △过点P 的椭圆切线方程为280x y +-=, △过点P 的椭圆法线方程为m :210x y --=, 法线的方向向量()1,2m =--, △()14,3PF =--,()20,3PF =-, △1112cos ,PF mPF m PF m⋅==-,2222cos ,PF mPF m PF m⋅==- △直线1PF ,2F P 关于直线m 对称;△从椭圆一个焦点发出的光线照到点P ,被椭圆反射后,反射光线一定经过另一个焦点. 【点睛】求椭圆的标准方程有两种方法:△定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.△待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 23.(1)22143x y +=(2)证明见解析(3)是,常数为43【分析】(1)代入点坐标,结合2221b e a=-求解即可;(2)根据结论设出切线方程,两条切线交于点M (4,t ),可得点A 、B 的坐标都适合方程13tx y +=,求出定点坐标即可; (3)联立直线AB 与椭圆,点点距公式表示22,AF BF ,结合韦达定理化简即得解【详解】(1)△椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.△222314b e a =-=,△221914a b +=,△, 由△△得:24a =,23b =,△椭圆C 的方程为22143x y +=. (2)证明:设切点坐标()11,A x y ,()22,B x y ,则切线方程分别为11143x x y y+=,22143x x y y +=. 又两条切线交于点M (4,t ),即1113t x y +=,2213tx y +=,即点A 、B 的坐标都适合方程13tx y +=,令0y =,可得1x = 故对任意实数t ,点(1,0)都适合这个方程,故直线AB 恒过椭圆的右焦点()21,0F .(3)将直线AB 的方程13tx y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, △122612t y y t +=+,1222712y y t =-+, 不妨设10y >,20y <,21AF y =,同理22BF y =,△211212221111y y y y y y AF BF -⎫+=-=⎪⎭1243==,△2211AF BF +的值恒为常数43. 24.(1)2y x =+;(2)2214812x y +=. 【分析】(1)设出切点,利用切点处的导数是斜率,表示出切线方程,1(,2)2D -在切线上,求出两解,分别对应切点,A B 坐标,则方程可求. (2a b 、的一个关系;联立直线和椭圆方程,用上韦达定理,结合123k k k +=,再建立a b 、的一个关系,则椭圆方程可求. 【详解】解:(1)设切点11(,)A x y 22(,)B x y ,则221122,x y x y ==切线的斜率为2y x '=,所以抛物线上过11(,)A x y 点的切线的斜率为12x ,切线方程为()2111112,2y y x x x y x x x -=-=-,1(,2)2D -在切线上,所以21120x x --=,12x =或11x =-, 当12x =时,2114y x ==;当11x =-,2111y x ==,不妨设()(2,4),1,1A B -,1AB k =, 所以两切点,A B 所在的直线方程2y x =+.(2)由e =2234c a =,又222c a b =-,所以224a b =.222244y x x y b=+⎧⎨+=⎩,得225161640x x b ++-=, 21651645P Q P Q x x b x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, 21,Q PP Qk k y y x x ==, 1k =,又因为123k k k +=,()()3,3,223P Q P Q Q P Q Q P P P Q P Q P Qx x x x y y x y x y x x x x x x ++++===+,()2P Q P Q x x x x +=,22161642,1255b b --⨯==,248a =, 所以椭圆的方程2214812x y +=.【点睛】以直线和抛物线、椭圆的位置关系为载体,考查求直线方程、椭圆方程的方法;中档题.25.(△)22143x y +=;(△)满足条件的点P 有两个.【详解】试题分析:(1) 结合椭圆的离心率可求得1c =,则椭圆方程为22143x y +=.(2)由题意首先求得切线方程的参数形式,据此可得直线BC 的方程为002x y x y =-,则点P 的轨迹方程为112y x =-,原问题转化为直线112y x =-与椭圆1C 的交点个数,即满足条件的点P 有两个. 试题解析:(△)由椭圆的对称性,不妨设在x 轴上方的切点为M ,x 轴下方的切点为N , 则1NE k =,NE的直线方程为y x =因为椭圆22122:1x y C a b+= ()0a b >>的离心率为12,所以椭圆22122:143x y C c c+=,所以22221,43y x x y c c ⎧=⎪⎨+=⎪⎩ 0∆=,则1c =, 所以椭圆方程为22143x y +=.(△)设点()11,B x y ,()22,C x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=,△抛物线2C 在点B 处的切线1l 的方程为()1112x y y x x -=-, 即2111122x y x y x =+-, △21114y x =,△112x y x y =-.△点()00,P x y 在切线1l 上,△10012x y x y =-.△ 同理,20022x y x y =-.△ 综合△、△得,点()11,B x y ,()22,C x y 的坐标都满足方程002xy x y =-. △经过()11,B x y ,()22,C x y 两点的直线是唯一的, △直线BC 的方程为002x y x y =-, △点()1,1A 在直线BC 上,△00112y x =-, △点P 的轨迹方程为112y x =-.又△点P 在椭圆1C 上,又在直线112y x =-上, △直线112y x =-经过椭圆1C 内一点()0,1-, △直线112y x =-与椭圆1C 交于两点. △满足条件的点P 有两个.26.(1)21:4C x y =,222:134x y C +=(2)2y =-【分析】(1)依据曲线1C 和椭圆的定义求方程.(2) 假设点M 存在,设切线方程,M 即在抛物线又在椭圆上找到等量关系.【详解】(1)由曲线1C 上任意一点到F (0,1)的距离比到x 轴的距离大1,根据抛物线的定义,曲线1C 为以F (0,1)为焦点的抛物线,则曲线1C :24x y =;设椭圆2C 的方程()222210y x a b a b+=>>,由24a =,a =2,c =1,2223b a c =-=,△椭圆2C :22143y x +=;(2)若存在,由题意设AB 方程:y =kx +2代入24x y =,化简得2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,△ 由于12y x '=,△切线MA 方程为:()11112y y x x x -=-,即2111124y x x x =-,△同理切线MB 方程为:2221124y x x x =-,△ 由△△得1212,24x x x x M +⎛⎫⎪⎝⎭,△M (2k ,-2), 又M (2k ,-2)在椭圆上,24113k +=可得:k =0,△M (0,-2)k =0代入△有:1x =2x =-△椭圆2C 上存在一点M (0,-2)符合题意,此时两条切线的方程为2y =-. 【点睛】本题要证明切点弦过定点,设切点弦的直线方程,得到韦达定理,然后通过切点写出两条切线方程,可以得到交点M 的坐标,由点M 的特性可以求出M 坐标,进而求出切点,写出切线方程.。

