初中数学中考模拟题及答案(一)
备战2023年北京市中考数学全真模拟试卷一(含解析)
黄金卷1(满分100分,考试用时120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列立体图形中,从正面看得到的图形是圆的是( )A .B .C .D .【答案】D【详解】解:从正面看选项A 中的图形是两个长方形, 从正面看选项B 中的图形是长方形, 从正面看选项C 中的图形是三角形, 从正面看选项D 中的图形是圆, 故选D2.2022年12月28日,第26届长春冰雪节开幕.长春市重点打造的世界级冰雪主题乐园-“长春冰雪新天地”流光溢彩,该园占地超1560000平方米.数字1560000用科学记数法可以表示为( ) A .51.5610⨯ B .61.5610⨯C .415610⨯D .515.610⨯【答案】B【详解】解:61560000 1.5610=⨯, 故选:B .3.如图,AB CD P ,若165∠=︒,则2∠的度数是( )A .65︒B .105︒C .115︒D .125︒【答案】C【详解】解:如图,AB CD ∥Q ,23180∴∠+∠=︒,1365∠=∠=︒Q , 265180∴∠+︒=︒,218065115∴∠=︒−︒=︒,故选:C .4.实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A .a b <B .0a b +<C .0a b −>D .0ab >【答案】A【详解】解:根据题意,得21a −<<−,23b <<, ∴12a <<,23b <<,∴a b <,0a b +>,0a b −<,0ab <, ∴选项A 正确,选项B 、C 、D 错误. 故选:A .5.学校新开设了航模、彩绘两个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .23B .12C .13D .14【答案】B【详解】解:由题意,画树状图如图所示:由图可知,征征和舟舟选择社团共有4种等可能的结果,其中,征征和舟舟选到同一社团的有2种情况,则征征和舟舟选到同一社团的概率是2142P ==. 故选:B .6.若关于x 的方程20x mx n ++=有两个相等的实数根,则方程21x mx n ++=−的根的情况是( ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根【答案】D【详解】Q 20x mx n ++=有两个相等的实数根, 24=0m n ∴−,一元二次方程21x mx n ++=−,即2+10x mx n ++=,()222=4=4+1=44=04=40b ac m n m n ∆−−⨯−−−−<,使用方程21x mx n ++=−没有实数根. 故选:D .7.下列图形中,既是中心对称图形又是轴对称图形,且对称轴条数最多的是( )A .B .C .D .【答案】C【详解】解:A .既是中心对称图形又是轴对称图形,有2条对称轴; B .既是中心对称图形又是轴对称图像,有2条对称轴; C .既是中心对称图形又是轴对称图形,有4条对称轴; D .不是中心对称图形,是轴对称图形,有3条对称轴 故选:C8.下面的四个选项中都有两个变量,其中变量y 与变量x 之间的函数关系可以用如图所示的图像表示的是( )A .圆的面积y 与它的半径x ;B .正方形的周长y 与它的边长x ;C .用长度一定的铁丝围成一个矩形,矩形的面积y 与一边长x ;D .小明从家骑车去学校,路程一定时,匀速骑行中所用时间y 与平均速度x ; 【答案】C【详解】解:A 、圆的面积y 与它的半径x 的关系式为2y x π=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;B 、正方形的周长y 与它的边长x 的关系式为4y x =,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;C 、设铁丝的长度为a ,则矩形的面积22122a xy x x ax −=⋅=−+,变量y 与变量x 之间的函数关系可以用如图所示的图像表示,故此选项符合题意;D 、设路程为s ,则所用时间y 与平均速度x 的关系式为sy x=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意, 故选:C .二、填空题(本大题共8小题,每小题2分,共16分) 9x 的取值范围是___________. 【答案】2x ≤【详解】解:根据题意,得20x −≥, 解得2x ≤. 故答案为:2x ≤.10.把多项式22369a b ab b −+分解因式的结果是________. 【答案】2(3)b a b −【详解】解:22369a b ab b −+ ()2269b a ab b =−+2(3)b a b =−.故答案为:2(3)b a b −. 11.分式方程3122x xx x−+=−−的解是_____. 【答案】x 53=【详解】解:3122x xx x−+=−−, 去分母得:3﹣x ﹣x =x ﹣2, 解得:x 53=,经检验x 53=是分式方程的解.故答案为:x 53=.12.如图,平面直角坐标系中,若反比例函数()0ky k x=≠的图象过点A 和点B ,则a 的值为______.