初中数学教学典型案例分析勾股定理

合集下载

初中数学教学启发性案例分析(含示范课课程设计、学科学习情况总结)

初中数学教学启发性案例分析(含示范课课程设计、学科学习情况总结)

初中数学教学启发性案例分析第一篇范文:初中数学教学启发性案例分析在初中数学教学过程中,启发性教学策略作为一种有效的教学方法,不仅可以激发学生的学习兴趣,提高学生的思维能力,而且有助于培养学生的创新意识和实践能力。

本文通过对一系列教学案例的深入剖析,旨在为广大初中数学教师提供一些有益的启示,以提高教学质量,促进学生的全面发展。

二、案例分析1.案例一:勾股定理的发现与证明在教授勾股定理时,一位教师设计了以下教学环节:(1)引导学生通过观察、猜想、验证等步骤,自主发现勾股定理;(2)鼓励学生分组讨论,尝试用多种方法证明勾股定理;(3)教师总结各种证明方法,引导学生体会数学的严谨性;(4)布置课后练习,让学生巩固所学知识。

分析:本案例中,教师充分尊重了学生的认知规律,让学生在探索中发现问题、解决问题,培养了学生的探究能力和合作精神。

同时,教师注重引导学生体会数学的严谨性,使学生在掌握知识的同时,提高了数学素养。

2.案例二:几何图形的分类与归纳在教授几何图形分类时,一位教师采取了以下教学策略:(1)让学生收集生活中的几何图形,观察它们的特征;(2)引导学生通过对比、分析、归纳等方法,总结几何图形的分类标准;(3)教师给出几何图形的分类体系,让学生进一步加深对几何图形的认识;(4)组织学生进行几何图形创意设计,运用所学知识解决实际问题。

分析:本案例中,教师将数学与生活紧密联系起来,让学生在实践中感受数学的价值。

通过对比、分析、归纳等环节,学生不仅掌握了几何图形的分类知识,而且提高了观察、思考、创新能力。

3.案例三:函数的图像与性质在教授函数图像与性质时,一位教师设计了以下教学活动:(1)让学生利用计算器绘制函数图像,观察函数的增减性、对称性等性质;(2)引导学生通过观察、分析、推理等方法,探讨函数图像与性质之间的关系;(3)教师总结函数图像与性质的规律,让学生体会数学的美丽;(4)布置课后实践任务,让学生运用所学知识解决实际问题。

初中数学勾股定理教案(集合4篇)

初中数学勾股定理教案(集合4篇)

初中数学勾股定理教案(集合4篇)本文为大家分享初中数学勾股定理教案相关范本模板,以供参考。

一、例题的意图分析例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

二、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

三、例习题分析例1(P83例2)分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12某1.5=18,PQ=16某1.5=24,QR=30;⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

四、课堂练习1、小强在操场上向东走80m后,又走了60m,再走100m回到原地。

小强在操场上向东走了80m后,又走60m的方向是。

2、如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向学习目标1、通过拼图,用面积的方法说明勾股定理的正确性.2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

人教版八年级数学下册17.1勾股定理优秀教学案例

人教版八年级数学下册17.1勾股定理优秀教学案例
1.导入:以生动有趣的故事引入勾股定理,激发学生的学习兴趣。
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。

初中数学教学课例《勾股定理》教学设计及总结反思

初中数学教学课例《勾股定理》教学设计及总结反思

八年级学生好奇心强,学生对几何图形的观察,几 学生学习能
何图形的分析能力已初步形成。能够正确归纳所学知 力分析
识,通过学习小组讨论交流,探究直角三角形的三边关
系。但由于大部分学生几何学习有难学的心里,导致学 习信心不足,学习效果就达不到理想效果。)
教学设计比较符合学生学习的实际,实例引入,增 强了学生的求知欲,能很快让学生进入学习状态,带着 教学策略选 课前的问题,学生能更快的理解学习勾股定理的意义, 择与设计 体会数学来源于生活,为生活服务。懂得学习数学的重 要性和价值所在。
方案 1:如果学生能够说出勾股定理的相关知识, 则直接
进入下一环节的学习。 方案 2:如果学生有困难,则安排学生自学教材, 再发表意见。 学生发言,教师倾听。视学生回答的重点板书:勾 三股四弦五等 【设计意图】教师获得学生的知识储备以便以后的 教学定位。再次让学生感触勾股定理的存在、作用即勾 股定理是研究直角三角形边之间的关系的定理,明确学 习目标。 (二)观察演算,合作探究,初具概念 问题 3:介绍毕达哥拉斯发现勾股定理的故事。利 用 ppt 课件展示毕达哥拉斯的发现和他的探究的过程。 提问:这三个正方形之间的面积有什么关系?从中可以 转化得到等腰直角三角形三边在数量上有什么关系? (故事附后) 教师口述故事,ppt 课件同步演示;学生借助直观 的课件,学生个体或学生间观察交流探究得到结论。 【设计意图】首先,故事中代出问题既激发学生的 兴趣又降低了学生探究的难度,让每个学生都可做,可 得;其次得到三个正方形面积间的关系而得到等腰直角
上升到理论层面,以加强数学学习的严谨性。让学生学 懂面积法,再次加深对勾股定理的理解。感受我国数学 知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题 8:学生用 4 个全等的直角三角形重新拼凑图 形并根据排放画出图形并用面积法进行论证。

《勾股定理》教学案例

《勾股定理》教学案例

《勾股定理》教学案例一、研究缘由《勾股定理》在八年级教材下册,这部分内容详细介绍了勾股定理的相关知识与探索过程,包含了大量应用习题,学生需要巧妙运用列式变形等方法验证勾股定理内容。

教师需要做到数形结合,发展学生的形象思维。

勾股定理属于基础性知识,在中考几何证明题中运用广泛,只有学生熟练掌握,才能挖掘出题目当中的隐含信息,为此,教师需要对勾股定理的教学方法进行研究,提高学生知识迁移能力。

二、教学实践初中阶段的学生已经具有了一定的数学基础,对三角形的相关性质、面积、周长等概念比较熟悉,能够完成计算等任务。

在本节课的教学中,教师可以引导学生开展自主探究,让学生分析勾股定理的产生过程,从多个角度研究勾股定理。

【教学片段一】运用传统数学经典,导入教学内容师:在《周髀算经》中,有这样一段话,“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五……”同学们知道这段话当中所蕴含的数学定理吗?生:勾股定理。