高考高频考点(圆锥曲线)3、圆的切线、切点弦结论

高考高频考点(圆锥曲线)3、圆的切线、切点弦结论

第3讲 圆的切线、切点弦结论知识与方法1求过圆()()222:C x a y b r −+−=上一点()00,P x y 的圆C 的切线的步骤如下:(1)先验证经过点P 且垂直于x 轴的直线是否和圆C 相切,若是,如图1所示,所求切线为0x x =,问题求解完毕;若否,则进行下一步;(2)设切线斜率为k ,如图2所示,由PC ⊥切线,求出k ,用点斜式写出切线的方程,问题求解完毕.上述问题的结论:圆C 上点P 处的切线的方程为()()()()200x a x a y b y b r −−+−−=. 2求过圆()()222:C x a y b r −+−=外一点()00,P x y 的圆C 的切线的步骤如下:(1)先验证过点P 且垂直于x 轴的直线是否和圆相切,若是,如图3所示,其中一条切线为0x x =(2)设切线的斜率为k ,用点斜式写出切线的方程,由圆心到切线的距离d r =,解出k ,求得切线方程.3.过圆()()222:C x a y b r −+−=外一点()00,P x y 作圆C 的两条切线,切点分别为A 和B ,如图4所示,则切点弦AB 所在直线的方程为()()()()200x a x a y b y b r −−+−−=典型例题【例l 】圆()22:14C x y −+=在点(P 处的切线方程为______.【解析】显然点P 在圆C 上,故所求切线的方程为()()0114x −−=,化简得:30x +=.【答案】30x +=变式1 圆22:230C x y x +−−=在点(2,P 处的切线方程为______.【解析】易验证点P 在圆C 上,故所求切线的方程为222302xx +−−⋅−=,化简得:50x −=【反思】过圆C 上的点()00,P x y 作圆C 的切线,则切线的方程可以在圆C 的一般式方程中将2x 换成0x x ,将2y 换成0y y ,将x 换成02x x +,将y 换成02y y+得到.【答案】50x −=变式2 已知圆()22:14C x y −+=,则:(1)圆C 的过点()2,0P −的切线方程为_______;(2)圆C 的过点()3,1Q 的切线方程为_______ 【解析】(1)显然过点P 且斜率不存在的直线2x =−与圆C 不相切, 故可设切线的方程为()2y k x =+,即20kx y k −+=2=,解得:k =,故圆C 的过点P 的切线方程为)25y x =±+; (2)易得过点Q 且斜率不存在的直线3x =与圆C 相切,设另一条切线的方程为()13y m x −=−,即130mx y m −+−=2=,解得:34m =−,所以该切线的方程为()3134y x −=−−,化简得:34130x y +−=, 综上所述,圆C 的过点Q 的切线方程为3x =或34130x y +−=.【答案】(1))2y x =+;(2)3x =或34130x y +−= 【例2】已知圆22:4O x y +=外一点()2,3P ,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为_______【解析】由题意,切点弦AB 所在直线的方程为234x y +=,即2340x y +−= 【答案】2340x y +−=变式1 已知圆22:2410C x y x y +−−+=外一点()2,1P −,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为212241022x yx y −++−+−⋅−⋅+= 化简得:310x y +−=【反思】过圆C 外的点()00,P x y 作圆C 的两条切线,则切点弦所在直线的方程,可在圆C 的一般式方程中将2x 换成0x x ,将2y 换成0y y ,将x 换成02x x +,将y 换成02y y+得到. 【答案】310x y +−=变式2 已知圆22:4Q x y +=,P 为直线:4l y x =+上一点,过点P 作圆O 的两条切线,切点分别为A 和B ,若四边形PAOB 的面积为12,则直线AB 的方程为______.【解析】如图,AP =,所以四边形PAOB 的面积122S AP AO =⨯⋅=由题意,12=,解得:PO =由题意,点P 在直线:4l y x =+上,故可设(),4P m m +,则PO == 解得:6m =−或2,当6m =−时,()6,2P −−,此时直线AB 的方程为624x y −−=,化简得:320x y ++= 当2m =时,()2,6P ,此时直线AB 的方程为264x y +=,化简得:320x y +−=, 所以直线AB 的方程为320x y ++=或320x y +−=【答案】320x y ++=或320x y +−=变式3 已知圆22:4O x y +=,P 为直线:260l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,则直线AB 的方程为______.【解析】如图,AP =,所以四边形PACB 的面积122S AP AO =⨯⋅=PO 最小时,S 也最小, 此时PO l ⊥,易求得PO 的方程为20x y −=,联立20260x y x y −=⎧⎨++=⎩解得:65x =−,125y =−,所以612,55P ⎛⎫−− ⎪⎝⎭,故直线AB 的方程为612455x y −−=,化简得:36100x y ++=.【答案】36100x y ++=变式4 已知直线:4l y x =+与x 轴交于点T ,过直线l 上的动点P 作圆22:4O x y +=的两条切线,切点分别为A 、B ,设AB 中点为M ,则TM 的最小值为( )A. B. D.3【解析】如图,因为点P 在直线:4l y x =+上,所以可设(),4P m m +,则切点弦AB 所在直线的方程为()44mx m y ++=即()440m x y y ++−=,所以直线AB 过定点()1,1Q −,又M 为AB 中点,所以OM AB ⊥,故点M 在以OQ 为直径的圆上,从而点M 的轨迹是以11,22G ⎛⎫− ⎪⎝⎭为半径的圆,显然点()4,0T −在该圆外,所以minTMTG ==.