【答案】32##1.5【详解】解:依题意,将点()1,3A −代入ky x=,得出3k =−, ∴反比例数解析式为3y x =−,当2x =−时,32y =, 即32a =, 故答案为:32.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.【答案】70【详解】解:由表可知: ∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.【答案】5【详解】解:如图,过D作DE⊥AB于E,△DAE和△DAC中,AD平分∠BAC,则∠DAE=∠DAC,∠DEA=∠DCA=90°,DA=DA,∴△DAE≌△DAC(AAS),∴DE=DC=2,∴△ABD的面积=12×AB×DE=12×5×2=5,故答案为:5;15.如图,ABCD中,连接BD,E是BD上一点,连接AE并延长交CD于F,交BC延长线于点G,若2,3EF FG==,则AE=________.【详解】解:如图,过点E作EH AD∥,∴EFH AFD ∽V V , ∴EH EF AD AF =,即22EH AD AE =+, ∵四边形ABCD 是平行四边形, ∴AD BC ∥,AD BC =, ∴EH BC ∥, ∴DEH DBC ∽V V , ∴EH DEBC BD=, ∵AD BC ∥,∴ADE GBE ∽V V, ∴AE AD DE EG BG BE==, ∴DE AEBD AG=, ∴AE EH AG BC =,即23AE EHAE AD=++, ∴2232AE AE AE =+++,解得:AE =,16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】160180【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.(5分)计算:()20233tan 4512sin 60−+︒+−−︒.【答案】3【详解】解:()20233tan 4512sin 60−+︒+−−︒31122=+−−⨯3=18.(5分)解不等式组()815171062x x x x ⎧+>−⎪⎨−−≤⎪⎩.【答案】2523x −≤< 【详解】8(1)5171062x x x x +−⎧⎪⎨−−≤⎪⎩>①②, 由①式得:253x ≥−; 由②式得:2x ≤; ∴不等式组的解集为:2523x −≤< 19.(5分)先化简,再求值:()()()212323x x x +−+−,其中x 满足23220320x x −−=. 【答案】23210x x −++,2022− 【详解】解:()()()212323x x x +−+−222149x x x =++−+ 23210x x =−++, ∵23220320x x −−=,∴2322032x x −=,即2322032x x −+=−, ∴当23220320x x −−=时, 原式2032102022=−+=−.20.(5分)(1)如图1,三角形ABC 中,试用平行线的知识证明180A B C ∠+∠+∠=︒;(2)如图2,将线段BC折断成BDC的形状,证明D A B C∠=∠+∠+∠.【答案】(1)见解析;(2)见解析【详解】(1)证明:如图,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1(两直线平行,同位角相等),∠A=∠2(两直线平行,内错角相等),又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).(2)证明:连接AD并延长,如图1,∵∠2=∠1+∠B,∠4=∠3+∠C,∴∠2+∠4=∠1+∠B+∠3+∠C,∴∠BDC=∠A+∠B+∠C.即∠D=∠A+∠B+∠C.∠=∠,21.(6分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE DF=,A D =.AB DC(1)求证:四边形BFCE 是平行四边形;(2)如果7AD =,2DC =,60EBD ∠=︒,那么当四边形BFCE 为菱形时BE 的长是多少? 【答案】(1)见解析 (2)3【详解】(1)证明:AB DC =Q ,AC DB ∴=,在AEC △和DFB △中,AC DB A D AE DF =⎧⎪∠=∠⎨⎪=⎩, ()SAS AEC DFB ∴V V ≌,BF EC ACE DBF ∴=∠=∠,, EC BF ∴∥,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE CE =,722AD DC AB CD ====Q ,,, 7223BC ∴=−−=, 60EBD ∠=︒Q ,BE CE =, BEC ∴V 是等边三角形,3BE BC ∴==,∴当四边形BFCE 是菱形时,BE 的长是3.22.(5分)如图,已知直线,5y x =+与x 轴交于点A ,直线y kx b =+与x 轴交于点()10B ,,且与直线5y x =+交于第二象限点()C m n ,.若ABC V 的面积为12.(1)求点A 、点C 的坐标;(2)写出关于x 的不等式5x kx b +>+的解集. 