师:非常聪明,同学们能够抓住这段话的关键字,知道描述的是勾股定理,也就是我们今天要学习的内容。

师:在2500多年前,毕达哥拉斯就从地板砖上发现了一些三角形的规律,现在大家打开课本,看看能够发现什么奥秘呢?师:大家看课本中的地板砖示意图,其中为我们描绘了大正方形、小正方形,大家可以拿出笔算一算,能发现什么?生:两个小正方形面积相加,可以得到大正方形的面积。

师:正方形的面积是边的平方,所以等腰直角三角形的三边关系是怎样的呢?生:两条直角边的平方和等于斜边的平方。

师:非常好,说出了老师想要听的答案。

【分析思考】教师运用我国传统的数学名著引入新知识,能够有效调动学生学习兴趣,激发学生数学文化素养,培养学生热爱祖国、传承传统文化的意识。

在勾股定理的探索过程中,教师从课本中的方格图形入手,引导学生自主探究,让学生通过计算、变式等方法,从面积关系转移到边长关系,增强对勾股定理的理解。

【教学片段二】开展小组合作探究,完成知识迁移师:现在教师用多媒体课件呈现了普通直角三角形,用不同颜色呈现了相应的正方形,现在大家分小组探究,看刚才得出的结论能否应用在这些直角三角形当中。

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。

初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。

它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。

勾股定理的案例

勾股定理的案例

在探究中学数学 ----《勾股定理》教学案例分析与反思在教学中,设法使学生在接受数学知识的过程中,融入主动的探究、发现等活动,让学生有机会通过自己的归纳概括获取知识,让学生感受到数学来自生活,数学就在身边,数学就在自已的手中。

以下教学案例就是在新课程标准下的一个尝试。

教材分析:这节课是八年级第14章《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起到重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,能够在原有的基础上对直角三角形有进一步的理解和理解。

教学目标:1、学习掌握勾股定理及内容,并能实行简单证明。

2、培养动口、动手、动脑的综合水平,并感受从具体到抽象的理解规律。

教学重点:勾股定理的证明和应用。

教学难点:拼图、用计算面积的方法证明勾股定理。

教学方法:1、教师教法:引导发现、尝试指导、实验探究相结合。

2、学生学法:积极参与、动手动脑与主动发现相结合。

师生互动活动设计:教学过程:1.创设情景,引入新课师:(结合动画讲故事)西周开国时期,周公非常爱才,他和喜欢钻研数学的商高是好朋友。

有一天,商高对周公说,最近我又有一个新的发现,把一根长为7的直尺折成直角,使一边长(勾)为3,另一边长(股)为4,连接两端(弦)得一个直角三角形,周公您猜一猜第三边的长等于多少?周公摇头不知道。

同学们,你们猜猜是多少?生:5!生:不知道!师:不知道也没关系,我们来量一量斜边的长就知道了。

(动画演示)师:后来又发现,直角边为6、8的直角三角形的斜边的长是10。

这两组数据是否具有某种共同点呢?带着这个问题人们对直角三角形做了进一步的研究,通过计算三条边长的平方发现,直角三角形中的三条边长之间还真有一种特殊的关系。

同学们也来算一算、猜一猜看,它们之间到底有什么样的关系呢?生:32+42=52、62+82=102师:这是两组特殊数字,但由此引发一个有待我们深入思考的问题,看哪位同学有新问题要提?生:一个任意的直角三角形的三边是否也有这种相等关系呢?师:这个问题提得好!我们用几何画板再做一个直角三角形来多实验几次,请注意观察。

第一课时勾股定理优秀教学案例

第一课时勾股定理优秀教学案例
(五)作业小结
1.布置巩固性作业:让学生运用勾股定理解决实际问题,如计算房屋建筑中的长度、设计直角三角形图案等。检查学生对勾股定理的理解和应用能力。
2.布置拓展性作业:让学生探索其他数学定理或公式,如平方根、立方根等。培养学生的探索精神和创新能力。
3.鼓励学生进行自我评价,反思自己在学习过程中的优点和不足。指导学生制定改进措施,提高学习效果。
此外,我还注重课堂评价的多元化,充分关注学生的个体差异,给予他们积极的评价和鼓励,使他们在课堂上充满自信,更好地投入到学习过程中。整个教学过程既注重知识的传授,又重视学生的全面发展,体现了新课程改革的理念和要求。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的内容,理解直角三角形三边之间的关系,能够运用勾股定理解决实际问题。
(一)导入新课
1.故事导入:讲述毕达哥拉斯如何通过观察木匠修鞋匠的鞋子长度比例,发现了勾股定理。引导学生关注古代数学家的伟大发现,激发学生学习兴趣。
2.实物模型导入:展示古代的勾股定理证明雕塑,让学生直观地感受数学与艺术的完美结合。引发学生对勾股定理的好奇心,激发他们的探究欲望。
3.现实生活实例导入:分析房屋建筑、自行车轮胎等实例,让学生感受到勾股定理在实际应用中的重要性,引发学生思考。
2.鼓励学生提出问题,培养他们的问题意识和批判性思维。例如,在教学过程中,让学生大胆质疑,挑战古代数学家的证明方法。
3.创设循序渐进的问题序列,引导学生逐步深入探究勾股定理。例如,从简单的情形开始,让学生观察、实验、猜测,逐步引导学生得出勾股定理的结论。
(三)小组合作
1.组织学生进行小组讨论,培养他们的团队协作能力和沟通能力。例如,在探究勾股定理的过程中,让学生分组讨论,相互启发,共同解决问题。

