信号与系统考试试题及答案
信号及系统期末考试试题及答案
信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统复习试题(含答案)
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为
信号与系统期末考试复习题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统复习题含答案完整版
信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。
信号与系统试题及答案(大学期末考试题)
信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统试题库史上最全内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
《信号与系统》考试试题及参考答案
《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_B _ωωϕωωωδωωωωωωωω-6)( )1()(H )( )()(H )( 3)(H )( )1()1()(H )( 33=-===--=-且;;;D ej C e j B e j A j j j U答:(B)2. 下列哪一项是理想低通滤波器的系统函数_C _⎩⎨⎧<>=⎩⎨⎧><==--=-20 020 )(H )( 20 020 )(H )( 3)(H )( )1()1()(H )(3 33ωωωωωωωωωωωωωωj j j j e j D e j C e j B e j A ;;;U答:(C )3. 对于一个LTI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+5f 2(t)对应响应是_tt U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U e t __。
4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2↑=n f ,则=+)2()1(21f f _10_,用)(n δ表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n f δδδδδ________________________。
5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{00*=_{0,6,15,11,10}0__ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__0_;)(∞f =_2/5__。
信号与系统考试题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
(完整版)信号与系统试题附答案
信科0801《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度(C ) A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( D )15、已知信号)(tf如下图所示,其表达式是(B )16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是( D )A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( B )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()2>-]Re[,651)(系统的系统函数LTI .已知202s s s s s H +++= 因果不稳定系统 非因果稳定系统C 、因果稳定系统 非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( B )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( A )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号 23. 积分⎰∞∞-dt t t f )()(δ的结果为( A )A )0(fB )(t f C.)()(t t f δD.)()0(t f δ 24. 卷积)()()(t t f t δδ**的结果为( C )A.)(t δB.)2(t δC. )(t fD.)2(t f 25. 零输入响应是( B )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-e 3e 、3-e、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( C )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( A )A 。
信号与系统试题库史上最全(内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
信号与系统试题库及答案
信号与系统试题库及答案信号与系统试题库及答案,共22页1.下列信号的分类办法不正确的是(A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是(D ):A 、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B 、两个周期信号x(t),y(t)的周期分离为2和,则其和信号x(t)+y(t) 是周期信号。
C 、两个周期信号x(t),y(t)的周期分离为2和,其和信号x(t)+y(t)是周期信号。
D 、两个周期信号x(t),y(t)的周期分离为2和3,其和信号x(t)+y(t)是周期信号。
3.下列说法不正确的是(D )。
A 、普通周期信号为功率信号。
B 、时限信号(仅在有限时光区间不为零的非周期信号)为能量信号。
C 、ε(t)是功率信号;D 、et 为能量信号;一、填空(每空1分,共15分)1、离散信号基本运算有;;;四种。
2、拉氏变换中初值定理、终值定理分离表示为)(lim )0(S SF f S ∞→=,;)(l i m )(0S SF f S →=∞ 。
3、延续系统的分析办法有时域分析法;频域分析法和复频域分析法。
这三种分析办法,其输入与输出表达式分离是y(t)=h(t)*f(t); Y(jω)= H(jω)?. F(jω); Y(s)= H(s)?. F(s)集美高校2022—2022学年第2学期信号与系统试卷及答案一、推断题(共9分,每题1.5分,对的打“V ”,错的打“X ”)。
1、一个信号的脉冲持续时光越小,它的频带宽度也就越小。
(× )2、一个信号的脉冲幅度数值越大,它的频谱幅度也就越大。
(V )3、一个能量有限的延续时光信号,它一定是属于瞬态信号。
(V )4、一个功率有限的延续时光信号,它一定是属于周期信号。
(× )5、一个因果稳定的延续时光系统,它的零极点必定都位于S 左半平面。
信号与系统(含答案)试卷
课程测试试题(A 卷)
一、选择题 (本大题共 10 小题,20 分, 每题 2 分) 1.积分 ∫ (t − 3)δ (−2t + 4)dt 等于
−5 5
(A) -1 (B) -0.5 (C) 0 (D) 0.5 2.已知实信号 f (t ) 的傅里叶变换 F (= jω ) R(ω ) + jx(ω ) ,信号 1 ) (t ) [ f (t ) + f (−t )] 的傅里叶变换 Y ( jω ) 等于( y= 2 (A) R(ω ) (B) 2 R(ω ) (C) 2 R(2ω ) (D)
is
1Ω
iR
uc -
课程测试试题答卷()
一、
(1) C (9)D
选择题 (本大题共 10 小题,20 分, 每题 2 分)
(2) B (10)D (3) B (4) D (5) B (6) A (7) D (8) A
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 1.