【答案】(1)()5,0A −;点C 坐标为()1,4− (2)1x >−【详解】(1)解:在直线5y x =+中,令0y =,则50x += 解得:5x =−,()5,0A ∴−; ()1,0B Q ,()156AB ∴=−−=, ()C m n Q ,,11631222ABC C S AB y n n =⋅=⨯==V Q . 4n ∴=,Q 点(),C m n 在直线AB 上,54m n ∴+==,1m ∴=−,∴点C 坐标为()1,4−;(2)解:由图象可知,不等式5x kx b +>+的解集为1x >−.23.(6分)某校举办了一次 “成语知识竞赛”,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组各10名学生成绩分布的折线统计图和成绩统计分析表如图所示.(1) =a _____,b =_____;(2)小军同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上”观察表格试分析判断,小军是哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意他的说法,认为乙组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由. 【答案】(1)6.8,7.5 (2)小军属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定【详解】(1)解:由题意,得()131657192101 6.810a =⨯⨯+⨯+⨯+⨯+⨯=; 把乙组成绩从低到高排在中间的两个数为7分,8分,故()7827.5b =+÷=. 故答案为:6.8,7.5;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小军的成绩位于小组中上游 ∴小军属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高; ②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.24.(6分)如图,ABC V 是O e 的内接三角形,CD 是O e 的直径,AB CD ⊥于点E ,过点A 作O e 的切线交CD 的延长线于点F ,连接FB .(1)求证:FB 是O e 的切线.(2)若AC =1tan 2ACD ∠=,求O e 的半径. 【答案】(1)见解析 (2)O e 的半径为5.【详解】(1)证明:连接OA OB 、,∵在O e 中,OA OB =,AB CD ⊥于点E , ∴AOF BOF =∠,在OAF △和OBF V 中,OA OB AOF BOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OAF OBF ≌△△. ∴OAF OBF ∠=∠.又∵AF 切O e 于点A ,OA 为O e 半径, ∴OA FA ⊥, ∴90OAF ∠=︒. ∴90OBF ∠=︒. ∴OB FB ⊥于点B . ∴FB 是O e 的切线;(2)解:∵AB CD ⊥,1tan 2ACD ∠=, ∴1tan 2AE ACD CE ∠==, ∴2CE AE =,∵AC =∴222AE CE AC +=,即()(2222AE AE +=,∴4AE =,8CE =,设O e 的半径为r ,则OA OC r ==,8OE r =−, 在Rt AOE △中,222AE EO AO +=,即()22248r r +−=, 解得=5r , ∴O e 的半径为5.25.(5分)跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离. 【答案】(1)()0,70A ,()40,30P ; (2)21370162y x x =−++; (3)18m【详解】(1)解:70m OA =Q ,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;(2)解:把()0,70A ,()40,30P 代入2116y x bx c =−++ 得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩, 21370162y x x ∴=−++; (3)解:60m OC =Q ,∴设直线BC 的表达式为()600y kx k =+≠,把()40,30P 代入,得304060k =+,解得,34k =−,3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N ,∴3,604N m m ⎛⎫−+ ⎪⎝⎭,213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++ ()22213618181016m m =−−+−+ ()21811810164m =−−++ ()2112118164m =−−+ ()2118016m −−≤Q , ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.26.(6分)在平面直角坐标系xOy 中,点(1,)m −,(4,)n −在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,1x m x ≠−在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围. 