凸轮机构的应用和分类1

合集下载

凸轮机构的类型应及其应用特点

凸轮机构的类型应及其应用特点

凸轮机构的类型应及其应用特点凸轮机构是一种机械传动机构,通过凸轮对其它零部件施加规定的运动规律,实现机械装置的工作功能。

凸轮机构的类型较为多样,根据凸轮的形状和安装方式的不同,可以分为以下几类:平面滚动凸轮机构、空间滚动凸轮机构、球面滚动凸轮机构、曲面专门凸轮机构等等。

平面滚动凸轮机构是指凸轮在平面内做回转运动,是最常见也是应用最广泛的一类凸轮机构。

其应用特点如下:1.运动规律灵活多样:凸轮在回转运动过程中,可以根据需要设定不同的运动规律,如简谐运动、匀速运动、非对称运动等等。

2.传动精度高:凸轮机构的传动比可以通过凸轮的轮廓形状和驱动零件的尺寸比例进行调整,传动精度较高。

3.传动效率较高:由于凸轮和从动零件之间的接触面积较大,传动效率较高。

4.运动平稳性好:凸轮机构的运动平稳性较好,能够满足一些对运动平稳性要求较高的场合。

空间滚动凸轮机构是指凸轮在三维空间内做回转运动,也称为空间凸轮机构。

其应用特点如下:1.自由度更高:与平面滚动凸轮机构相比,空间凸轮机构的自由度更高,可以实现更复杂的运动模式。

2.多轨迹运动:凸轮的轨迹可以是任意的,可以实现多轨迹运动,满足一些特殊要求。

3.结构复杂:空间凸轮机构的结构较为复杂,制造和安装难度较大。

4.应用范围广泛:空间凸轮机构在机械装置、汽车制造、航空航天等领域有着广泛的应用。

球面滚动凸轮机构是指凸轮在球面上做回转运动,其特点如下:1.运动平稳:球面滚动凸轮机构的运动过程中,能够保持较好的平稳性,满足一些高速运动的需求。

2.自由度较高:球面滚动凸轮机构的自由度较高,可以实现更复杂的运动模式,满足一些特殊要求。

3.结构复杂:球面滚动凸轮机构的结构较为复杂,对制造和安装的要求较高。

4.应用范围广泛:球面滚动凸轮机构广泛应用于机械装置、船舶、航空航天等领域。

曲面专门凸轮机构是指凸轮的轮廓曲面为曲线,其特点如下:1.运动规律特殊:曲面专门凸轮机构的凸轮轮廓曲线可以是任意的,可以满足一些特殊运动规律的要求。

凸轮机构的应用及分类推杆的运动规律凸轮轮

凸轮机构的应用及分类推杆的运动规律凸轮轮
轮廓曲线的设计了。相对运动原理:对整个机构施加一个 凸轮廓线设计的公方法共:运作动图时法,和各解析构法件间的相对运动保 1.凸轮廓线设计持的不基变本。原理
无论是采用作图法还是解析法设计凸轮廓线,所依据的基本 原理都是反转法原理。
例 偏置直动尖顶推杆盘形凸轮机构 (1)凸轮的轮廓曲线与推杆的相对运动关系
一、凸轮机构的基本名词术语
基圆 基圆半径 r0 推程 推程运动角 δ0 远休 远休止角 δ01 回程 回程运动角 δ0′ 近休 近休止角 δ02 行程 h
尖顶直动推杆的位移曲线
二、推杆常用的运动规律
1、等速运动规律 2. 等加速等减速运动规律 3. 余弦加速度运动规律 4. 正弦加速度运动规律 5. 3-4-5多项式运动规律
(2) 空间凸轮机构
圆柱凸轮机构在 机械加工中的应用
凸轮机构在其它机器中的应用
2、按推杆形状分类
• (1)尖顶推杆: • 尖端能与任意复杂凸轮轮廓保持接触,因而能实现任意预期的运动规
律。 • 尖顶与凸轮呈点接触,易磨损,用于受力不大的场合。 • (2)滚子推杆: • 它改善了从动件与凸轮轮廓间的接触条件,耐磨损,可承受较大载荷,
凸轮机构基本尺寸的确定
为保证凸轮机构能正常运转,应使其最大压力角αmax小于临
界压力角αc, 增大l, 减小b,可以使αc值提高。
生产实际中,为了提高机构的效率,改善其受力情况, 通常 规定:凸轮机构的最大压力角αmax应小于某一许用压力角[α], 即
αmax<[α]
([α]<<αc)
许用压力角[α]的一般取值为
• (2) 空间凸轮机构:两活动构件之间的相对运动 为空间运动的凸轮机构,
(1) 平面凸轮机构