人教版八年级数学下17.1勾股定理(3)优秀教学案例

人教版八年级数学下17.1勾股定理(3)优秀教学案例
3.运用直观教具、几何画板等工具,帮助学生直观地理解勾股定理的应用。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.培养学生的自信心和自主学习能力,让学生体验到成功的喜悦。
3.通过解决实际问题,培养学生的应用意识,让学生认识到数学与生活的紧密联系。
4.培养学生严谨治学的态度,养成积极主动、认真负责的学习习惯。
人教版八年级数学下17.数学下册第17.1节勾股定理(3),学生在学习了勾股定理的基础上,进一步探究勾股定理的应用。通过前面的学习,学生已经掌握了勾股定理的表述和证明,但对勾股定理的理解还停留在表面,对勾股定理在实际问题中的应用还不够熟练。因此,本节课的教学目标是让学生深入理解勾股定理,并能运用勾股定理解决实际问题。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示房屋装修、篮球架安装等实际生活中的例子,让学生感受到数学与生活的紧密联系。
2.提出问题:“在这些实际问题中,我们如何运用数学知识来解决呢?”引导学生思考,为新课的引入做好铺垫。
3.教师总结:通过实际例子,我们可以发现一个规律——直角三角形两条直角边的平方和等于斜边的平方,这就是我们今天要学习的勾股定理。
(二)问题导向
1.自主探究:引导学生通过自主学习,发现问题、解决问题,培养学生的自主学习能力。
2.合作交流:组织学生进行小组讨论,分享彼此的想法和成果,促进学生之间的思维碰撞。
3.教师引导:在学生探究过程中,教师要善于引导学生,给予必要的提示和帮助,引导学生正确思考。
(三)小组合作
1.小组讨论:让学生在小组内进行讨论交流,共同解决问题,培养学生的团队合作意识。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,给予鼓励和指导。

初中数学教学课例《勾股定理》教学设计及总结反思

初中数学教学课例《勾股定理》教学设计及总结反思

教学过程 形的面积,引导他们发现 3 个面积的数量关系,再启发
他们转化为直角三角形三边的关系,从而得出勾股定
理。
课例研究综
勾股定理是初中数学的重要内容,它体现了图形与

数字结合,从特殊到一般的归纳思想,其具有一定的抽
象性,因此,也具有相当的难度,为了便于学生理解以
及掌握相关的数学思想,需根据学生的认知规律采取从
初中数学教学课例《勾股定理》教学设计及总结反思
学科
初中数学
教学课例名
《勾股定理》

本节课主要研究三角形三条边的数量关系。重点是 教材分析
勾股定理及其证明。难点是勾股定理的证明。
1.经历探索勾股定理的过程,体会数形结合和从特
殊到一般的思想 教学目标
2.会用面积法证明勾股定理,会用勾股定理进行简
单计算。
简单到复杂,循序渐进的教学方法引导学生认识规律,
为了更加直观易懂精选质量上乘的多媒体课件加以辅
助教学,并加强个别辅导,针对差生增加重复性。力求
达到大多数学生学懂弄通。从教学结束观察基本达到预
期目标。
学生学习能
山区学生的抽象思维比较差,归纳能力薄弱,还停
力分析 留在直观思维层面。
以多媒体把抽象的定理直观的展现出来,启发引导 教学策略选
学生得出结论,让他们逐步学会从特殊到一般的数学归 择与设计
纳思想。
面积法归纳勾股定理。把直角三角形放在边长为 1
的正方形表格中,让学生计算出三边为边长的 3 个正方

初中数学优秀案例范文

初中数学优秀案例范文

初中数学优秀案例范文一、教学背景。

勾股定理是初中数学中非常重要的一个定理,它揭示了直角三角形三边之间的数量关系。

但对于初中学生来说,这个定理可能比较抽象,难以理解。

所以,在教学过程中,我希望通过有趣的方式让学生们轻松掌握这个定理。

二、教学目标。

1. 知识与技能目标。

学生能理解勾股定理的内容,会用勾股定理求直角三角形的未知边长。

能运用勾股定理解决一些简单的实际问题。

2. 过程与方法目标。

通过观察、猜想、操作、验证等活动,发展学生的逻辑思维能力和空间观念。

体会数形结合的思想方法。

3. 情感态度与价值观目标。

让学生在探索勾股定理的过程中,感受数学的乐趣,培养学生的合作交流意识和探索精神。

三、教学重难点。

1. 教学重点。

探索和证明勾股定理。

运用勾股定理进行简单的计算。

2. 教学难点。

勾股定理的证明。

四、教学方法。

采用启发式教学法、探究式教学法和小组合作学习法相结合。

五、教学过程。

# (一)创设情境,引入新课。

我一走进教室,就神秘兮兮地对同学们说:“今天咱们来玩个小游戏。

我这儿有一个直角三角形的小卡片(拿出卡片展示),假如这个直角三角形的两条直角边分别是3厘米和4厘米,谁能最快告诉我斜边是多长呢?”同学们开始七嘴八舌地猜测起来,有的说5厘米,有的说6厘米,还有的说7厘米。

我笑着说:“看来大家的答案不太一致啊,那今天咱们就来探索一下这里面的奥秘。

”# (二)探究勾股定理。

1. 网格探究。

我给每个小组发了一张画着很多小方格的纸,还有几个不同大小的直角三角形卡片。

“同学们,现在把这些直角三角形放在方格纸上,让三角形的顶点都落在方格的顶点上。

然后咱们来数一数,以三角形的三条边为边长,分别能画出几个小正方形呢?”同学们立马热火朝天地干了起来。

过了一会儿,有小组喊起来:“老师,我们发现了,直角边为3和4的这个三角形,以3为边长的直角边对应的正方形里有9个小方格,以4为边长的直角边对应的正方形里有16个小方格,斜边上的正方形里有25个小方格呢!”我马上追问:“那其他三角形呢?”同学们又开始忙活起来,不一会儿,大家都发现了一个规律:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积。