【反思】当动点P 在与圆C 相离的某一定直线上运动时,过点P 作圆C 的两条切线,则切点弦所在的直线是过定点的直线,熟悉这一模型,本题的求解就不困难了. 【答案】A强化训练1.(★★)圆22:40C x y x +−=在点(P 处的切线方程为( )A.20x +−=B.40x +−=C.40x +=D.20x +=【解析】显然点P 在圆C 上,故所求切线的方程为11402xx y +⋅+−⋅=,化简得:20x +=.【答案】D2.(★★)已知圆()22:11C x y +−=,则:(1)圆C 的过点()0,2P −的切线方程为______; (2)圆C 的过点()1,1Q −的切线方程为______.【解析】(1)显然过点P 且斜率不存在的直线0x =与圆C 不相切,故可设切线的方程为()()20y k x −−=−,即20kx y −−=1=,解得:k =±C 的过点P的切线方程为2y =±−;(2)易得过点Q 且斜率不存在的直线1x =与圆C 相切,设另一条切线的方程为()()11y m x −−=−,即10mx y m −−−=1=,解得:34m =−,所以该切线的方程为()()3114y x −−=−−,化简得:3410x y ++=, 综上所述,圆C 的过点Q 的切线方程为1x =或3410x y ++=【答案】(1)2y =±−;(2)1x =或3410x y ++=3.(★★)已知圆()22:12C x y −+=外一点()2,2P ,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为()()21122x y −−+=,化简得:230x y +−=. 【答案】230x y +−=4.(★★)已知圆()()22:129C x y −+−=外一点()4,2P −,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为()()()()4112229x y −−−+−−=,化简得:45x =−.【答案】45x =−5.(★★)已知圆22:2440C x y x y +−−−=外一点()4,1P −−,过点P 作圆C 的两条切线,切点分别为A 和B ,则直线AB 的方程为______.【解析】由题意,切点弦AB 所在直线的方程为414244022x y x y −−−−−⋅−⋅−=,化简得:5320x y +−=.【答案】5320x y +−=6.(★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,若四边形PACB 的面积为12,则直线AB 的方程为______.【解析】如图,AP ==所以四边形PACB 的面积122S AP AC =⨯⋅=由题意,12=,解得:5PC =,由题意,点P 在直线20x y ++=上,故可设(),2P m m −−,则PC =5=,解得:4m =−或1,当4m =−时()4,2P −,此时直线AB 的方程为4242244022x yx y −++−+−⋅−⋅−=, 化简得:45x =−,当1m =时,()1,3P −, 此时直线AB 的方程为133244022x yx y +−+−−⋅−⋅−=, 化简得:15y =, 所以直线AB 的方程为45x =−或15y =.【答案】45x =−或15y =7.(★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,则直线AB 的方程为______.【解析】()()22222440129x y x y x y +−−−=⇒−+−=⇒圆心()1,2C ,半径3r =.如图,AP ==所以四边形PACB 的面积122S AP AC =⨯⋅= 所以当PC 最小时,S 也最小,此时,PC l ⊥, 故PC 的方程为21y x −=−,即10x y −+=,联立1020x y x y −+=⎧⎨++=⎩解得:32x =−,12y =−,即31,22P ⎛⎫−− ⎪⎝⎭,所以直线AB 的方程为()()311122922x y ⎛⎫⎛⎫−−−+−−−= ⎪ ⎪⎝⎭⎝⎭,化简得:5530x y ++=.【答案】5530x y ++=8.(★★★★)已知P 为抛物线2:4C y x =上的动点,过P 作圆()22:44M x y −+=的两条切线,切点分别为A 和B ,则当四边形PAMB 的面积最小时,直线AB 的方程为______.【解析】如图,AP ==,所以四边形PAMB 的面积122S AP AM =⨯⋅=, 所以当PM 最小时,S 也最小,由题意,()4,0M ,可设()2,2P t t ,则()()2222242244416212PM t t t t t =−+=−+=−+,故当t =PM 取得最小值,此时(2,P ±,所以直线AB 的方程为()()2444x −−±=,化简得:20x ±−=.【答案】20x +−=或20x =−=9.(★★★★)已知圆22:2440C x y x y +−−−=,P 为直线:20l x y ++=上的动点,过点P 作圆C 的两条切线,切点分别为A 和B ,AB 的中点为Q ,若点T 的坐标为111,1010⎛⎫⎪⎝⎭,则TQ 的最小值为______.【解析】()()22222440129x y x y x y +−−−=⇒−+−=⇒圆心()1,2C ,半径3r =, 设(),2P m m −−,则切点弦AB 所在直线的方程为()()()()112229m x m y −−+−−−−=, 化简得:()140m x y x y −+−−=,所以直线AB 过定点41,55K ⎛⎫− ⎪⎝⎭,如图,显然CQ KQ ⊥,所以点Q 的轨迹是以CK 为直径的圆,其圆心为111,1010G ⎛⎫ ⎪⎝⎭,CK ==,因为GT =min 12TQ GT GK =−=.【答案】10。