凸轮机构

凸轮机构

B6
4. 偏心尖顶直动从动件盘形凸轮轮廓曲线的设计
第四节凸轮机构基本尺寸的确定
凸轮工作轮廓必须满足以下要求: (1)保证从动件能实现预定的运动规律
(2)传力性能良好,不能自锁
(3)结构紧凑
(4)满足强度和安装等要求 为此,设计时应注意处理好
1.滚子半径的选择 2.凸轮机构的压力角 3.凸轮基圆半径的确定 4.凸轮机构的材料
(a)推程 (b)回程
2.等加速等减速运动规律
是指凸轮以等角速度转动时,从动件在一个行程中,前半行程作 等加速运动,后半行程作等减速运动的运动规律。 运动线图如图所示。其位移曲线为两段光滑相连开口相反的抛物 线,速度曲线为斜直线,加速度曲线为平直线。推程位移线图作图 方法演示。
由图可见,在推(回) 程的始末点和前、后半程 的交接处,加速度有限的 突变,因而惯性力也产生 有限的突变,由此将对机 构造成有限大小的冲击, 这种冲击称为“柔性冲击” 或“软冲”。因此这种运 动规律只适用于中速、中 载的场合。
3.按锁合方式分:力锁合、形锁合
锁合是指从动件与凸轮之间始终保持的高副接触的装置。
(1)力锁合凸轮机构
依靠重力、弹 力或其他外力 来锁合
(2)形锁合凸轮机构
依靠凸轮和从 动件几何形状 来保证锁合
4.按从动件运动方式分:
从动件导路是否通过凸轮回转中心
对心直动从动件凸轮机构 偏置移动从动件凸轮机构
直动从动件凸轮机构 摆动从动件凸轮机构
rT<0.8ρmin ρmin>1~5mm rT =(0.1~0.5)rb
二、凸轮机构的压力角
1.压力角:不计摩擦时,凸轮对从 动件的作用力(法向力)与从动件 上受力点速度方向所夹的锐角。 该力可分解为两个分力 :

最新凸轮机构的应用实例

最新凸轮机构的应用实例
•凸轮机构的应用实例
罐头盒封盖机构
右图所示的罐头盒封盖
机构,是一个圆柱凸轮
机构凸轮机构。
原动件1连续等速转动,
通过带有凹槽的固定凸
轮3的高副导引从动件
2上的端点C沿预期的
轨迹——接合缝S运动 ,
从而完成罐头盒的封
盖任务。
•凸轮机构的应用实例
在右图所示的巧克 力输送凸轮机构中 (圆柱凸轮机构) ,当带有凹槽的圆 柱凸轮1连续等速转 动时,通过嵌于其 槽中的滚子驱动从 动件2往复移动,凸 轮1每转动一周,从 动件2即从喂料器中 推出一块巧克力并 将其送至待包装位 置。
• (3)平底从动件:平底从动件与凸轮轮廓接触为一平 面,显然它只能与全部外凸的凸轮轮廓作用。其优 点是:压力角小,效率高,润滑好,故常用于高速 运动场合。
•凸轮机构的应用实例
根据运动形式的不同
• 以上三种从动件还可分为: • 直动从动件 • 摆动从动件 • 作平面复杂运动从动件
•凸轮机构的应用实例
•凸轮机构的应用实例
Байду номын сангаас
•凸轮机构的应用实例
3)圆柱凸 轮
•凸轮机构的应用实例
2、按从动件运动副元素形状分类
• (1)尖顶从动件:尖顶能与任意复杂凸轮轮廓保持接 触,因而能实现任意预期的运动规律。尖顶与凸轮 呈点接触,易磨损,故只宜用于受力不大的场合。
• (2)滚子从动件:为克服尖顶从动件的缺点,在尖顶 处安装一个滚子,即成为滚子从动件。它改善了从 动件与凸轮轮廓间的接触条件,耐磨损,可承受较 大载荷,故在工程实际中应用最为广泛。
•凸轮机构的应用实例
• 绕线轴3连续快速转 动,经蜗杆传动带 动凸轮1缓慢转动, 通过凸轮高副驱动 从动件2往复摆动, 从而使线均匀地缠 绕在绕线轴上。