g (t )
(B)
8.单边拉氏变换 F ( s ) =
e− s 的原函数为 s2 + 1 (A) sin(t − 1)u (t − 1) (B) sin(t − 1)u (t ) (C) cos(t − 1)u (t − 1) (D) cos(t − 1)u (t )
9. 为使 LT1 连续系统是稳定的,其系统函数 H ( s ) 的极点必须在 s 平面的 (A) 单位圆内 (B) 单位圆外 (C) 左半平面 (D) 右半平面 10.积分 ∫ (t 2 + 1)δ (t − 2)d (t ) 的值为
1 (1 − e −2t )δ (t ) ,则其冲激响应 h(t ) = 2
信号与系统期末考试题库及答案
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。
下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。
下列说法不正确的是( D ). A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4。
将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。
下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
(完整版)信号与系统复习试题(含答案)
电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间 120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t) (8分) (3).f(k)=1,k=0,1,2,3,h(k)=1,k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y ’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与系统考试题及答案
信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。
傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。
2. 解释什么是系统的冲激响应,并举例说明。
答案:系统的冲激响应是指系统对单位冲激信号的响应。
它是系统特性的一种表征,可以用来分析系统对其他信号的响应。
例如,一个简单的RC电路的冲激响应是一个指数衰减函数。
三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。
答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。
信号与系统期末考试试题有答案的
信号与系统期末考试试题一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的1、 卷积f 1k+5f 2k-3 等于 ;Af 1kf 2k Bf 1kf 2k-8Cf 1kf 2k+8Df 1k+3f 2k-3 2、 积分dt t t ⎰∞∞--+)21()2(δ等于 ;A1.25B2.5C3D53、 序列fk=-u-k 的z 变换等于 ;A1-z z B-1-z zC 11-zD 11--z4、 若yt=ftht,则f2th2t 等于 ;A)2(41t y B )2(21t y C )4(41t y D )4(21t y 5、 已知一个线性时不变系统的阶跃相应gt=2e -2t ut+)(t δ,当输入ft=3e —t ut 时,系统的零状态响应y f t等于A-9e -t +12e -2t ut B3-9e -t +12e -2t utC )(t δ+-6e -t +8e -2t ut D3)(t δ +-9e -t +12e -2t ut6、 连续周期信号的频谱具有(A ) 连续性、周期性 B 连续性、收敛性 C 离散性、周期性 D 离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1B2C3D48、序列和()∑∞-∞=-k k 1δ等于A1 B ∞ C()1-k u D ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于二、填空题共9小题,每空3分,共30分1、卷积和0.5k+1uk+1)1(k -δ=________________________2、单边z 变换Fz=12-z z的原序列fk=______________________ 3、已知函数ft 的单边拉普拉斯变换Fs=1+s s,则函数yt=3e -2t ·f3t 的单边拉普拉斯变换Ys=_________________________4、频谱函数Fj ω=2u1-ω的傅里叶逆变换ft=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数ft=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应hk=_______________________7、已知信号ft 