【答案】(1)抛物线与y 轴的交点坐标为:()0,2, 52x t ==−.(2)522t −<<−,0x 的取值范围043x −<<−.【详解】(1)解:∵2c =,∴抛物线为:22(0)y ax bx a =++>, ∴当0x =,则2y =,∴抛物线与y 轴的交点坐标为:()0,2,∵m n =,∴点(1,)m −,(4,)n −关于抛物线的对称轴对称, ∴抛物线的对称轴为直线14522x t −−===−. (2)∵m n c <<,∴164a b c a b c c −+<−+<, 解得45a b a <<,∴54a b a −<−<−, 而2>0a , ∴5222b a −<−<−,即522t −<<−, ∵点(1,)m −,()()00,1x m x ≠−在抛物线上, ∴抛物线的对称轴为直线012x x −=, ∴015222x −−<<−, 解得:043x −<<−, ∴0x 的取值范围043x −<<−.27.(7分)在Rt ABC V 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD −=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明. 【答案】(1)见解析(2)如图②CD BD −=,如图③CD BD += 【详解】(1)证明:如图1,在BD 上截取BE CD =,90BAC BDC ∠︒∠==Q ,90ABP APB ∴∠+∠=︒,90ACD DPC ∠+∠=︒.APB DPC ∠=∠Q ,ABP ACD ∴∠=∠.又AB AC =,(SAS)ABE ACD ∴V V ≌,AE AD ∴=,BAE CAD ∠=∠.90EAD EAP CAD EAP BAE ∴∠=∠+∠=∠+∠=︒.在Rt AED V 中,22222DE AE AD AD =+=,∴DE =∴BD CD BD BE ED −=−==;(2)解:如图2,CD BD −=. 在CD 上截取CE BD =,连接AE ,由(1)可知△≌△ADB AEC , AE AD ∴=,BAD CAE ∠=∠,90EAD BAE BAD BAE CAE ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴−=−==,CD BD ∴−=.如图3,CD BD +=.延长DC 至点E ,使得CE BD =,连接AE ,90BAC BDC ∠︒∠==Q ,180ABD ACD ∴∠+∠=︒,180ACD ACE ∠+∠=︒, ABD ACE ∴∠=∠,在ABD △和ACE △中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, (SAS)ADB AEC ∴V V ≌,AE AD ∴=,BAD CAE ∠=∠,90EAD CAE CAD BAD CAD ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴+=+==.28.(7分)在平面直角坐标系中,对点(),P a b 作如下变换:若a b ≥,作点P 关于y 轴的对称点;若a b <,作点P 关于x 轴的对称点,我们称这种变换为“YS 变换”.(1)点()1,0作“YS 变换”后的坐标为___________;点()3,4−作“YS 变换”后的坐标为___________;(2)已知点()1,2A m m ++,(),1B m ,()1,1C m +,其中01m <<,且点A ,B 作“YS 变换”后对应的点分为M ,N 两点,74MNC S =△,求m 的值. (3)已知点()1,5E ,()5,5F ,在EF 即所在直线上方作等腰直角三角形EFG ,若点1,2P a b ⎛⎫− ⎪⎝⎭,()1,Q a b −作“YS 变换”后对应的点分别为P ',Q ',其中a b <,若点G 在线段P Q ''上,求a 的取值范围. 【答案】(1)()1,0−,()3,4−− (2)12m =(3)322a ≤≤或1162a ≤≤或742a ≤≤【详解】(1)解:∵10> ∴作点关于y 轴轴的对称点∴点()1,0作“YS 变换”后的坐标为()1,0− ∵34−<∴作点关于x 轴轴的对称点∴点()3,4−作“YS 变换”后的坐标为()3,4−−; 故填:()1,0−,()3,4−−. (2)解:∵01m <<,∴()1,2A m m ++作YS -变换后的点为()1,2M m m +−−,(),1B m 作YS -变换后的点为(),1N m − ∴()173124MNC S m =+⨯=△ ∴12m =; (3)解:∵a b <,∴点1,2P a b ⎛⎫− ⎪⎝⎭作YS 变换后的点为1,2P a b ⎛⎫'−− ⎪⎝⎭,点()1,Q a b −作YS 变换后的点为()1,Q a b '−−, ∵在EF 上方作等腰直角三角形EFG V ∴()1,8G 或()5,8G 或()3,7G , 分类讨论如下:①当()1,8G 在线段P Q ''上时,则11112a a −≤⎧⎪⎨−≥⎪⎩, ∴322a ≤≤, ②当()5,8G 在线段P Q ''上时,则15152a a −≤⎧⎪⎨−≥⎪⎩,∴1162a ≤≤,②当()3,7G ,在线段P Q ''上时,则13132a a −≤⎧⎪⎨−≥⎪⎩, ∴742a ≤≤ ∴322a ≤≤或1162a ≤≤或742a ≤≤.。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)