凸轮机构的作用

凸轮机构的作用

凸轮机构的作用凸轮机构是一种常见的机械传动装置,它主要由凸轮、摆杆、滑块等部件组成。

凸轮机构的作用是将旋转运动转化为直线运动或者将直线运动转化为旋转运动,从而实现机械设备的运动控制和动力传递。

下面将从凸轮机构的原理、分类、应用等方面展开介绍。

一、凸轮机构的原理凸轮机构的原理是利用凸轮的不规则形状,使得凸轮在旋转时,摆杆或滑块的运动轨迹呈现出规律性的变化,从而实现机械设备的运动控制。

凸轮的形状可以根据需要进行设计,常见的凸轮形状有圆形、椭圆形、心形、三角形等。

不同形状的凸轮可以实现不同的运动轨迹,从而满足不同的机械设备的运动要求。

二、凸轮机构的分类根据凸轮的形状和运动方式,凸轮机构可以分为以下几类:1. 圆柱凸轮机构:凸轮为圆柱形,摆杆或滑块在圆柱面上运动,常用于机床、自动化生产线等设备中。

2. 椭圆凸轮机构:凸轮为椭圆形,摆杆或滑块在椭圆面上运动,常用于汽车发动机、船舶等设备中。

3. 心形凸轮机构:凸轮为心形,摆杆或滑块在心形面上运动,常用于煤矿机械、冶金设备等设备中。

4. 三角凸轮机构:凸轮为三角形,摆杆或滑块在三角形面上运动,常用于纺织机械、印刷机械等设备中。

三、凸轮机构的应用凸轮机构广泛应用于各种机械设备中,主要用于实现机械设备的运动控制和动力传递。

以下是凸轮机构的一些应用:1. 机床:凸轮机构常用于机床中,用于控制刀具的进给、退刀、升降等运动。

2. 汽车发动机:汽车发动机中的凸轮机构用于控制气门的开关,从而实现汽车的正常运转。

3. 纺织机械:纺织机械中的凸轮机构用于控制纱线的张力、卷绕等运动。

4. 冶金设备:冶金设备中的凸轮机构用于控制钢水的倾倒、转移等运动。

总之,凸轮机构是一种重要的机械传动装置,它可以实现机械设备的运动控制和动力传递,广泛应用于各种机械设备中。

在实际应用中,需要根据具体的要求选择合适的凸轮形状和运动方式,从而实现最佳的运动效果。

凸轮机构的应用和分类

凸轮机构的应用和分类

凸轮机构的寿命与维护
凸轮机构的寿命与运行条件、材料选择和润滑方式等有关,定期维护和保养可以延长凸轮机构的使用寿 命。
凸轮机构的保养和保养周期
凸轮机构的保养包括润滑、清洁和检查等内容,保养周期根据使用情况和负荷要求进行合理调整。
凸轮机构故障分析与排除
凸轮机构故障的原因多种多样,需要通过仔细分析和维修措施进行故障排除,以确保机械系统的正常运 行。
通过凸轮和滑块的协同运动,实现直线运动 和简单的机构功能。
摆线凸轮机构
通过凸轮的摆线运动,实现平滑且复杂的运 动轨迹和机构功能。
在IC发动机中的应用
凸轮机构在IC发动机中起到控制气门开闭时机和时序的重要作用,影响发动 机的动力性能、燃油经济性和排放控制等方面。
在汽车传动系统中的应用
凸轮机构在汽车传动系统中被广泛应用于离合器、变速器和传动轴等部位,实现动力输出和车速调节等 功能。
凸轮机构的应用和分类
凸轮机构是一种广泛应用于机械系统中的机构,通过凸轮和可动关节的协同 运动,实现了多种复杂的动作和功能。本文将介绍凸轮机构的应用和分类。
什么是凸轮机构
凸轮机构是一种由凸轮和可动关节组成的机械系统,通过凸轮的旋转运动, 使其上的可动关节产生规定的运动轨迹,从而实现特定的功能和动作。
凸轮机构的技术发展趋势
凸轮机构在现代工程中具有广泛的应用前景,随着技术的发展,凸轮机构将 更加智能化、高效化和可持续化。
注重人性化设计的凸轮机构
在凸轮机构的设计中,需注重人机工程学和人性化设计原理,提高机器操作人员的舒适度和安全性。
生产自动化中凸轮机构的应用
凸轮机构在生产自动化领域中的应用广泛,用于自动化生产线上的工件定位、 传送和操作等。
凸轮机构现代化设计思路