勾股定理典例分析

勾股定理典例分析

勾股定理典例分析窗体顶端 历史上,勾股定理的证明异彩纷呈,近年来中考中对勾股定理的考查打破了以往直接给出结论要求学生证明的方式,而是通过观察、操作、实验探究证明勾股定理,注重考生的动手实践和自主探索,发展合情推理能力,体会形数结合的思想;而数学大会会标设计与勾股定理知识的综合运用体现了勾股定理丰富的文化内涵,有些中考题中呈现出勾股定理的历史便于我们深入的了解,证明、运用勾股定理解决一些实际问题是近几年中考的热点题型.典型例题剖析:例1如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b ,斜边长为c ,图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形. (2)用这个图形证明勾股定理.(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)分析:本题第(1)问要求的构图实际上是美国第十七任总统加菲尔德首先提出的.此题是对学生的操作、探索、创新思维等能力的考查,属操作实验题,该题较好地体现新课改的精神,以学生为本;要求考生拼拼、画画后再证明结论,这样的考查方式比以往直接给出结论要求学生证明的方式更有意义,考生在拼拼、画画、证明结论的过程中,感受数学知识的形成与发展的过程,既考查了学生通过观察、操作、实验等合情推理的方式发现数学结论的能力,也让考生初步体会了科学发现的一些过程;第(3)问具有开放性,其解决过程和答案都是多元化的,通过具体问题情景的设置,对考生的创新精神、实践能力和探究能力进行考查,以此引导学生学会学习.解:(1)图形要规范、正确.如图,写出是直角梯形.(2)∵ S 梯形 =()2)(21)(21b a b a b a +=++, S 梯形 =222121221c ab c ab +=+⨯ ∴2221)(21c ab b a +=+. 整理,得 222c b a =+.(3)拼出能证明勾股定理的图形即可.下面举出三种拼图方法:例2(1)四年一度的国际数学家大会于2002年8月20日在北京召开. 大会会标如图甲. 它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形. 若大正方形的面积为13,每个直角三角形两条直角边的和是5. 求中间小正方形的面积.(2)现有一张长为6.5cm 、宽为2cm 的纸片,如图乙,请你将它分割成6块,在拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并表明相应数据)分析:(1)设直角三角形的较长直角边长为a ,较短直角边长为b ,则小正方形的边长为a-b. 由题意得a+b=5① 由勾股定理,得a 2+b 2=13②. ①2 – ②,得 2ab=12.∴(a-b)2 = a 2+b 2-2ab=13 –12 =1③. 即 所求的中间小正方形的面积为1. (2)所拼成的正方形的面积为6.5×2= 13(cm 2),所以,可按照图甲制作. 由③,得a-b=1.由①、③组成方程组解得 a=3,b=2.结合题意,每个直角三角形的较长的直角边只能在纸片6.5cm 的长边上截取,去掉四个直角三角形后,余下的面积为13-12×3×2×4=13-12=1(cm 2),恰好等于中间的小正方形面积.于是,得到以下分割拼合方法:小结:例1拼合、例2分割相得益彰.例3据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三、股四、弦五”.⑴观察:3,4,5;5,12,13;7,24,25;……,发现这些勾股数的勾.都是奇数,且从3起就没有间断过.计算)19(21-、)19(21+与)125(21-、)125(21+,并根据你发现的规律,分别写出能表示7,24,25的股.和弦.的算式; ⑵根据⑴的规律,用n (n 为奇数且...n ≥3)的代数式来表示所有这些勾股数的勾.、股.、弦.,图甲图乙3cm 3cm 0.5cm 13cm 1cm1cm0.5cm 3cm 2cm 13cm 2cm合情猜想他们之间二种相等关系并对其中一种猜想加以证明;⑶继续观察4,3,5; 6,8,10; 8,15,17;……,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m (m 为偶数且...m >4)的代数式来表示他们的股.和弦.. 分析:本小题是研究勾股数,考查学生观察、分析、类比、猜想、验证和证明. 由题中给出的勾股数的构成形式,便可掌握勾股数的构成规律,从而得到勾股数的一般形式,这是一个由特殊到一般的思维过程.由于考生学习经验和思考角度不同,所提出的新结论和证明必然是多样化、多层次的,应尊重各层次考生经独立思考后的想法,保护考生的创新意识.解:(1)∵4)19(21=-,5)19(21=+;12)125(21=-,13)125(21=+; ∴7,24,25的股的算式为()1721)149(212-=-弦的算式为()1721)149(212+=+(2)当n 为奇数且n ≥3,勾、股、弦的代数式分别为:n , ()1212-n ,()1212+n .例如关系式①:弦-股=1;关系式②:222弦股勾=+ 证明关系式①:弦-股=()()()()[]111211211212222=--+=--+n n n n 或证明关系式②:()()2222422222141412141121弦股勾=+=++=⎥⎦⎤⎢⎣⎡-+=+n n n n n∴猜想得证.(3)例如探索得,当m 为偶数且m >4时,股、弦的代数式分别为:122-⎪⎭⎫ ⎝⎛m ,122+⎪⎭⎫⎝⎛m 例如:连结两组勾股数中,上一组的勾、股与下一组的勾的和等于下一组的股. 即上一组为:n ,()1212-n ,()1212+n (n 为奇数且n ≥3), 分别记为:A 1、B 1、C 1,下一组为:2+n ,()[]12212-+n ,()[]12212++n (n 为奇数且n ≥3), 分别记为:A 2、B 2、C 2, 则:A 1+B 1+ A 2=n +()1212-n +(2+n )=()34212++n n =()[]12212-+n = B 2. 或B 1+ C 2= B 2+ C 1(证略)等等.例4如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S 1、S 2、S 3表示,为使S 1、S 2、S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?证明你的结论;(4) 类比(1)、(2)、(3)的结论,请你总结出一个更具一般意义的结论 .解:设直角三角形ABC 的三边BC 、CA 、AB 的长分别为a 、b 、c ,则c 2=a 2+b 2 .(1) S 1=S 2+S 3 .(2) S 1=S 2+S 3 . 证明如下:显然,S 1=23c ,S 2=23a , S 3=23b ,∴S 2+S 3=22233()a b c +==S 1 .(也可用三角形相似证明)(3) 当所作的三个三角形相似时,S 1=S 2+S 3 . 证明如下:∵ 所作三个三角形相似, ∴22322211,.S S a b S c S c == 2223123211,S S a b S S S S c ++∴==∴=+.(4) 分别以直角三角形ABC 三边为一边向外作相似图形,其面积分别用S 1、S 2、S 3表示,则S 1=S 2+S 3下面的问题是关于数学大会会标设计与勾股定理知识的综合运用 例5阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.OA 1 OA 2OA 3OA 4OA 5OA 6OA 7OA 8解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072 例62002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2b a +的值为( )(A )13 (B )19 (C )25 (D )169分析:由勾股定理,结合题意得a 2+b 2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a 2+b 2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12.∴ (a+b)2 = a 2+b 2+2ab =13+12=25. 因此,选C. 说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》.赵爽在这本书中,画了一个弦图:两个全等的直角三角形(三角形涂上朱色,它的面积叫做“朱实”)合起来形成矩形,四个这样的矩形合成一个正方形,中间留出了一个正方形的空格(涂上黄色,其面积叫做“中黄实”,也叫“差实”).赵爽释注道:“色股各自乘,并之为弦实,开方除之即弦. ”开方除之是当时开方运算的术语. 上面这句话实际上就是勾股定理即:a 2+b 2=c 2.他又巧妙地证明出:“按弦图,又可以勾股乘朱实二,信之为朱实四. 以勾股之差自相乘中黄实. 加差实亦成弦实. ”即2ab+(b-a )2=c 2 化简便得出:a 2+b 2=c 2这个证明不但是勾股定理最早的严谨的证明,而且也是有史以来勾股定理证明中最巧妙的一个.