2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
2023年广东省深圳市中考数学初中学业水平考试模拟试卷(一)(含答案解析)
2023年广东省深圳市中考数学初中学业水平考试模拟试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.23-的绝对值是()A .23-B .123C .23D .123-2.下面的几何体中,主视图为三角形的是()A.B.C.D.3.深圳2022年市地区生产总值约为32400亿元,32400用科学记数法表示为()A .123.2410⨯B .83240010⨯C .43.2410⨯D .1132.410⨯4.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是()A .这组数据的众数是9.6分B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分5.下列运算正确的是()A .()222a b a b +=+B .()326a a -=C .()22236ab a b =D .()()2224b a ab -⋅-=-6.如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是()A .15︒B .30︒C .45︒D .60︒7.一元一次不等式组71143x x +>⎧⎪-⎨≤⎪⎩解集为()A .B .C .D .8.下列命题中真命题是()A .平分弦的直径必垂直于弦B .有一组邻边相等的四边形为菱形C .()43-,关于x 轴的对称点为()43,-D .有两边及其夹角对应相等的两个三角形全等9.《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?现有一类似问题:今有人组团购一物,如果每人出10元,则多了6元;如果每人出8元,则少了8元,问组团人数和物价各是多少?若设x 人参与组团,物价为y 元,则以下列出的方程组正确的是()A .10688x y x y -=⎧⎨-=⎩B .10688y x y x -=⎧⎨-=⎩C .10688x y y x -=⎧⎨-=⎩D .10688y x x y -=⎧⎨-=⎩10.如图,在菱形ABCD 中,120BAD ∠=︒,DE BC ⊥交BC 的延长线于点E .连接AE 交BD 于点F ,交CD 于点G .FH CD ⊥于点H ,连接CF .有下列结论:①AF CF =;②2CF EF FG =⋅;③:4:5FG EG =;④cos 14GFH ∠=则上述结论中正确的有()A .1个B .2个C .3个D .4个二、填空题11.分解因式:3244x x x -+=______.12.欢欢考试需要复习语文、数学和英语三科,现在需要安排科目顺序,从前到后的顺序恰好为“数学、英语、语文”的概率是____________.13.如图,在Rt △ABC 中,∠C =90°,AC =BC ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠BAC 内交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为2,则BC 的长为___.14.如图,在平面直角坐标系中,OABC 的顶点A ,B 在第一象限内,顶点C 在y 轴上,经过点A 的反比例函数()0ky x x=>的图象交BC 于点D .若3BC BD =,OABC 的面积为6,则k 的值为___.15.如图,在ABC 中,90ACB ∠=︒,AC DC =,AB AE ⊥,且AE=AB ,连接DE 交AC 的延长线于点F ,32AC CF =,则BD CD=______.三、解答题16.计算:()202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭.17.先化简,再求值:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中3x =.18.6月14日是“世界献血日”,某市组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O 人数*105*(1)这次随机抽取的献血者人数为________人,m =________;(2)本次抽取的样本中,A 型部分所占的圆心角的度数是________°;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果估计这3000人中大约有多少人是A 型血?19.如图,O 是ABC 的外接圆,点E 是BAC ∠和ABC ∠角平分线的交点,AE 的延长线交BC 于点F ,O 交于点D ,连接BD .(1)求证:DB DE =;(2)若34AE DF ==,,求DB 的长.20.