凸轮机构的应用及分类

凸轮机构的应用及分类

工作原理
2
车轮构成,常用于汽车传动系统。
凸轮的旋转驱动车轮,通过轮胎
与地面的摩擦力传递动力。
3
应用举例
车轮轮机构广泛应用于汽车传动 系统、自行车传动系统等领域。
曲柄摇杆机构
1 定义
曲柄摇杆机构由曲柄 和与之配合的摇杆构 成,常用于内燃机。
2 工作原理
3 应用举例
曲柄的旋转驱动摇杆, 通过连杆将旋转运动 转化为往复运动。
工作原理
凸轮的运动将动力转化 为直线或摆动运动,通 过导轨控制运动轨迹。
应用举例
曲线轮机构广泛应用于 机床、自动装配线、升 降设备等领域。
曲柄摇杆机构广泛应 用于内燃机、发电机 等领域。
双摇杆机构
定义
双摇杆机构由两个独立的摇 杆组成,常用于机械加工设 备。
工作原理
两个独立的摇杆分别由凸轮 驱动,实现不同的运动路径 和速度。
应用举例
双摇杆机构广泛应用于数控 机床、切割设备等领域。
曲线轮机构
定义
曲线轮机构由凸轮的运 动与曲线配合的导轨构 成,常用于机械驱动系 统。
凸轮机构的应用及分类
凸轮机构是一种广泛应用于机械领域的重要装置,它能够将旋转运动转化为 直线或摆动运动。本文将介绍凸轮机构的应用及分类,帮助您更好地理解和 应用这一机械原理。
直杆轮机构
1
定义
直杆轮机构由转动的凸轮和与之配合的直杆构成,常用于工程机械。
2
工作原理
凸轮转动时,直杆按一定轨迹往复运动,实现工作机构的运动。
3
应用举例
直杆轮机构广泛应用于冲床、振动筛、旋转机械等领域。交叉摇Fra bibliotek机构定义
交叉摇杆机构由两个交叉配合的摇杆组成,常用于汽车悬挂系统。

机械原理-凸轮机构及其设计

机械原理-凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。

2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。

易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。

不能与凹槽的凸轮轮廓时时处处保持接触。

平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。

不能与凹槽的凸轮轮廓时时处处保持接触。

3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。

(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。

4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。

①等宽凸轮机构② 等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O 为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0 称为基圆半径。

推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。

推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。

回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。

休止:推杆处于静止不动的阶段。

推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。

凸轮机构

凸轮机构
四、凸轮机构的优、缺点 优点: 只需设计适当的凸轮轮廓,便可使从动件得到所需的运动规律, 并且结构简单、紧凑、设计方便。 缺点: 凸轮轮廓与从动件之间为点接触或线接触,易于磨损,所以 通常多用于传力不大的控制机构。
2 从动件的常用运动规律
一、基础知识
设计凸轮机构时,首先应根据工作要求确定从动件的运动规律, 然后按照这一运动规律设计凸轮轮廓线。 下面以尖顶直动从动件盘形凸轮机构为例,说明从动件的运 动规律与凸轮轮廓线之间的相互关系。
凸轮机构
1
凸轮机构的应用和类型
2
从动件的常用运动规律
1 凸轮机构的应用和类型
凸轮机构是机械中的一种常用机构,在自动化和半自动化机械 中应用非常广泛。
一、凸轮机构的组成 主要由: 凸轮、 从动件 机架 三个基本构件的组成。 凸轮机构是由具有曲线轮廓 或凹槽的构件,通过高副接触带 动从动件实现预期运动规律的一 种高副机构
1 凸轮机构的应用和类型
三、类型 2.按从动件的结构形式分 (2)滚子从动件 如图示。为了克服尖顶从动 件的缺点,在从动件的尖顶处安 装一个滚子,即成为滚子从动件。 滚子和凸轮轮廓之间为滚动 摩擦,耐磨损,可以承受较大载 荷,所以是从动件中最常用的一 种型式。 但滚子与转轴之间有间隙, 故不适用于高速的凸轮机构。
2 从动件的常用运动规律
一、基础知识 6.回程: 从动件尖顶以一定运动 规律回到起始位置,这个过 程称为回程。 7.回程运动角δh : 与回程对应的凸轮转角δh。
8.近休止角δs′:从动件在最近位置停留不动,凸轮转角δs′。
9.从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线。
2 从动件的常用运动规律
§3-3
凸轮机构的压力角

凸轮机构的应用及其分类

凸轮机构的应用及其分类

二)按从动件上高副元素的几何形状分
1、尖顶从动件 2、滚子从动件 3、平底从动件
三)、根据从动件的运动形式分
1、移动从动件凸轮机构




2、摆动从动件凸轮机构
表中给出了从动件的运动方式及其 与凸轮接触形式的分类和特点。
四)按机构封闭性质分
⑴ 力封闭式 利用弹簧力或
从动件重力使从动件与凸轮 保持接触,如右图所示。
⑵ 形封闭式 利用凸轮或从
动件的特殊形状而始终保持 接触。如下图所示。
五)按从动件导路与凸轮的相对位置分
⑴ 对心凸轮机构
一偏置距离。 从动件导路中心线通过凸轮回转中心。
⑵ 偏心凸轮机构 从动件导路中心线不通过凸轮回转中心,而存在
内燃机
本章完