【每周一练】 一、选择题1、有六根细木棒,它们的长度分别是2、4、6、8、10、12(单位:cm ),从中取出三根首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为( )(A )2、4、8 (B )4、8、10 (C )6、8、10 (D )8、10、122、木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据?( )A.25,48,80 B .15,17,62 C .25,59,74 D .32,60,68CA BD3、如果直角三角形的三条边2,4,a,那么a的取值可以有()(A)0个(B)1个(C)2个(D)3个4、已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是()(A)2厘米(B)4厘米(C)6厘米(D)8厘米5、如图,直角三角形三边上的半圆的面积依次从小到大记作S1、S2、S3,则S1、S2、S3之间的关系是()(A)S1+S2>S3(B)S1+S2<S3(C)S1+S2=S3(D)S12+S22=S32二、填空题1、若直角三角形斜边长为6,则这个三角形斜边上的中线长为______.2、如果直角三角形的两条直角边的长分别是5cm和12cm,那么这个直角三角形斜边上的中线长等于cm.3、如图,CD是Rt⊿ABC斜边AB上的中线,若CD=4,则AB= .4、在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=cm.5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.7、如图,为了求出湖两岸A、B两点之间的距离,观测者从测点A、B分别测得∠BAC=90°,∠ABC=30°,又量得BC=160 m,则A、B两点之间的距离为m(结果保留根号)8、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而c2=+.化简后即为c2=.8米2米8米第6题图6012140B6AC第5题图bc9、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为.10、2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是 . 11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是 .12、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A′,使梯子的底端A′ 到墙根O 的距离等于3米,同时梯子的顶端B 下降至B′,那么BB′等于1米;②大于1米;③小于1米.其中正确结论的序号是________________. 13、观察下面各组数:(3,4,5)、(5,12,13)、(7,24,25)、(9,40,41)、…,可发现:4=2132-,12=2152-,24=2172-,…,若设某组数的第一个数为k ,则这组数为(k , , ). 三、解答题1、n 2 3 4 5 … a 22-1 32-1 42-1 52-1 … b 4 6 8 10 … c 22+1 32+1 42+1 52+1 …(1) 分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n>1)的代数式表示:a = ,b = ,c =(2)猜想:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜想.2、若正整数a 、b 、c 满足方程a 2+b 2=c 2 ,则称这一组正整数(a 、b 、c )为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:(1) 商高数的三个数中,有几个偶数,几个奇数? (2) 写出各数都大于30的两组商高数.(3) 用两个正整数m 、n (m >n )表示一组商高数,并证明你的结论. 3、阅读并填空:寻求某些勾股数的规律:B B'OA A'⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:222543=+,我们把它扩大2倍、3倍,就分别得到2221086=+和22215129=+,……若把它扩大11倍,就得到 ,若把它扩大倍,就得到 . ⑵对于任意一个大于1的奇数,存在着下列勾股数:若勾股数为3,4,5,因为222453-=,则有5432+=;若勾股数为5,12,13,则有131252+=;若勾股数为7,24,25,则有 ;……若勾股数为m (m 为奇数),n , ,则有=2m ,用m 来表示n = ; 当17=m 时,则n = ,此时勾股数为 . ⑶对于大于4的偶数:若勾股数为6,8,10,因为2228106-=,则有……请找出这些勾股数之间的关系,并用适当的字母表示出它的规律来,并求当偶数为24的勾股数.4、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD 倒下到AB C D '''的位置,连结CC ',设,,AB a BC b AC c ===,请利用四边形BCC D ''的面积证明勾股定理:222a b c +=.5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EFGH 都是正方形. 证:△ABF ≌△DAE6、仔细观察图形,认真分析各式,然后解答问题.;23,4)3(;22,31)2(;21,21)1(322212==+==+==+S S S (1)请用含有n (n 是正整数)的等式表示上述变化规律;D 'A B 'D C 'A B C bc 第4题图ABCDEFGH1……S 1A 2S 2A 3S 3S 4S 5A 6A 5A 4A 1O 11111(2)推算出OA 10的长;(3)求出210232221S S S S ++++ 的值.【参考答案】 一、选择题1、C2、D3、B4、B5、C 二、填空题1、3;2、6.5;3、判断一个三角形是直角三角形分类讨论8;4、6;5、100mm ;6、10;7、803;8、ab 214⨯,b 2 – a 2,a 2+b 2 ; 9、4,6;10、13;11、122(或4096)12、③;13、212-k ,212+k三、解答题1、解:(1)n 2-1 2 n n 2+1(2)答:以a 、b 、c 为边的三角形是直角三角形证明:∵a 2+ b 2=(n 2-1)2+4 n 2= n 4-2 n 2+1+4 n 2= n 4+2 n 2+1=( n 2+1)2=c 2 ∴以a 、b 、c 为边的三角形是直角三角形2、分析:由题中给出的五组商高数的构成形式,便可掌握商高数的构成规律,从而得到商高数的一般形式,这是一个由特殊到一般的思维过程. 解:(1)有一个偶数、两个奇数或三个偶数. (2)(40,42,58,),(119,120,169) (3)a = 2mn , b = m 2 – n 2, c = m 2 + n 2 证明:a 2 +b 2 = (2 m n)2+ ( m 2 – n 2)2= 4m 2n 2 +m 4 -2m 2n 2n +4= m 4 +2m 2n 2+n 4 = (m 2+n 2 )2 ∴ a 2+b 2 = c 23、⑴222554433=+ 222)5()4()3(n n n =+⑵252472+= 1+n 12+n 212-m 144 (17,144,145)⑶)810(28106222+=-=)1517(215178222+=-= )2426(2242610222+=-= )3537(2353712222+=-=)1(4)22(2)2(222+=+=-+=n n n n m442-=m n当24=m 时,14344242=-=n ,1452=+n 当偶数为24的勾股数:(24,143,145) 4、证明:四边形BCC D ''为直角梯形,21()()22BCC D a b S BC C D BD ''+'''∴=+⋅=梯形 Rt ABC △≌ Rt AB C ''△,BAC BAC '∴∠=∠.90CAC CAB B AC CAB BAC '''''∴∠=∠+∠=∠+∠=︒.(或:矩形ABCD 绕点A 旋转90︒,AC 旋转到AC '的位置,则90CAC '∠=︒)ABC CAC D AC BCC D S S S S '''''∴=+△△△梯形+2211122222c ab ab c ab +=++=. 22222()2.22a b c aba b c ++∴=∴+=.5、分析:在小学我们就知道,正方形的四条边相等,四个角都是直角. ∴∠BAF= 900-∠DAE=∠ADE.在Rt △ABF 与△DAE 中,∠BAF=∠ADE ,AB=AD ∴△ABF ≌△DAE(AAS). 6、解:(1)2,11)(2nS n n n =+=+ (2)∵OA 1=1,OA 2=2,OA 3=3,…,OA 10=10(3)455)210()23()22()21(2222210232221=+++=++++ S S S S。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。