圆锥曲线的切线与法线方程求解技巧总结

圆锥曲线的切线与法线方程求解技巧总结

圆锥曲线的切线与法线方程求解技巧总结圆锥曲线是数学中的重要概念,包括椭圆、双曲线和抛物线。

在解析几何和微积分中,求解圆锥曲线的切线和法线方程是一个基本的技巧。

本文将总结一些解决这类问题的常见方法和技巧。

一、椭圆的切线与法线方程求解椭圆是一个非常常见的圆锥曲线,其方程为 x^2 / a^2 + y^2 / b^2 = 1,其中 a 和 b 分别为椭圆的长轴与短轴。

求解椭圆的切线和法线方程的步骤如下:1. 确定切点首先,我们需要确定切点的坐标。

可以通过将直线 y = kx + c 代入椭圆方程,并解得 x 和 y 关于 k 和 c 的方程组。

解这个方程组即可得到切点的坐标。

2. 求解切线方程在得到切点的坐标后,我们可以使用常见的切线公式 y - y0 = k(x - x0) 来求解切线方程。

其中 (x0, y0) 为切点的坐标,k 为斜率。

3. 求解法线方程切线的斜率 k 和切点的坐标 (x0, y0) 可以通过对椭圆方程求偏导数得到。

设斜率 k1 为切线斜率,斜率 k2 为法线斜率,斜率之间的关系为 k1 * k2 = -1。

因此,我们可以通过斜率 k1 和切点 (x0, y0) 来求解法线方程。

二、双曲线的切线与法线方程求解双曲线是另一种常见的圆锥曲线,其方程为 x^2 / a^2 - y^2 / b^2 = 1。

求解双曲线的切线和法线方程的步骤如下:1. 确定切点与椭圆类似,我们首先需要确定切点的坐标。

代入直线 y = kx + c 到双曲线方程中,并解得切点的坐标。

2. 求解切线方程切线方程的求解过程与椭圆类似,使用公式 y - y0 = k(x - x0),其中 (x0, y0) 为切点的坐标,k 为斜率。

3. 求解法线方程双曲线的法线也满足斜率 k1 和斜率 k2 的关系为 k1 * k2 = -1。

通过切线方程的斜率 k1 和切点的坐标 (x0, y0),可以求得法线方程。

三、抛物线的切线与法线方程求解抛物线是圆锥曲线中的另一种重要类型,其方程为 y^2 = 2px,其中p 为抛物线的焦点到准线的距离。

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的三种方法.一、向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程.例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M(x0,y0)的圆的切线l的方程.解:设切线l上任意一点N的坐标是(x,y).由(x-a)2+(y-b)2=r2得点O的坐标是(a,b),所以OM=(x0-a,y0-b), MN=(x-x0,y-y0).又因为OM∙MN=0,即[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=[(x0-a)2+(y0-b)2],所以l的方程:(x0-a)(x-a)+(y0-b)(y-b)=r2.由已知圆的方程与圆上一点的坐标,可得出圆心的坐标,再设出切线上任意一点N的坐标,即可得到与切线垂直的向量,根据向量运算便可求得切线的方程.二、导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程.例2.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.设M为曲线C:y=x24上一点,C在M处的切线与直线AB平行,且AB⊥BM,求直线AB的方程.解:设A(x1,y1),B(x2,y2),则x1≠x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率为k=y1-y2x-x=x1+x24=1.由y=x24,得y,=x2.设M(x3,y3),由题意可知:x32=1,解得x3=2,则M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2-m),||MN=||m+1,将y=x+m代入y=x24得x2-4x-4m=0.当Δ=16()m+1>0,即当m>-1时,x1=2+2m+1或x2=2-2m+1,从而可得||AB=2||x1-x2=42(m+1),由||AB=2||MN得42(m+1)=2(m+1),解得m=7,所以直线AB的方程为y=x+7.在求得直线AB的斜率后,便可运用导数法对抛物线的方程求导,得出M点的坐标,再根据韦达定理和弦长公式求得切线的方程.三、几何性质法在解答圆锥曲线问题时,我们经常要用到椭圆、双曲线以及抛物线的几何性质,并结合几何图形,如三角形、梯形、平行四边形的性质来解题.采用几何性质法,关键要根据题意绘制出几何图形,明确各个点、直线、曲线的位置关系,然后运用几何性质来解题.例3.求抛物线C:y2=8x上经过点M(8,8)的切线l的方程.解:由抛物线C:y2=8x可得其焦点F为(2,0),准线方程为:x=-2,过点M(8,8)作准线的垂线,设垂足为N,则N的坐标为(-2,8),又设FN的中点为P,则P的坐标为(0,4),故直线PM的方程为:y=8-48x+4,即x-2y+8=0,所以切线l的方程是:x-2y+8=0.我们根据抛物线的几何性质作出准线,根据图形明确各点、曲线、切线的位置,根据点、直线之间的位置关系以及中点坐标公式建立关系式,求得切线的斜率与方程.相比较而言,几何性质法和导数法比较常用,运用几何性质法和向量法解题过程中的运算量较小.在求圆锥曲线的切线方程时,同学们要结合图形来解题,这样不仅能降低解题的难度,还能提升解题的效率.(作者单位:江苏省阜宁中学)周红芹解题宝典40。

圆锥曲线切线方程的五种求法

圆锥曲线切线方程的五种求法

2013-12教学实践论———柯西不等式就此“诞生”!而此不等式的应用经常在数学竞赛中出现。

顿时,学生们眼中的喜悦无法言表。

我也深受感染,陶醉其中!从教学实例中我深深体会到:数学教学应充分挖掘学生的潜力,充分调动学生的主观能动性,放手让学生主动探究,教师适时引导,就会有意想不到的收获。

这正如古人云:授之以鱼不如授之以渔。

读懂读通教材及学生,教师在数学教学中才能做到游刃有余。

今后我将不断提高自己的知识素养与教学技能,全身心地投入到新课程的教学中。

(作者单位江苏省南京市栖霞中学烷基苯校区)•编辑刘俊婷切线对于研究圆锥曲线的性质具有十分重要的作用,中学阶段常用的求圆锥曲线的切线方程的方法主要有以下五种:一、向量法在求圆的切线时,可以利用圆心和切点的连线垂直于切线以及向量的内积运算来求。