凸轮机构主要是由机架,凸轮和从动件组 成,凸轮和从动件之间形成高副。 凸轮机构的特点是:结构简单、紧凑,设 计 容易且能实现任意复杂的运动规律。 但 因凸轮与从动件之间系点、线接触, 易于 磨损,故只用于受力不大的场合。

二、凸轮机构的分类
一)按凸轮的形状分
1、盘形凸轮 2、移动凸轮 3、圆柱凸轮
§3-1
凸轮机构的应用和类型
一、凸轮机构的组成及应用
凸轮机构是一种结构简单且容易实现各种复杂运
动规律的高副机构,广泛应用于自动化及半自动
化机械中。 如图所示为内燃机配气凸轮机构 。凸轮1以等 角速度回转,驱动从动件2按预期的运动规律启闭 阀门。
动画
一、凸轮机构的组成:
机架3 从动件2
1 O1
但易于一按凸轮的形件2滚子从动件3平底从动件二按从动件上高副元素的几何形状分三根据从动件的运动形式分1移动从动件凸轮机构对心偏心2摆动从动件凸轮机构表中给出了从动件的运动方式及其与凸轮接触形式的分类和特点

机械设计-凸轮机构的应用和分类

机械设计-凸轮机构的应用和分类
凸轮机构的应用和分 类
凸轮机构的应 用和分类
1 凸轮机构的组成
2 凸轮机构的特点及应用
3 凸轮机构的分类
一、凸轮机构的组成
1.凸轮机构的组成 凸轮机构是由凸轮、从动件和机架组成的高副机构。
凸轮机构
机架 从动件
高副
凸轮
作用:将凸轮的转动或移动转换成从动件的移动或摆 动
二、凸轮机构的特点及应用
1.凸轮机构的特点
➢ 可使从动件实现各种复杂的运动规律 ➢ 结构结构简单紧凑,易于设计 ➢ 凸轮机构是高副机构,易于磨损, ➢ 凸轮轮廓加工比较困难。
2.凸轮机构的应用: 运用于各种机械设备,尤其在半自动和自动机械中运用较为普遍,用于传递运动,
但由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力构的命名:般凸轮机构的命名原则: 布置形式+运动形式+推杆形状+凸轮形状
对心直动尖顶从动件盘形凸轮机构
偏置直动滚子从动件盘形凸轮机构
小结
1.凸轮的组成 2.凸轮机构的特点及应用 3.凸轮机构的分类
感谢您的观看
车床靠模机构
凸轮绕线机构
进刀机构
内燃机配气机构
三、凸轮机构的分类
1.按照凸轮的形状不同可把凸轮分为以三种:盘形凸轮机构、移动凸轮机构和圆柱凸轮机构
盘形凸轮
移动凸轮
圆柱凸轮
2.按照从动件形状分为以下几种
尖顶从动件
滚子从动件
平底从动件
3.按从动件的运动形式分为:移动(摆动)从动件和摆动从动件
移动从动件

凸轮设计——精选推荐

凸轮设计——精选推荐

第九章凸轮机构及其设计§9.1 凸轮机构的应用及分类一、凸轮机构的应用凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。

广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中。

(尤其是需要从动件准确地实现某种预期的运动规律时)常用于将“简单转动”→“复杂移动”、“复杂摆动”、“与其它机构组合得到复杂的运动”。

图示为内燃机配气凸轮机构。

具有曲线轮廓的构件1叫做凸轮,当它作等速转动时,其曲线轮廓通过与推杆2的平底接触,使气阀有规律地开启和闭合。

工作对气阀的动作程序及其速度和加速度都有严格的要求,这些要求都是通过凸轮的轮廓曲线来实现的。

组成:凸轮、从动件、机架(高副机构)。

二、凸轮机构的特点1)只需改变凸轮廓线,就可以得到复杂的运动规律;2)设计方法简便;3)构件少、结构紧凑;4)与其它机构组合可以得到很复杂的运动规律5)凸轮机构不宜传递很大的动力;6)从动件的行程不宜过大;7)特殊的凸轮廓线有时加工困难。

三、凸轮机构的类型凸轮机构的分类:1)盘形凸轮按凸轮形状分:2)移动凸轮3)柱体凸轮1)尖底从动件;按从动件型式分:2)滚子从动件;3)平底从动件1)力封闭→弹簧力、重力等按维持高副接触分(封闭)槽形凸轮2)几何封闭等宽凸轮等径凸轮共轭凸轮§9.2 从动件常用运动规律设计凸轮机构时,首先应根据工作要求确定从动件的运动规律,然后再按照这一运动规律设计凸轮廓线。