第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

人教版八年级数学下册17.1.2勾股定理优秀教学案例

人教版八年级数学下册17.1.2勾股定理优秀教学案例
1.引导学生对自己的学习过程进行反思,总结勾股定理的学习方法和技巧,提高自主学习能力。
2.开展多元化的评价活动,如课堂提问、小组讨论、课后作业等,全面了解学生的学习情况,给予针对性的指导。
3.鼓励学生积极参与教学评价,让他们在评价中学会自我认识、自我提高,培养他们的自信心和自尊心。
四、教学内容与过程
1.利用多媒体展示我国古代建筑中蕴含的勾股定理元素,如古代城墙、宫殿等,让学生感受到数学文化的魅力。
2.创设实际问题情景,如测量学校旗杆的高度、计算操场跑道的长度等,引导学生运用勾股定理解决问题。
3.通过讲述数学家的故事,如毕达哥拉斯发现勾股定理的传说,激发学生对数学知识的探究欲望。
(二)问题导向
以问题为导向的教学策略能够激发学生的思维,培养他们自主探究、解决问题的能力。在本章节中,我将:
5.作业与实践相结合
在作业设计上,本案例将理论性与实践性相结合,让学生在实际操作中巩固所学知识。作业任务既有实际问题的求解,也有勾股定理证明的挑战,有助于培养学生的动手能力和逻辑思维能力。
1.提出具有挑战性的问题,如“如何用勾股定理解决实际问题?”“有没有其他方法证明勾股定理?”等,引导学生深入思考。
2.鼓励学生提出自己的疑问,培养他们的问题意识,帮助他们从多角度、多层次理解勾股定理。
3.设计问题链,引导学生逐步深入探讨勾股定理的内涵和外延,提高他们的逻辑思维能力。
(三)小组合作
小组合作学习有助于培养学生的团队精神和协作能力,提高课堂教学效果。在本章节教学中,我将:
3.通过一个动画短片,介绍勾股定理的发现者——古希腊数学家毕达哥拉斯的故事,为学生揭示勾股定理的历史背景。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

《勾股定理》教学案例及反思

《勾股定理》教学案例及反思

《勾股定理》教学案例及反思《《勾股定理》教学案例及反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】一、知识目标1.了解勾股定理的历史背景,体会勾股定理的探索过程.2.掌握直角三角形中的三边关系和三角之间的关系。

二、数学思考在勾股定理的探索过程中,发现合理推理能力.体会数形结合的思想.三、解决问题1.通过探究勾股定理(正方形方格中)的过程,体验数学思维的严谨性。

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

四、情感态度目标1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探究精神。

【重点难点】重点:探索和证明勾股定理。

难点:应用勾股定理时斜边的平方等于两直角边的平方和。

疑点:灵活运用勾股定理。

【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。

让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。

【教学流程安排】活动一:了解历史,探索勾股定理活动二:拼图验证并证明勾股定理活动三:例题讲解,:巩固练习,活动四:反思小结,布置作业活动内容及目的:通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣。

观察、分析方格图,得到指教三角形的性质——勾股定理,发展学生分析问题的能力。

通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神,回顾、反思、交流。

布置作业,巩固、发展提高。

【教学过程设计】【活动一】(一)问题与情景1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)我国著名的《算经十书》最早的一部《周髀算经》。

勾股定理教学案例

勾股定理教学案例

勾股定理教学案例遵义县松林镇松林中学袁仕强一、教材分析这节课是九年制义务教育初级中学教材人教版八年级下册第十八章第一节《勾股定理》第一课时:勾股定理。

勾股定理是反映自然界基本规律的一条重要结论,它是直角三角形的一条重要性质,揭示了一个直角三角形三边之间的数量关系。

它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。

它可以解决许多直角三角形中的计算问题。

勾股定理有着悠久的历史,在数学发展中起过重要的作用,在现实世界中有着广泛的作用。

是初中数学教学内容重点之一。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

也可了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。

二、学情分析本班学生都能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问。

三、教学设想1.课型:新授课2、教学方法:运用新课程标准下的新课题“情景-问题”法开展教学。

2.设计理念:本教案以情景展开,以学生提出问题为主线贯穿课堂始终,体验勾股定理的探索、证明、运用过程,激发学生学习数学的兴趣,通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

3.教学思路:创设贴近学生生活、生动有趣的问题情境,通过情景-问题-探索结论-得出结论-历史介绍-初步应用结论-应用结论解决简单的实际问题。

四、教学目标(一)知识目标1、提出问题,提出与众不同的问题。

2.掌握新知,即直角三角形三边之间的关系。

3.理解勾股定理的内涵,并能用勾股定理进行简单的计算。

4.通过情景-问题,让学生经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想。

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
3.小组合作:教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。这种小组合作的方式不仅能够提高学生的团队合作精神,还能够培养学生的创新思维和问题解决能力。
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点