的单边拉氏变换是Fs,则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Ys=______________________________8、描述某连续系统方程为该系统的冲激响应ht= 9、写出拉氏变换的结果()=t u 66,=k t 22三、8分四、10分如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求1 ()0F 2()⎰∞∞-dw jw F 六、10分某LTI 系统的系统函数()1222++=s s s s H ,,激励()(),t u t f =求该系统的完全响应;信号与系统期末考试参考答案一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的 1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A二、填空题共9小题,每空3分,共30分 1、()()k u k5.0 2、)()5.0(1k u k + 3、52++s s 4、()tj e t jt πδ+5、)()()(t u e t u t t -++δ6、()[]()k u k 15.01+-+ 7、 ()s F s e s2-8、()()t u t e t 2cos - 9、s66, 22k/S k+1四、10分 解:12六、10分 解:由)(S H 得微分方程为将SS F y y 1)(),0(),0(='--代入上式得 二、写出下列系统框图的系统方程,并求其冲激响应; 15分 解:x ”t + 4x ’t+3xt = ft yt = 4x ’t + xt则:y ”t + 4y ’t+ 3yt = 4f ’t + ft根据ht 的定义 有h ”t + 4h ’t + 3ht = δt h’0- = h0- = 0 先求h’0+和h0+;因方程右端有δt,故利用系数平衡法;h ”t 中含δt,h’t 含εt,h’0+≠h’0-,ht 在t=0连续,即h0+=h0-;积分得 h ’0+ - h ’0- + 4h0+ - h0- +3 = 1 考虑h0+= h0-,由上式可得 h0+=h0-=0h’0+ =1 + h ’0- = 1对t>0时,有 h ”t + 4h ’t + 3ht = 0 故系统的冲激响应为一齐次解;微分方程的特征根为-1,-3;故系统的冲激响应为 ht=C1e -t + C2e -3t εt代入初始条件求得C1=0.5,C2=-0.5, 所以 ht=0.5 e -t– 0.5e -3tεt三、描述某系统的微分方程为 y ”t + 4y ’t + 3yt = ft 求当ft = 2e -2t ,t ≥0;y0=2,y ’0= -1时的解; 15分解: 1 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2;齐次解为y h t = C 1e -t + C 2e-3t当ft = 2e –2 t时,其特解可设为y p t = Pe -2t将其代入微分方程得P4e -2t + 4–2 Pe -2t + 3Pe -t = 2e -2t解得 P=2于是特解为 y p t =2e -t全解为: yt = y h t + y p t = C 1e -t + C 2e -3t + 2e -2t其中 待定常数C 1,C 2由初始条件确定; y0 = C 1+C 2+ 2 = 2,y ’0 = –2C 1 –3C 2 –1= –1解得 C 1 = 1.5 ,C 2 = –1.5最后得全解 yt = 1.5e – t – 1.5e – 3t +2 e –2 t, t ≥0三、描述某系统的微分方程为 y ”t + 5y ’t + 6yt = ft 求当ft = 2e -t ,t ≥0;y0=2,y ’0= -1时的解; 15分解: 1 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3;齐次解为y h t = C 1e -2t + C 2e-3t当ft = 2e – t时,其特解可设为y p t = Pe -t将其代入微分方程得Pe -t + 5– Pe -t + 6Pe -t = 2e -t解得 P=1于是特解为 y p t = e -t全解为: yt = y h t + y p t = C 1e -2t + C 2e -3t + e -t其中 待定常数C 1,C 2由初始条件确定; y0 = C 1+C 2+ 1 = 2,y ’0 = –2C 1 –3C 2 –1= –1解得 C 1 = 3 ,C 2 = – 2最后得全解 yt = 3e – 2t – 2e – 3t + e – t, t ≥012分六、有一幅度为1,脉冲宽度为2ms 的周期矩形脉冲,其周期为8ms,如图所示,求频谱并画出频谱图频谱图;10分 解:付里叶变换为Fn 为实数,可直接画成一个频谱图;)e e 1(e 2ss s s s-----试求该周期信号的基波周期T ,基波角频率Ω,画出它的单边频谱图,并求ft 的平均功率; 解 首先应用三角公式改写ft 的表达式,即 显然1是该信号的直流分量;的周期T1 = 8 的周期T2 = 6所以ft 的周期T = 24,基波角频率Ω=2π/T = π/12,根据帕斯瓦尔等式,其功率为 P=是ft 的π/4/π/12 =3次谐波分量; 是ft 的π/3/π/12 =4次谐波分量; 画出ft 的单边振幅频谱图、相位频谱图如图二、计算题共15分已知信号)()(t t t f ε=1、分别画出01)(t t t f -=、)()()(02t t t t f ε-=、)()(03t t t t f -=ε和)()()(004t t t t t f --=ε的波形,其中 00>t ;5分2、指出)(1t f 、)(2t f 、)(3t f 和)(4t f 这4个信号中,哪个是信号)(t f 的延时0t 后的波形;并指出哪些信号的拉普拉斯变换表达式一样;4分3、求)(2t f 和)(4t f 分别对应的拉普拉斯变换)(2s F 和)(4s F ;6分1、4分2、)(4t f 信号)(t f 的延时0t 后的波形;2分3、s t ss F s F 02121)()(-==2分 0241)(st e ss F -=;2分 三、计算题共10分如下图所示的周期为π2秒、幅值为1伏的方波)(t u s 作用于RL 电路,已知Ω=1R ,H L 1=;1、 写出以回路电路)(t i 为输出的电路的微分方程;2、 求出电流)(t i 的前3次谐波; 解“1、⎪⎩⎪⎨⎧<<-<<-<<=ππππππt t t t u s 2,2,022,1)(;2分)5cos(52)3cos(32)cos(221)cos()2sin(22151t t t nt n n n πππππ+-+=+=∑= 3分2、)()()(t u t i t i s =+'2分3、)3sin(51)3cos(151)sin(1)cos(121)(t t t t t i ππππ--++=3分 四、计算题共10分已知有一个信号处理系统,输入信号)(t f 的最高频率为m m f ωπ2=,抽样信号)(t s 为幅值为1,脉宽为τ,周期为S T τ>S T 的矩形脉冲序列,经过抽样后的信号为)(t f S ,抽样信号经过一个理想低通滤波器后的输出信号为)(t y ;)(t f 和)(t s 的波形分别如图所示;1、试画出采样信号)(t f S 的波形;4分2、若要使系统的输出)(t y 不失真地还原输入信号)(t f ,问该理想滤波器的截止频率c ω和抽样信号)(t s 的频率s f ,分别应该满足什么条件 6分解:1、4分2、理想滤波器的截止频率m c ωω=,抽样信号)(t s 的频率m s f f 2≥;6分五、计算题共15分某LTI 系统的微分方程为:)(6)(2)(6)(5)(t f t f t y t y t y +'=+'+'';已知)()(t t f ε=,2)0(=-y ,1)0(='-y ;求分别求出系统的零输入响应、零状态响应和全响应)(t y zi 、)(t y zs 和)(t y ;解:1、se s dt e dt e t s F st st st1|1)()(000=-===∞-∞-∞-⎰⎰ε;2分 2、)(6)0(2)(2)(6)0(5)(5)0()()(2s F f s sF s Y y s sY y s sy s Y s +-=+-+'-----3分ss s s s s s s Y zi 1653265112)(22⋅+++++++=5分)()561()(32t e e t y t t ε---+=5分。
信号与系统考试题及答案
信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
信号与系统考试题及答案
信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。
信号是信息的传递载体,可以是电流、电压、声音、图像等形式。
系统是对信号进行处理、传输和控制的装置或网络。
信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。
第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。
按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。
第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。
线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。
时不变表示系统的性质不随时间变化而改变。
线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。
第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。
当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。
通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。
冲激响应还可以用于系统的卷积运算和信号的滤波等应用。
第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。
常用的采样方法包括周期采样和非周期采样。
周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。