以尖底直动从动件盘形凸轮机构为例,说明从动件的运动规律与凸轮廓线之间的相互关系。

基本概念:基圆——凸轮理论轮廓曲线最小向径.r0所作的圆。

行程——从动件由最远点到最近点的位移量h(或摆角 )推程——从动件远离凸轮轴心的过程。

回程——从动件靠近凸轮轴心的过程。

推程运动角——从动件远离凸轮轴心过程,凸轮所转过的角度。

回程运动角——从动件靠近凸轮轴心过程,凸轮所转过的角度。

远休止角——从动件在最远位置停留过程中凸轮所转过的角度。

凸轮机构的应用及其分类

凸轮机构的应用及其分类

凸轮机构在其他领域的应用
除了发动机和机械加工,凸轮机构还被广泛应用于自动化生产线上的物料搬运机器人,实现物料的精确定位和 传递。
凸轮机构的基本构造和原理
凸轮轴
凸轮轴是凸轮机构的核心部件, 用于传递旋转运动和控制运动 轨迹。
凸轮轮廓
凸轮轮廓决定随动件的运动规 律和廓的接触, 实现旋转运动向直线或曲线运 动的转换。
凸轮机构的分类及典型应用
1 按工作特点分类
周期运动凸轮机构、非周期运动凸轮机构、径向平移凸轮机构。
2 按运动形式分类
简单凸轮机构、复杂凸轮机构、单转轴转子式凸轮机构。
3 典型应用
发动机中的配气机构、机械加工中的进给装置、工业生产线上的物料搬运机器人。
常见的凸轮机构分类介绍
周期运动凸轮机构
适用于需要定时、周期性运动 的机械装置,如发动机中的配 气机构。
复杂凸轮机构
由多个凸轮轮廓和随动件组成, 实现多种复杂的运动形式。
单转轴转子式凸轮机 构
用于实现多组凸轮传动的机构, 可实现复杂的运动轨迹。
凸轮机构在发动机中的应用
凸轮机构在发动机中扮演着重要角色,控制气门的开闭,调节燃烧室内气体 流动,实现高效燃烧和动力输出。
凸轮机构在机械加工中的应用
凸轮机构在机械加工中的主要应用是进给装置,通过凸轮的旋转,驱动加工 工件进行线性或曲线运动,实现工件的加工。
凸轮机构的应用及其分类
凸轮机构是一种常用的机械装置,用于将旋转运动转化为直线或曲线运动。 本节将介绍凸轮机构的定义、作用以及基本构造和原理。
凸轮机构的定义和作用
凸轮机构是一种能将旋转运动转化为直线、曲线或往复运动的机械装置。它 以凸轮轴为基础,通过凸轮轮廓和随动件之间的接触与相对运动来实现运动 的转换。

第3章凸轮机构设计

第3章凸轮机构设计
机械设计基础
第一篇 机械传动设计
1
第三章 凸轮机构设计
重点内容
1. 用反转法绘制盘状凸轮轮廓线。
2. 凸轮机构旳压力角和自锁旳关系, 压力角和基圆半径旳关系,滚子半径 与轮廓曲线形状旳关系。
2
3
盘状凸轮
4
盘状凸轮
5
圆柱凸轮
§3-1 凸轮机构旳应用和分类
一. 凸轮机构旳应用 1. 凸轮机构旳构成:凸轮、从动件和机架。
ω
δh
δs
22
4) 量取位移线图C1B1=11’、C2B2=22’、…, 得B0、B1、B2 、 …。
5) 以光滑曲线连接B0、B1、B2 、 …,即得 凸轮旳轮廓曲线。若是滚子从动件,则此轮 廓曲线为该凸轮旳理论轮廓曲线。
23
§3-5 设计凸轮机构应注意旳问题
一、凸轮机构旳压力角和自锁
n Fα
ω1
h
A
δt
B
3. 远休止角δs
δs’ O δs
凸轮回转δs从动件在最远距 离处停止不动。
r0 δh D
C 10
§3-2 从动件旳常用运动规律
一. 基本术语
1. 基圆
以凸轮轮廓最小向径r0为半径旳圆
2. 推程(升程)
B’
δt
从动件从距离回转中心 近来位置A到达最远距离 B’所走过旳距离
ω1
h
A
B
3. 远休止角δs
和从动件质量较小旳凸轮机构。 O
h
δ1
(a)
t
v0
δ1
(b)
t
+∞ δ1 t
(c) -∞ 14
O’
三. 等加速等 1
s2
减速运动规律 4