人教版八年级下册第十七章17.1勾股定理优秀教学案例

人教版八年级下册第十七章17.1勾股定理优秀教学案例
本节课的教学目标是使学生理解勾股定理的含义,掌握勾股定理的应用,培养学生的空间想象能力、逻辑推理能力和团队合作能力。通过本节课的学习,学生能够熟练运用勾股定理解决实际问题,为后续学习打下坚实的基础。
二、教学目标(一)知识与来自能1.让学生掌握勾股定理的定义和表述,能够正确运用勾股定理计算直角三角形的长度。
3.培养学生运用数学知识解决实际问题的能力,使其能够将所学知识运用到生活实践中,提升学生的数学应用意识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力,使其能够主动参与数学学习。
2.培养学生勇于探究、积极思考的科学精神,使其能够面对数学问题,勇于挑战,不断提高解决问题的能力。
(三)小组合作
1.将学生分成小组,鼓励学生相互讨论、交流,共同解决问题。教师给予适当的引导和帮助,促进学生之间的合作与交流。
2.设计小组活动,让学生通过实际操作,探究勾股定理的应用。例如,让学生用硬纸板制作直角三角形,测量其边长,并验证勾股定理。
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高学生的合作能力和团队意识。
在教学案例中,我以生动的生活情境导入,激发学生的学习兴趣,引导学生从实际问题中抽象出数学问题。在探究过程中,我鼓励学生运用合作、交流、归纳等学习方法,培养他们的团队协作能力和表达能力。同时,我注重引导学生运用数学知识解决实际问题,提高他们的数学应用能力。
在教学过程中,我遵循由浅入深、循序渐进的原则,让学生在掌握基础知识的同时,提高他们的思维品质。针对学生的个体差异,我采取差异化的教学策略,关注每一个学生的成长,使他们在课堂上充分展示自己,提高自信心。
五、案例亮点
1.生活情境导入:通过展示实际生活中的直角三角形实例,激发学生的学习兴趣,使其能够主动参与到课堂学习中。这种教学方式体现了“从生活走向数学”的新课程理念,有助于提高学生的学习积极性。

初中数学教学典型案例分析勾股定理

初中数学教学典型案例分析勾股定理

初中数学教学典型案例分析?勾股定理?我仅从四个方面,借助教学案例分析的形式,向教师们汇报一下我个人数学教学的体会,这四个方面是:1.在多样化学习活动中实现三维目标的整合;2.课堂教学进程中的预设和生成的动态调整;3.对数学习题课的试探;4.对课堂提问的试探。

第一,结合?勾股定理?一课的教学为例,谈谈如安在多样化学习活动中实现三维目标的整合案例1:?勾股定理?一课的课堂教学第一个环节:探讨勾股定理的教学师〔出示4幅图形和表格〕:观看、计算各图中正方形A、B、C的面积,完成表格,你有什么发觉?生:从表中能够看出A、B两个正方形的面积之和等于正方形C的面积。

而且,从图中能够看出正方形A、B的边确实是直角三角形的两条直角边,正方形C的边确实是直角三角形的斜边,依照上面的结果,能够得出结论:直角三角形的两条直角边的平方和等于斜边的平方。

那个地址,教师设计问题情境,让学生探讨发觉“数〞与“形〞的紧密关联,形成猜想,主动探讨结论,训练了学生的归纳推理的能力,数形结合的思想自然取得运用和渗透,“面积法〞也为后面定理的证明做好了铺垫,双基教学寓于学习情境当中。

第二个环节:证明勾股定理的教学教师给各小组发奋制作好的直角三角形和正方形纸片,先分组拼图探讨,在交流、展现,让学生在实践探讨活动中形成新的能力 (试图发觉拼图和证明的规律:同一个图形面积用不同的方式表示)。

学生展现略通过小组探讨、展现证明方式,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的明白得构造图形,让学生在探求证明方式的进程中深刻明白得数学思想方式,提升创新思维能力。

第三个环节:运用勾股定理的教学师〔出示右图〕:右图是由两个正方形组成的图形,可否剪拼为一个面积不变的新的正方形,假设能,看谁剪的次数最少。

生〔出示右图〕:能够剪拼成一个面积不变的新的正方形,设原先的两个正方形的边长别离是a、b,那么它们的面积和确实是a2+ b2,由于面积不变,因此新正方形的面积应该是a2+ b2,因此只若是能剪出两个以a、b为直角边的直角三角形,把它们从头拼成一个边长为a2+ b2 的正方形就好了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教学典型案例分析《勾股定理》我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。

首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合案例1:《勾股定理》一课的课堂教学第一个环节:探索勾股定理的教学师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?生:从表中可以看出A、B两个正方形的面积之和等于正方形C 的面积。

并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。

这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。

第二个环节:证明勾股定理的教学教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。

学生展示略通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。

第三个环节:运用勾股定理的教学师(出示右图):右图是由两个正方形组成的图形,能否剪拼为一个面积不变的新的正方形,若能,看谁剪的次数最少。

生(出示右图):可以剪拼成一个面积不变的新的正方形,设原来的两个正方形的边长分别是a、b,那么它们的面积和就是a2+ b2,由于面积不变,所以新正方形的面积应该是a2+ b2,所以只要是能剪出两个以a、b为直角边的直角三角形,把它们重新拼成一个边长为a2+ b2 的正方形就行了。

问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。

教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。

第四个环节:挖掘勾股定理文化价值师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。

它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。

勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。

在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。

它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。

新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。

2.课堂教学过程中的预设和生成的动态调整案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。

为了使第三架天平(图③)也处于平衡状态,则“?”处应放个物体b?图①图②?图③通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。

我讲解的设计思路是这样的:一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模):图①:2a=c+b. 图②: a+b=c.因此,2a=(a+b)+b.可得:a=2b,c=3b .所以,a+c = 5b.答案应填5.我自以为思维严密,有根有据。

然而,在让学生展示自己的想法时,却出乎我的意料。

学生1这样思考的:假设b=1,a=2,c=3.所以,a+c = 5,答案应填5.学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上。

面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果。

因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整。

我先对学生1的方法进行积极地点评,肯定了这种思维方式在探索问题中的积极作用,当那几个同样做法的学生自信心溢于言表时,我随后提出这样一个问题:“你怎么想到假设b=1, a=2, c=3?a、b、c是不是可以假设为任意的三个数?”有的学生不假思索,马上回答:“可以是任意的三个数。