采样频率和采样定理是采样过程中需要考虑的重要因素。
第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。
通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名教研室主任签名符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知,求。
2. 已知,求。
3. 信号通过系统不失真的条件为系统函数。
4. 若最高角频率为,则对取样的最大间隔是。
5. 信号的平均功率为。
6. 已知一系统的输入输出关系为,试判断该系统是否为线性时不变系统。
故系统为线性时变系统。
7. 已知信号的拉式变换为,求该信号的傅立叶变换=。
故傅立叶变换不存在。
8. 已知一离散时间系统的系统函数,判断该系统是否稳定。
故系统不稳定。
9. 。
310. 已知一信号频谱可写为是一实偶函数,试问有何种对称性。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应与激励信号的波形如图A-1所示,试由时域求解该系统的零状态响应,画出的波形。
图 A-11. 系统的零状态响应,其波形如图A-7所示。
图 A-72. 在图A-2所示的系统中,已知,求该系统的单位脉冲响应。
图 A-22.3. 周期信号的双边频谱如图A-3所示,写出的三阶函数表示式。
图 A-33. 写出周期信号指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为4. 已知信号通过一线性时不变系统的响应如图A-4所示,试求单位阶跃信号通过该系统的响应并画出其波形。
图 A-44. 因为故利用线性时不变特性可求出通过该系统的响应为波形如图A-8所示。
图 A-85.已知的频谱函数,试求。
5. ,因为,由对称性可得:,因此,有三、综合计算题(共20分,每小题10分)1. 一线性时不变因果连续时间系统的微分方程描述为已知由s域求解:(1)零输入响应,零状态响应,完全响应;(2)系统函数,单位冲激响应并判断系统是否稳定;(3)画出系统的直接型模拟框图。
解:1. (1)对微分方程两边做单边拉斯变换得整理后可得零输入响应的s域表达式为进行拉斯反变换可得零状态响应的s域表达式为进行拉斯反变换可得完全响应为(2)根据系统函数的定义,可得进行拉斯反变换即得由于系统函数的极点为-2、-5,在左半s平面,故系统稳定。
(3)将系统函数改写为由此可画出系统的直接型模拟框图,如图A-9所示2. 一线性时不变因果离散时间系统的差分方程描述为已知由z域求解:(1)零输入响应,零状态响应,完全响应;(2)系统函数,单位脉冲响应。
(3) 若,重求(1)、(2)。
2. (1)对差分方程两边进行z变换得整理后可得进行z变换可得系统零输入响应为零状态响应的z域表示式为进行z反变换可得系统零状态响应为系统的完全响应为(2)根据系统函数的定义,可得进行z反变换即得(3) 若,则系统的零输入响应、单位脉冲响应和系统函数均不变,根据时不变特性,可得系统零状态响应为完全响应为长沙理工大学拟题纸课程编号 2 拟题教研室(或老师)签名教研室主任签名符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知某系统的输入输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、非线性)(时变、非时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最高角频率为,则对信号进行时域取样,其频谱不混迭的最大取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅立叶变换=。
不存在8. 已知一离散时间系统的系统函数,判断该系统是否稳定。
不稳定9. 。
310. 已知一信号频谱可写为是一实偶函数,试问有何种对称性。
因此信号是关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知一连续时间系统的单位冲激响应,输入信号时,试求该系统的稳态响应。
二、解:1. 系统的频响特性为利用余弦信号作用在系统上,其零状态响应的特点,即可以求出信号,作用在系统上的稳态响应为2. 已知信号如图A-1所示,试画出波形。
图 A-12. ,根据信号变换前后的端点函数值不变的原理,有变换前信号的端点坐标为,利用上式可以计算出变换后信号的端点坐标为由此可画出波形,如图A-8所示。
3. 已知信号如图A-2所示,计算其频谱密度函数。
图A-23. 信号可以分解为图A-10所示的两个信号与之和,其中。
由于根据时域倒置定理:和时移性质,有故利用傅立叶变换的线性特性可得图A-104.某离散系统的单位脉冲响应,求描述该系统的差分方程。
4. 对单位脉冲响应进行z变换可得到系统函数为由系统函数的定义可以得到差分方程的z域表示式为进行z反变换即得差分方程为5. 已知一离散时间系统的模拟框图如图A-3所示,写出该系统状态方程和输出方程。