凸轮机构的类型及应用

凸轮机构的类型及应用
与连杆机构相比,凸轮机构的主要优点是:只要正确 地设计凸轮轮廓曲线,就能使从动件实现任意给定的运动 规律,且结构简单、紧凑,工作可靠,易于设计。缺点是: 由于凸轮机构属于高副机构,故凸轮与从动件之间为点或 线接触,不便润滑,易于磨损。因此凸轮机构多用于传力 不大的控制机构和调节机构。下面通过实例来说明。
机械设计基础
机械设计基础
Machine Design Foundation
凸轮机构的类型及应用
1.1 凸轮机构的特点和应用
凸轮机构是一种常用的机构,它主要是由凸轮、从动 件和机架三部分所组成。由于凸轮与从动件组成的是高副, 所以它属于高副机构。凸轮机构能将凸轮的连续转动或移 动转换为从动件的移动或摆动。
机械设计基础
Machine Design Foundation
凸轮机构的类型及应用
1—凸轮;2—气阀 图7-1 内燃机的配气机构
1—圆柱凸轮;2—从动件 图7-2 送料机构
机械设计基础
Machine Design Foundation
凸轮机构的类型及应用
1.2 凸轮机构的类型
1.按凸轮的形状分类 (1)盘形凸轮。如图7-1所示。 (2)圆柱凸轮。如图7-2所示。 (3)移动凸轮。如图7-3所示。
(a)
(b)
(c)
(d)
(e)
(f)
图7-4 从动件类型
机械设计基础
Machine Design Foundation
凸轮机构的类型及应用
3.按从动件的运动方式分类 (1)移动从动件。从动件相对于导路作直线移动。若
导路中心线恰好通过凸轮回转中心,则称为对心移动从动 件,如图7-5(a);若导路中心线与回转中心有一个偏心 距e,则称为偏置移动从动件,如图7-5(b)。

凸轮机构的应用和分类

凸轮机构的应用和分类

凸轮机构的应用和分类凸轮机构是一种常见于机械工程领域的机构,它被广泛应用于各种机械系统中,如汽车发动机、起重机、工业生产线等。

凸轮机构是一种能够将旋转运动转化为直线运动的装置,它利用凸轮的运动,带动相应的机构运动。

凸轮机构的应用和分类,是一个非常重要的机械工程知识点,下面我们就来详细讨论一下这个问题。

凸轮机构的应用:凸轮机构在机械工程中的应用非常广泛,以下列举几个例子:1.汽车发动机中,凸轮机构用于控制气门的开闭。

2.起重机中,凸轮机构用于控制臂的升降和伸缩。

3.工业生产线中,凸轮机构用于控制机械手臂的运动。

4.印刷机中,利用凸轮机构控制覆盖印刷部件的橡皮辊的平移和压力。

5.普通柴油机中,利用凸轮机构控制喷油泵的柱塞运动。

凸轮机构的分类:凸轮机构可以根据凸轮的类型、传动方式、运动形式等多种方式进行分类,下面我们分别进行介绍:1.按照凸轮类型分类:(1)圆柱凸轮机构:凸轮为圆柱形,常见于发动机的气门机构。

(2)球柱凸轮机构:凸轮为球柱形,常见于重型机械的伸缩臂等。

(3)椭圆凸轮机构:凸轮为椭圆形,可以控制机械构件的速度和加速度,常用于机械加工。

(4)凸缘凸轮机构:凸轮为凸缘形,和环形凸轮不同的是,它的凸轮周长不是圆周,可以通过改变凸轮的外形来控制机构运动。

2.按照传动方式分类:(1)平面副凸轮机构:凸轮的轴线和从动件的轴线在同一平面内,例如喷油泵的凸轮机构。

(2)空间副凸轮机构:凸轮的轴线和从动件的轴线不在同一个平面内,例如空间伸缩臂。

3.按照运动形式分类:(1)转角运动凸轮机构:凸轮可以带动从动件做角度转动,例如喷油泵。

(2)轴向运动凸轮机构:凸轮可以带动从动件做轴向运动,例如发动机气门机构。

(3)直线运动凸轮机构:凸轮可以带动从动件做直线运动,例如冲压机的工作台。

总结:凸轮机构是机械工程中非常常见的机构之一,它具有将旋转运动转化为直线运动的功能,可以控制机械装置的运动,广泛应用于各种机械系统中,如汽车发动机、起重机、工业生产线等。