”也有的学生持否定意见,大多数将信将疑,全体学生被这个问题吊足了胃口,我趁机点拨:“验证一下吧。

”全班学生立刻开始思考,验证,大约有3分钟的时间,学生们开始回答这个问题:“b=2,a=3,c=4时不行,不能满足图①、图②中的数量关系。

”“b=2,a=4,c=6时可以。

结果也该填5.”“b=3,a=6,c=9时可以,结果也一样。

”“b=4,a=8,c=12时可以,结果也一样。

”“我发现,只要a是b的2倍,c是b的3倍就能满足图①、图②中的数量关系,结果就一定是5.”这时,学生的思维已经由特殊上升到一般了,也就是说在这个过程中,学生的归纳推理得到了训练,对特殊值法也有了更深的体会,用字母表示发现的规律,进而得到a=2b,c=3b.所以,a+c = 5b. 答案应填5.我的目的还没有达到,继续抛出问题:“我们列举了好多数据,发现了这个结论,你还能从图①、图②中的数量关系本身,寻找更简明的方法吗?”学生又陷入深深地思考中,当我巡视各小组中出现了“图①:2a=c+b. 图②: a+b=c.”时,我知道,学生的思维快与严密的逻辑推理接轨了。

我们是不是都有这样的感受,课堂教学设计兼具“现实性”与“可能性”的特征,这意味着课堂教学设计方案与教学实施过程的展开之间不是“建筑图纸”和“施工过程”的关系,即课堂教学过程不是简单地执行教学设计方案的过程。

在课堂教学展开之初,我们可能先选取一个起点切入教学过程,但随着教学的展开和师生之间、生生之间的多向互动,就会不断形成多个基于不同学生发展状态和教学推进过程的教学“新起点”。

因此课堂教学设计的起点并不是唯一的,而是多元的;不是确定不变的,而是预设中生成的;不是按预设展开僵硬不变的,而是在动态中调整的。

3.一节数学习题课的思考案例3:一位教师的习题课,内容是“特殊四边形”。

该教师设计了如下习题:题1 (例题)顺次连接四边形各边的中点,所得的四边形是怎样的四边形?并证明你的结论。

题2 如右图所示,△ABC中,中线BE、CF交于O, G、H分别是BO、CO的中点。

(1)求证:FG∥EH;(2)求证:OF=CH.题3 (拓展练习)当原四边形具有什么条件时,其中点四边形为矩形、菱形、正方形?题4 (课外作业)如右图所示,DE是△ABC的中位线,AF是边BC上的中线,DE、AF相交于点O.(1)求证:AF与DE互相平分;(2)当△ABC具有什么条件时,AF = DE。

(3)当△ABC具有什么条件时,AF⊥DE。

教师先让学生思考第一题(例题)。

教师引导学生画图、观察后,进入证明教学。

师:如图,由条件E、F、G、H是各边的中点,可联想到三角形中位线定理,所以连接BD,可得EH、FG都平行且等于BD,所以EH平行且等于FG,所以四边形EFGH是平行四边形,下面,请同学们写出证明过程。

只经过五六分钟,证明过程的教学就“顺利”完成了,学生也觉得不难。

但让学生做题2,只有几个学生会做。

题3对学生的困难更大,有的模仿例题,画图观察,但却得不到矩形等特殊的四边形;有的先画矩形,但矩形的顶点却不是原四边形各边的中点。

评课:本课习题的选择设计比较好,涵盖了三角形中位线定理及特殊四边形的性质与判定等数学知识。

运用的主要方法有:(1)通过画图(实验)、观察、猜想、证明等活动,研究数学;(2)沟通条件与结论的联系,实现转化,添加辅助线;(3)由于习题具备了一定的开放性、解法的多样性,因此思维也要具有一定的深广度。

为什么学生仍然不会解题呢?学生基础较差是一个原因,在教学上有没有原因?我个人感觉,主要存在这样三个问题:(1)学生思维没有形成。

教师只讲怎么做,没有讲为什么这么做。

教师把证明思路都说了出来,没有引导学生如何去分析,剥夺了学生思维空间;(2)缺少数学思想、方法的归纳,没有揭示数学的本质。

出现讲了这道题会做,换一道题不会做的状况;(3)题3是动态的条件开放题,相对于题1是逆向思维,思维要求高,学生难把握,教师缺少必要的指导与点拨。

修正:根据上述分析,题1的教学设计可做如下改进:首先,对于开始例题证明的教学,提出“序列化”思考题:(1)平行四边形有哪些判定方法?(2)本题能否直接证明EF∥FG , EH=FG? 在不能直接证明的情况下,通常考虑间接证明,即借助第三条线段分别把EH和FG的位置关系(平行)和数量关系联系起来,分析一下,那条线段具有这样的作用?(3)由E、F、G、H是各边的中点,你能联想到什么数学知识?(4)图中有没有现成的三角形及其中位线?如何构造?设计意图:上述问题(1)激活知识;问题(2)暗示辅助线添加的必要性,渗透间接解决问题的思想方法;问题(3)、(4)引导学生发现辅助线的具体做法。

其次,证明完成后,教师可引导归纳:我们把四边形ABCD称为原四边形,四边形EFGH称为中点四边形,得到结论:任意四边形的中点四边形是平行四边形;辅助线沟通了条件与结论的联系,实现了转化。

原四边形的一条对角线沟通了中点四边形一组对边的位置和数量关系。

这种沟通来源于原四边形的对角线同时又是以中点四边形的边为中位线的两个三角形的公共边,由此可感受到,起到这种沟通作用的往往是图形中的公共元素,因此,在证明中一定要关注这种公共元素。

然后,增设“过渡题”:原四边形具备什么条件时,其中点四边形为矩形?教师可点拨思考:怎样的平行四边形是矩形?结合本题特点,你选择哪种方法?考虑一个直角,即中点四边形一组邻边的位置关系。

一组邻边位置和数量关系的变化,原四边形两条对角线的位置和数量关系也随之变化。

根据修正后的教学设计换个班重上这节课,这是效果明显,大部分学生获得了解题的成功,几个题都出现了不同的证法。

相关文档
最新文档