图 A-35. 根据图A-5中标出的状态变量,围绕输入端的加法器可以列出状态方程为围绕输出端的加法器可以列出输出方程为写成矩阵形式为三、综合计算题(共20分,每小题10分)1. 已知描述某线性时不变因果离散时间系统的差分方程为在z域求解:(1) 系统的单位脉冲响应及系统函数;(2) 系统的零输入响应;(3) 系统的零状态响应;(4) 系统的完全响应,暂态响应,稳态响应;(5) 该系统是否稳定?. 对差分方程两边进行z变换得整理后可得(1) 根据系统函数的定义,可得进行z反变换即得(2) 零输入响应的z域表达式为取z反变换可得系统零输入响应为(3) 零状态响应的z域表达式为取z反变换可得系统零状态响应为(4) 系统完全响应从完全响应中可以看出,随着k的增加而趋于零,故为暂态响应,不随着k的增加而趋于零,故为稳态响应。
(5) 由于系统的极点为均在单位圆内,故系统稳定。
2. 试分析图A-4所示系统中B、C、D、E和F各点频谱并画出频谱图。
已知的频谱如图A-6,。
B、C、D、E和F各点频谱分别为长沙理工大学拟题纸课程编号 3 拟题教研室(或老师)签名教研室主任签名符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
2. 若的最高角频率为,则对信号进行时域取样,其频谱不混迭的最大取样间隔。
为3.4. 计算=。
5. 已知某系统的输入输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、非线性)(时变、非时变)系统。
线性时变6. 。
07. 已知某连续信号的单边拉式变换为求其反变换=。
8. 已知计算其傅立叶变换=。
9. 已知某离散信号的单边z变换为,求其反变换=。
10.某理想低通滤波器的频率特性为,计算其时域特性=。
二、计算题(共50分,每小题10分)1. 已知的频谱函数,试求。
1. ,因为,由对称性可得:,因此,有2. 已知某系统如图A-1所示,求系统的各单位冲激响应。
其中图 A-12.3. 已知信号和如图A-2所示,画出和的卷积的波形。
图 A-23. 和的卷积的波形如图A-9所示。
图A-94.已知某连续时间系统的系统函数,画出其直接型系统模拟框图,并写出该系统状态方程的输出方程。
4. 将系统函数改写为由此可画出系统的直接型模拟框图,如图A-11所示。
选择积分器的输出作为状态变量,围绕模拟框图输入端的加法器可得到状态方程为图A-11,围绕模拟框图输出端的加法器可得到输出方程为5. 试证明:用周期信号对连续时间带限信号(最高角频率为)取样,如图A-3所示,只要取样间隔,仍可以从取样信号中恢复原信号。
图A-35. 利用周期信号频谱和非周期信号频谱的关系可以求出的傅立叶系数为由此可以写出周期信号的傅立叶级数展开式对其进行傅立叶变换即得的频谱密度取样信号利用傅立叶变换的乘积特性可得从可以看出,当时,频谱不混迭,即仍可从取样信号中恢复原信号。
三、综合计算题(共20分,每小题10分)1. 已知描述某线性时不变因果连续时间系统的微分方程为已知在s域求解:(1) 系统的单位脉冲响应及系统函数;(2) 系统的零输入响应(3) 系统的零状态响应(4) 若,重求(1) 、(2)、 (3)。
解:1. 对微分方程两边做单边拉斯变换得整理后可得(1)根据系统函数的定义,可得进行拉斯反变换即得(2) 零输入响应的s域表达式为取拉斯反变换即得(3) 零状态响应的s域表达式为取拉斯反变换即得(4) 若,则系统单位冲激响应h(t)、系统函数和零输入响应均不变,根据时不变特性,可得系统零状态响应为2. 在图A-4 所示系统中,已知输入信号的频谱,试分析系统中A、B、C、D、E各点频谱并画出频谱图,求出与的关系。
图A-42. A、B、C、D和E各点频谱分别为A、B、C、D和E各点频谱图如图A-12所示。
将与比较可得即。
长沙理工大学拟题纸课程编号 4 拟题教研室(或老师)签名教研室主任签名符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 。
1.2. 若离散时间系统的单位脉冲响应,则系统在激励下的零状态响应为。
3. 抽取器的输入输出关系为,试判断该系统特性(线性、时不变)。
线性时变4. 若,则其微分=。
5. 连续信号的频谱=。
6. 的频谱=。
7. 已知一离散时间LTI系统的单位阶跃响应,计算该系统单位脉冲响应=。
8. 若,则的平均功率P=。
9.若最高角频率为,则对取样,其频谱不混迭的最大间隔是。
10. 若离散系统的单位脉冲响应,则描述该系统的差分方程为。
二、计算题(共50分,每小题10分)1. 已知的波形如图A-1所示,令。
图A-1(1) 用和表示;(2) 画出的波形。
1、(1)(2) 将改成,先压缩,再翻转,最后左移2,即得,如图A-8所示。
2. 已知某线性时不变(LTI)离散时间系统,当输入为时,系统地零状态响应为,试计算输入为时,系统的零状态响应。
2. 已知某线性时不变(LTI)离散时间系统,当输入为时,系统地零状态响应为,试计算输入为时,系统的零状态响应。
3. 已知信号的频谱如图A-2所示,求该信号的时域表示式。
图A-2因为系统函数为因为,由傅立叶变换的对称性可得:即由调制性质,有由时移性质,有因此4. 已知一连续时间系统的频响特性如图A-3所示,输入信号,试求该系统的稳态响应图A-34. 利用余弦信号作用在系统的零状态响应的特点,即在本题中,,因此由上式可以求出信号作用在系统上的稳态响应为,5. 已知信号通过一LTI系统的零状态响应为,试求图A-4所示信号通过该系统的响应并画出其波形。