9 凸轮机构

9 凸轮机构

当凸轮和轴单独制作时,凸轮上要作出轮毂,
可取凸轮工作廓线的最小直径等于或大于轴径的 1.6 ~ 2)倍。 (3)按诺谟图确定rb
凸轮转角δ0 h/r0 等速运动
凸轮转角δ0 h/r0
正弦加速度运动 余弦加速度运动
h/r0 等加等减速运动
h/r0
αmax
αmax 诺模图
应用实例:一对心直动滚子推杆盘形凸轮机构,δ0=45º ,h=13 mm, 推杆以正弦加速度运动,要求αmax ≦30º ,试确定凸轮的基圆半径r0 。 作图得:h/r0=0.26 r0=≧ 50 mm
3)圆柱凸轮 (端面)
(2)从动件形状分类 1)尖端从动件 2)曲面从动件 3)滚子从动件 4)平底从动件
(3)按从动件的运动形式分类 1)移动从动件(对心、偏置) 2)摆动从动件
(4)按保持接触方式分类 1)力封闭(重力、弹簧) 2)几何形状封闭 •凹槽凸轮机构 •凸缘凸轮机构 •等宽凸轮机构 •等径凸轮机构 •共轭凸轮机构
s
3.运动规律的组合 将几种运动规律组合 , 以改善运动特性。 组合原则 要保证在衔接 点上运动参数保持连续;在运 动的始末处满足边界条件。
o v o a o -∞
h



+∞

s h
将几种运动规律组合 , 以改善运动特性。
o v



正弦改进等速运动规律
o a o
4.选择运动规律应考虑的问题(了解) 选择原则: 1)机器的工作过程只要求凸轮转过一角度δ0时, 推杆完成一行程h(直动推杆)或φ(摆动推杆), 对运动规律并无严格要求。则应选择直线或圆弧等 易加工曲线作为凸轮的轮廓曲线。如夹紧凸轮。 2)机器的工作过程对推杆运动有要求,则应严格按 工作要求的运动规律来设计凸轮廓线。如刀架进给凸 轮。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章凸轮机构
§3.1 凸轮机构的应用和分类
一.凸轮机构的应用
凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

如图所示为以燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往
复摆动,从而使气门3开启和关闭,以控制可燃物质进入气缸或废气的排出。

由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的。

二、凸轮分类
1.按凸轮的形状分类
(1)盘形凸轮:如上图所示,这种凸轮是一个具有变化向径盘形构件,当他绕固定轴转动时,可推动从动件在垂直与凸轮轴的平面运动。

(2)移动凸轮:当盘状凸轮的径向尺寸为无穷大时,则凸轮相当于作直线移动,称作移动凸轮。

(3)圆柱凸轮:这种凸轮是在圆柱端面上作出曲线轮廓或在圆柱面上开出曲线凹槽。

当其转动时,可使从动件在与圆柱凸轮轴线平行的平面运动。

2.按从动件的形状分类可分为三类:
(1)尖顶从动件:这种从动件结构简单,但尖顶易于磨损(接触应力很高),故只适用于传力不大的低速凸轮机构中。

(2)滚子从动件:由于滚子与凸轮间为滚动摩擦,所以不易磨损,可以实现较大动力的传递,应用最为广泛。

(3)平底从动件:这种从动件与凸轮间的作用力方向不变,受力平稳。

而且在高速情况下,凸轮与平底间易形成油膜而减小摩擦与磨损。

其缺点是:不能与具有凹轮廓的凸轮配对使用;而且,也不能与移动凸轮和圆柱凸轮配对使用。

此外,按维持高副接触分(锁合); 1)力锁合→弹簧力、重力
2)几何锁合:等径凸轮;等宽凸轮
三、凸轮机构的特点:
优点:结构简单、紧凑、设计方便,可实现从动件任意预期运
动,因此在机床、纺织机械、轻工机械、印刷机械、机电
一体化装配量应用。

缺点:1)点、线接触易磨损;
2)凸轮轮廓加工困难;
3)行程不大。

§3.2 凸轮从动件的运动规律
凸轮的轮廓形状取决于从动件的运动规律基圆——凸轮理论轮廓曲线最小矢径
所作的圆。

行程——从动件由最低点到最高点的位移h(式摆角)
推程运动角——从动件由最低运行到最高位置,凸轮所转过的角。

回程运动角——高——低凸轮转过的转角。

远休止角——从动件到达最高位置停留过程中凸轮所转过的角。

近休止角——从动件在最低位置停留过程中所转过的角。

从动件位移线图——从动件位移S与凸轮转角(或时间t)之间的对应关系曲线
一、等速运动规律
从动件开始和最大行程加速度有突变则有很大的冲击。

这种冲击称刚性冲击。

实质材料有弹性
变形不可能达到,但仍然有强烈的冲击。

只适用于低速轻载。

二、等加速度、等减速度
加速度有有限突变,柔性冲击,适用于中等速度轻载。

三、余弦加速
当推杆作停、升、停型运动时,推杆在O、 A两点位置加速度有突变也有柔性冲击产生。

但对降、升、降型运动规律,则无冲击出现。

相关文档
最新文档