例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M (x0,y0)的圆的切线l的方程.解:设所求切线l上任意一点N的坐标是(x,y)由已知得:点O的坐标是(a,b),且M的坐标是(x0,y0),∴OM=(x-a,y-b,MN=x-x0,y-y0),又∵OM⊥MN∴OM·MN=0即:(x-x0)(x0-a)+(y-y0)(y0-b)=0,即:[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)-[(x0-a)2+(y0-b)2]=0,即:(x0-a)(x-a)+(y0-b)(y-b)=(x0-a)2+(y0-b)2,即l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=r2.二、巧用变换设椭圆方程为x2a2+y2b2=1,我们做变换:x=aμy=bv{,则可把椭圆化为单位圆:μ2+v2=1,从而可将求椭圆的切线方程问题转化为求圆的切线问题:例2.求过椭圆x216+y29=1上一点M(22√,32√2)的切线l方程.解:令μ=x4,v=y3,则椭圆在新坐标系μOv下的方程是:u2+v2=1,点M(22√,32√2)在新坐标系μOv下的坐标是:(2√2,2√2),易知过圆u2+v2=1上的点(2√2,2√2)的切线方程是:2√2μ+2√2v=1,即:μ+v=2√,所以过椭圆上一点M的切线l的方程是:x4+y3=2√,即:3x+4y=122√.值得注意的是:此种方法只对于椭圆问题有效.三、判别式法也可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.例3.求经过点M(2,1)的双曲线:x2-2y2=2的切线l的方程.解:设l的方程是:y-1=k(x-2)且k≠±2√2,即:y=kx-(2k-1),将它代入方程x2-2y2=2中整理得:(2k2-1)x2-4k(2k-1)x+(8k2-8k+4)=0,由已知得:△=[-4k(2k-1)]2-4(2k2-1)(8k2-8k+4)=0,解得:k=1,故所求切线l的方程为:y=x-(2×1-1),即:x-y-1=0.四、导数法新教材中介绍了微积分的初步知识,我们也可把圆锥曲线的方程看作关于x的隐函数,利用导数求圆锥曲线的切线方程:例4.此处仍以上面的例3为例.解:对方程:x2-2y2=2两边都取关于x的导数,得:2x-4yy′=0,即:y′x=2,y=1=x2y x=2,y=1=1,这就是所求切线的斜率,∴过点M(2,1)的双曲线x2-2y2=2的切线l的方程为:x-y-1=0.五、几何法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:若焦点为F1、F2的椭圆或双曲线上有一点M,则∠F1MF2的平分线一定与圆锥曲线相切;又若焦点为F的抛物线上有一点M,过M作准线的垂线,垂足为N,则FN的中点P与M的连线PM 必与抛物线相切。

秒杀题型12 圆锥曲线中的切线(原卷版)

秒杀题型12 圆锥曲线中的切线(原卷版)

说明:圆锥曲线中的切线问题是高考压轴题的一大类型,共分下面四种题型,在高考中主要以考查重要结论为主,且重要结论的证明步骤固定,所以要求考生熟记下面的步骤,在高考中直接套用即可。

【秒杀题型】:玩转压轴题之三大曲线中的切线『秒杀策略』:当抛物线开口向上或开口向下时(此时抛物线可看作函数),主要利用导数解决,当抛物线 开口向左或开口向右时利用0=∆解决。

椭圆利用0=∆解决。

【题型一】:过曲线上一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆12222=+by a x 上一点()00,y x P 作切线,则切线方程为:12020=+byy a x x 。

证明:(此步骤必须牢记,在大题中要体现)设过()00,y x P 的切线方程为:()00x x k y y -=-,与椭圆方程联立,利用0=∆。

熟记:②过抛物线px y 22=上一点()00,y x P 作切线,则切线方程为:)(00x x p y y +=。

证明:(此步骤必须牢记,在大题中要体现)设过()00,y x P 的切线方程为:()00x x k y y -=-,与抛物线方程联立,利用0=∆。

若为开口向上或开口向下的抛物线,求导,代点,求出切线的斜率,利用点斜式求出切线的方程 。

〖母题〗抛物线2y x =上到直线24x y -=的距离最小的点的坐标是 ( )A.11,24⎛⎫⎪⎝⎭ B.()1,1 C.39,24⎛⎫⎪⎝⎭D.()2,4 1.(高考题)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 ( ) A.43 B.75 C.85D.3 【题型二】:过曲线外一点作曲线的切线。

『秒杀策略』:秒杀公式:熟记:①过椭圆12222=+by a x 外一点()00,y x P 作椭圆的两条切线,则两切点连线方程为:12020=+byy a x x 。

证明:(此步骤必须牢记,在大题中要体现)设两切点为()11,y x A 、()22,y x B ,则切线PA :12121=+byy a x x ;同理,切线PB :12222=+b yy a x x ;点P 在两切线上,则有:1201201=+b y y a x x ①,1202202=+by y a x x ②,构造直线l :12020=+b y y a x x ,则由①②可知点A 、B 均在直线l 上,即直线AB 的方程为12020=+byy a x x 。

【圆锥曲线】11抛物线切线(含经典题型+答案)

【圆锥曲线】11抛物线切线(含经典题型+答案)

抛物线切线的性质例1:点M (2,1)是抛物线x 2=2py 上的点,则以点M 为切点的抛物线的切线方程为 .解:将点M (2,1)代入抛物线得:p =2,故以点M 为切点的切线方程为()122+=y x ,即01=--y x例2:过点A (0,2)且和抛物线C :y 2=6x 相切的直线l 方程为 .解:设直线与抛物线切于点()00,y x P ,故有()003x x yy +=代入点A (0,2)得:0032x y =,与抛物线方程联立得:⎩⎨⎧==⎪⎩⎪⎨⎧==⇒=⎪⎭⎫⎝⎛004386230000020y x y x x x 或,故切线方程为0843=+-y x 或0=x 。

例3:直线l 经过点(0,2)且与抛物线y 2=8x 只有一个公共点,满足这样条件的直线l 有 条.解:设直线与抛物线切于点()00,y x P ,故有()004x x yy +=代入点A (0,2)得:002x y =,与抛物线方程联立得:()⎩⎨⎧==⎩⎨⎧==⇒=4200820000020y x y x x x ,或,故存在两条切线,还有一条直线2=y 与抛物线只有一个公共点,故答案为3条。

1.在曲线y=x 2上切线的倾斜角为的点的坐标为 .2.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1 B .2 C .3 D .4 3.抛物线2x y =在点M(21,41)处的切线的倾斜角是( ) A.30° B.45° C.60° D.90° 4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A.12-B.12C.1D.1- 5.函数24x y =在点P (2, 1)处的切线方程为__________________________.6.抛物线x 2=4y 的准线l 与y 轴交于点P ,若直线l 绕点P 以每秒弧度的角速度按逆时针方向旋转t 秒钟后,恰与抛物线第一次相切,则t= .7.过点(2,﹣1)引直线与抛物线y=x 2只有一个公共点,这样的直线共有 条.8.过点P (3,4)作抛物线x 2=2y 的两条切线,切点分别为A 、B ,则直线AB 的斜率为 . 9.(2014•辽宁)已知点A (﹣2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于 点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .B .C .D .10.已知点A 为抛物线C :x 2=4y 上的动点(不含原点),过点A 的切线交x 轴于点B ,设抛物线C 的焦点为F ,则△ABF ( )A .一定是直角 B .一定是锐角C .一定是钝角 D .上述三种情况都可能11.抛物线x 2=y 在第一象限内图象上一点(a i ,2a i 2)处的切线与x 轴交点的横坐标记为a i+1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( )A .64 B .42C .32D .2112抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:﹣y 2=1的左焦点的连线交C 1于第二象限内的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p=( )A .B .C .D .13.已知抛物线C 的方程为y x 42=,焦点为F ,准线为l ,直线m 交抛物线于两点A 、B.过点A 的抛物线C 的切线y 轴交于点D ,求证;︱AF ︱=︱DF ︱;14.已知抛物线C :x 2=2py (p >0)的焦点为F ,抛物线上一点A 的横坐标为x 1(x 1>0),过点A 作抛物线C 的切线l 1交x 轴于点D ,交y 轴于点Q ,交直线于点M ,当|FD|=2时,∠AFD=60°.(1)求证:△AFQ 为等腰三角形,并求抛物线C 的方程;(2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线l 2交直线l 1于点P ,交直线l 于点N ,求△PMN 面积的最小值,并求取到最小值时的x 1值.15如图所示,抛物线C :y 2=2px (p >0)与直线AB :y=x+b 相切于点A .(1)求p ,b 满足的关系式,并用p 表示点A 的坐标;(2)设F 是抛物线的焦点,若以F 为直角顶角的Rt △AFB 的面积等于25,求抛物线C 的标准方程. 例4:已知点P (﹣3,2)在抛物线C :y 2=2px (p >0)的准线上,过点P 的直线与抛物线C 相切于A ,B 两点,则直线AB 的斜率为( )A .1B .C .D .3解:P (﹣3,2)在抛物线C :y 2=2px (p >0)的准线上,故p =6,抛物线C :y 2=12x ,根据秘籍中的性质(1)可知,AB 中点的纵坐标与P 点纵坐标相等(如图),即20=y ,且AB 过抛物线的焦点;设AB 方程为3+=ky x ,代入抛物线方程得:036122=--ky y ,312621221021=⇒==+=⇒=+k k y y y k y y ,故直线AB 的斜率为3。

圆锥曲线的切线与法线方程的求解技巧总结

圆锥曲线的切线与法线方程的求解技巧总结

圆锥曲线的切线与法线方程的求解技巧总结圆锥曲线是数学中一个重要的概念,在几何学、物理学以及工程学等许多领域都有广泛的应用。

对于圆锥曲线上的任意一点,切线和法线是与其切点和法点相关联的重要性质。

在本文中,我们将总结一些求解圆锥曲线切线和法线方程的技巧与方法。

一、椭圆的切线与法线方程椭圆是圆锥曲线中的一种,具有许多重要的特性。

对于椭圆上的任意一点P(x,y),我们希望求解它的切线和法线方程。

1. 切线方程的求解对于椭圆上一点P(x,y),其切线的斜率可以通过对椭圆的导数求解得到。

椭圆的隐式方程可以表示为:Ax² + By² = C,其中A、B、C为常数。

首先,对隐式方程两边同时求导,得到2Ax + 2By(dy/dx) = 0。

然后解出dy/dx,即切线的斜率。

接下来,通过点斜式的切线方程:y - y₁ = k(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),我们可以代入已知点P(x,y)和切线斜率,求解出切线方程。

2. 法线方程的求解对于椭圆上一点P(x,y),其法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。

我们可以通过点斜式的法线方程:y - y₁ = (-1/k)(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),代入已知点P(x,y)和切线斜率的倒数,求解出法线方程。

二、双曲线的切线与法线方程双曲线是圆锥曲线中的另一类,其形状与椭圆类似,但具有不同的数学性质。

对于双曲线上的任意一点P(x,y),我们也可以求解其切线和法线方程。

1. 切线方程的求解双曲线的隐式方程可以表示为:Ax² - By² = C,其中A、B、C为常数。

我们同样通过对隐式方程两边同时求导,得到2Ax - 2By(dy/dx) = 0。

然后解出dy/dx,即切线的斜率。

利用点斜式的切线方程,代入切点坐标和切线斜率,求解出切线方程。

2. 法线方程的求解与椭圆类似,双曲线上任意一点P(x,y)的法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。

圆锥曲线秒杀法(干货分享)

圆锥曲线秒杀法(干货分享)

圆锥曲线秒杀法吴磊研究高考作文之余,本人也研究高考数学的秒杀方法,主要包括隐函数求导、柯西不等式、仿射、参数方程、极点极线..一、圆锥曲线部分小题用到的方法1、椭圆C:x²/8+y²/2=1与斜率K=1/2的直线l相切,则切点坐标为________注:传统方法我就不讲了,讲两种秒杀法法一、隐函数求导直接对C:x²/8+y²/2=1求关于X导数可得x/4+y y’=0,带入K=1/2,x=-2y,带入椭圆方程,很容易解出切点为(-2,1)和(2,-1);..法二、缩放坐标将椭圆缩放成圆利用圆的性质快速解题,将X轴压缩为原来的1/2,即x=2x'(这里不是导数,只表示一个未知数);斜率K’=2K=1,椭圆化为圆C’: x'²+y’²=2;很容易求得I'与C'相切于(-1,1)和(1,-1),还原,可知I与C相切于(-2,1)和(2,—1)..2、椭圆C:x²/4+y²/3=1上的点到直线L:x-2y-1=0距离的取值范围为:______法一、直接用柯西不等式椭圆和直线相交,最小距离为0,最大距离为椭圆C与l平行的切线l’与l的距离,l’=x—2y+b=0;构造柯西不等式可知(x²/4+y²/3)(4+12)≥(x-2y)²;—4≤b≤4;把4和—4代入l';再利用平行线距离公式求I和l’距离,最大距离为√5所以0≤d≤√5..法二、缩放坐标系椭圆和直线相交,最小距离为0,最大距离为椭圆C与l平行的切线l'与l的距离.l'= x-2y+b=0;缩放y=√3/2y’;椭圆C缩放后方程C'为:x²+y²=4;l’缩放后表达式为l’’=x—√3y+b=0, C'与l’’相切,利用点到直线距离为半径,容易求的b=4和-4;再利用平行线距离公式很容易求得范围为0≤d≤√5..3、过定点(4、0)的直线l与椭圆C:x²/4+y²=1有公共点,则直线l斜率K取值范围为:______..法一、直接用柯西不等式l:my=x—4,则x—my=4;构造柯西不等式,(x²/4+y²)(2²+ m²)≥(x—my)²可得,m²≥12,注意是反设斜率,故k= 1/m;很容易解出k 的范围为—√3/6≤k ≤√3/6 法二、缩放坐标l:my =x -4, x=2x' C ’: x ' ²+ y' ² =1; I’:m y '=2 x '—4, 用点到直线距离公式,d=4/√(4+ m ²)≤1;可解的m²≥12,注意是反设斜率,故k= 1/m;很容易解出k 的范围为. .-√3/6≤k ≤√3/6二、柯西不等式柯西不等式在高中数学提升中非常重要,是高中数学研究内容之一,是求某些函数最值中和证明某些不等式时经常使用的理论根据,技巧以拆常数,凑常值为主。

专题11 圆锥曲线的切线问题(解析版)

专题11 圆锥曲线的切线问题(解析版)
A. x y 4 0
B. x y 4 0 或
C.
D.或

【答案】C

【解析】 x 2 y 2 2 x 6 y 2 0
x 1 y 3 8
2
2
M 3,1 3 1 1 3 8 即在圆上
2

2
则过点的切线方程为
B.
C.
D.
【解析】设,则直线 PA 的方程为,
直线 PB 的方程为,
点均在两直线上,故 3 x1 4 y1 4,3 x2 4 y2 4 ,
直线 AB 的方程为 3x+4y=4.
点到直线 AB 的距离,
则.本题选择 D 选项.
2.过点 M(2,-2p)作抛物线 x2=2py(p>0)的两条切线,切点分别为 A,B,若线段 AB 的中点的纵坐标为
解析
= ,
联立方程得{
消去 y,整理得 x2-4x+8=0,
-- = ,
Δ=(-4)2-4×8=-16<0,故直线 l 与抛物线 C 相离.

由结论知,P 在抛物线外,故切点弦 AB 所在的直线方程为 x0x=2(y+y0),即 y= x0x-y0.




5. 设椭圆 C: + =1,点 P(, ),则椭圆 C 在点 P 处的切线方程为
【解析】(1)由题意,将代入椭圆方程,得,所以,
所以过椭圆上的点的切线方程为,即 x 2 y 4 0 .
4.已知抛物线 C:x2=4y,直线 l:x-y-2=0,设 P 为直线 l 上的点,过点 P 作抛物线 C 的两条切线 PA,PB,其中 A,B
为切点,当点 P(x0,y0)为直线 l 上的定点时,求直线 AB 的方程.

圆锥曲线的切线方程讲义——以一道高考题为例(原创)

圆锥曲线的切线方程讲义——以一道高考题为例(原创)
PA : xx1 = 2y1 + 2y PB : xx2 = 2y2 + 2y
因为 P 是 PA, PB 的交点,故 ( x0 , y0 ) 满足:
x0x1 = 2 y1 + 2 y0 ………………① x0x2 = 2y2 + 2y0 ………………②
可知 ( x1, y1 ) , ( x2 , y2 ) 是方程: x0x = 2y + 2y0 的两组解
两边同时除以 a2b2 :
yy0 b2
+
xx0 a2
=
y02 b2
+
x02 a2
因为点 ( x0 , y0 ) 在椭圆上,故
y02 b2
+
x02 a2
=1
所以: xx0 + yy0 = 1. a2 b2
三、应用
(2021 年全国高考乙卷数学(理))已知抛物线 C : x2 = 2 py ( p 0) 的焦点为 F ,且 F 与圆
简单规律: x2 → xx0 , 2 px → px + px → px + px0 (特别注意: ( x0 , y0 ) 为切点)。
二、证明(以椭圆为例)
证明:椭圆
x2 a2
+
y2 b2
= 1( a
b
0) 在 ( x0 ,
y0 ) 的切线方程为
xx0 a2
+
yy0 b2
=1.
证明: 方法、求导法(需要二元求导)
显然 y0 [−5, −3]
P 点在圆上得出
−( y0 + 6)2 + 21 −(−5 + 6)2 + 21 = 20
即: S

切线问题的解题技巧

切线问题的解题技巧

切线问题的解题技巧
切线问题是高中圆锥曲线考试中常见的问题之一,通常需要一定的技巧和方法来解决。

以下是一些解决切线问题的常用技巧:
1. 利用三角形面积公式和椭圆切线方程的关系,可以快速求出椭圆上点的横坐标或纵坐标。

2. 利用椭圆的焦点三角形面积公式和椭圆的离心率的关系,可以快速求出椭圆上点的横坐标或纵坐标。

3. 利用椭圆的中点弦公式和椭圆的切线斜率的关系,可以快速求出椭圆上点的横坐标或纵坐标。

4. 利用抛物线的焦点弦公式和抛物线的切线斜率的关系,可以快速求出抛物线上点的横坐标或纵坐标。

5. 利用圆锥曲线的基本性质,例如离心率、截距、中点弦等,可以方便地求解圆锥曲线上的点。

6. 对于一些复杂的切线问题,可以利用仿射变换的方法将其转化为简单的问题,从而方便求解。

以上是解决切线问题的常用技巧,在高中圆锥曲线考试中,考生需要熟练掌握这些技巧,并能够灵活运用来解决各种切线问题。

同时,考生还需要具备扎实的数学基础知识和较强的思维能力,才能更好地应对高中圆锥曲线考试。

圆锥曲线的切线与法线方程求解技巧阐述

圆锥曲线的切线与法线方程求解技巧阐述

圆锥曲线的切线与法线方程求解技巧阐述圆锥曲线是解析几何中的重要内容,其中包括椭圆、双曲线和抛物线等。

在研究圆锥曲线的性质时,常常需要找到曲线上某点处的切线和法线方程。

本文将重点探讨圆锥曲线的切线和法线方程求解技巧。

1. 切线的求解技巧切线是曲线在某一点处的切线,它与曲线仅相交于该点。

我们可以通过求解切线的斜率和通过给定点的方程来确定切线方程。

为了求解切线,首先需要求曲线在某点处的导数。

以椭圆为例,其方程为x^2/a^2 + y^2/b^2 = 1(a > b)。

假设我们要求解椭圆上一点P的切线方程,P的坐标为(x0, y0)。

(1)求解切线斜率:椭圆的导数可以通过隐函数求导法求得。

对椭圆方程两边同时求导,得到2x/a^2 + 2yy'/b^2 = 0。

将点P的坐标代入上式,可得到斜率m = -xb^2/ya^2。

(2)切线的方程:切线方程的一般形式为y - y0 = m(x - x0)。

将m和P的坐标代入切线方程中,可得到椭圆上点P处的切线方程。

2. 法线的求解技巧法线是与切线垂直的直线。

与切线类似,我们可以通过求解法线的斜率和通过给定点的方程来确定法线方程。

为了求解法线,同样需要求曲线在某一点处的导数。

以抛物线为例,其方程为y^2 = 4ax(a > 0)。

假设我们要求解抛物线上一点P的法线方程,P的坐标为(x0, y0)。

(1)求解法线斜率:抛物线的导数可以通过隐函数求导法求得。

对抛物线方程两边同时求导,得到2yy' = 4a。

将点P的坐标代入上式,可得到斜率m = -1/(2a)。

(2)法线的方程:法线方程的一般形式为y - y0 = -1/m(x - x0)。

将m和P的坐标代入法线方程中,可得到抛物线上点P处的法线方程。

3. 切线和法线方程求解实例通过以上技巧,我们可以来解决一个具体的求解问题。

示例:求解椭圆x^2/4 + y^2/9 = 1上点P(2, 3)处的切线和法线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大招九圆锥曲线的切线方程及其应用
现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切
线有且只有两条,过两切点的弦所在直线方程为。

那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。

联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为:
证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。

(2)设过椭圆外一点引两条切线,切点分别为、。

由(1)可知过、两点的切线方程分别为:、。

又因是两条切线的交点,所以有、。

观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。

评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。

联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,
过两切点的弦所在直线方程为:。

(证明同上)
联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当
在圆锥曲线(A,C不全为零)的外部时,过
引切线有两条,过两切点的弦所在直线方程为:
证明:(1)两边对求导,得
得,由点斜式得切线方程为
化简得………………….①
因为…………………………………………………②
由①-②×2可求得切线方程为:
(2)同联想一(2)可证。

结论亦成立。

根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。

若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。

当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为:
通过以上联想可得出以下几个推论:
推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:
推论2:(1)过抛物线上一点切线方程为
;(2)过抛物线的外部一点引两条切线,
过两切点的弦所在直线方程为:。

推论3:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

推论4:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,
过两切点的弦所在直线方程为:。

在以上的研究中,我们成功的运用了联想,由过已知圆上和圆外的点的切线方程联想到过圆锥曲线上和圆锥曲线外的切线方程,触类旁通,实现了知识的内迁,使知识更趋于系统化,取得了事半功倍的效果。

1.(13分)(2013•山东)椭圆C:的左右焦点分别是F1,
F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM
交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共
点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
解:(1)把﹣c代入椭圆方程得,解得,∵过F1且垂直于x轴的直线被
椭圆C截得的线段长为1,∴.又,联立得解得
,∴椭圆C的方程为.
(2)如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得,
又t+n=2a=4,消去t得到,化为∵a﹣c<n<a+c,即
,也即,解得.
∴m的取值范围;.
第三问若用传统方法,联立利用=0计算非常复杂,若用切线方程则非常方便
(3)证明:设P(x0,y0),
不妨设y0>0,由椭圆方程,
取,则=,∴k==.∵,,
∴=,
∴==﹣8为定值.
2.(12分)(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.
解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即

∵离心率,∴②
联立①②得:,所以b2=8.
把b2=8代入②得,a2=16.
∴椭圆的标准方程为;
(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,
不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).
联立,得x2﹣4tx+2t2+16﹣2r2=0.
由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8
又P()在椭圆上,所以.
整理得,.
代入t2+r2=8,得.
解得:.所以,.
此时.
满足椭圆上的其余点均在圆Q外.
由对称性可知,当t<0时,t=﹣,.
故所求圆Q的标准方程为.
本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的第三问若用公切线做非常方便(2009安徽理科)点在椭圆
上,直线与直线
垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为. (I)证明: 点是椭圆与直线的唯一交点;
(II)证明:构成等比数列。

练习
1(2012大纲理科)已知抛物线C:y=(x+1)2与圆
(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
2( 2013广东卷)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中
为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.
3(2012福建).如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.。

相关文档
最新文档