某公司根据市场需求代理甲,乙两种型号的电脑,每台甲型电脑比每台乙型电脑进价多600元,用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等.(1)求每台甲型、乙型平板的进价各是多少元?(2)该公司计划购进甲、乙两种型号的电脑共80台进行试销,其中甲型电脑为m 台,购买资金不超过39.16万元.并且甲型电脑不少于乙型电脑的3倍,试销时甲型电脑每台售价5500元,乙型电脑每台售价4800元,问该公司应如何购进甲、乙两种型号的电脑使得销售完后获得的利润W 最大?21.小爱同学学习二次函数后,对函数()21y x =--进行了探究,在经历列表、描点、连线步骤后,得到如下的函数图像.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:__________;②方程()211x --=-的解为:__________;③若方程()21x a --=有四个实数根,则a 的取值范围是__________.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <≤时,自变量x 的取值范围.22.如图,在Rt ABC 中,∠ACB =90°,∠A =60°,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转α(60°<α<120°)得到线段ED ,且ED 交线段BC 于点G ,∠CDE 的平分线DM 交BC 于点H .(1)如图1,若α=90°,则线段ED 与BD 的数量关系是,GDCD=;(2)如图2,在(1)的条件下,过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =(3)如图3,若AC =2,tan(60)a m ︒-=,过点C 作过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE ,请直接写出BEFH的值(用含m 的式子表示).参考答案:1.C【分析】直接利用绝对值的定义得出答案.【详解】解:23-的绝对值是23.故选:C .【点睛】此题主要考查了绝对值,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.2.A【分析】分别判断每个选项中的正视图是否满足条件即可.【详解】解:A 的主视图是三角形,符合题意;B 的主视图不是三角形,不符合题意;C 的主视图是矩形,不符合题意;D 的主视图是矩形,不符合题意;故选:A .【点睛】本题主要考查空间几何体的三视图的判断,要求熟练掌握常见空间几何体的三视图.3.C【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵432400=3.2410⨯,故选C .【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.4.D【分析】根据平均数、众数、中位数和方差的定义分别计算即可.【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意;方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯-+-+-+-+-⎣⎦13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义.5.D【分析】直接利用同底数幂的乘法运算法则以及积的乘方、幂的乘方运算法则、完全平方公式分别计算得出答案.【详解】解:A 、()222222a b a ab b a b +=++≠+,该选项不符合题意;B 、()3266a a a -=-≠,该选项不符合题意;C 、()22222396ab a b a b =≠,该选项不符合题意;D 、()()2224b a ab -⋅-=-,该选项符合题意;故选:D .【点睛】此题考查同底数幂的乘法运算以及积的乘方、幂的乘方、完全平方公式,正确掌握相关运算法则是解题关键.6.A【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M ,∵//AB DE ,∴45AMF E ∠=∠=︒,∵90ACB ∠=︒,60ABC ∠=︒,∴30A ∠=︒,∴1803045105AFM ∠=︒-︒-︒=︒,∵90EFD ∠=︒,∴AFD ∠=15︒,故选:A ..【点睛】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.7.B【分析】先解每个不等式的解集,再求两个不等式的解集的公共部分即可.【详解】解:解不等式71x +>得:6x >-,解不等式143x -≤得:13x ≤,∴不等式组的解集为613x -<≤,在数轴上表示为:,故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.8.D【分析】根据菱形的判定、垂径定理、轴对称和全等三角形的判定判断即可.【详解】解:A 、平分弦(非直径)的直径必垂直于弦,原命题是假命题,本选项不符合题意;B 、有一组邻边相等的平行四边形为菱形,原命题是假命题,本选项不符合题意;C 、()43-,关于x 轴的对称点为()43--,,原命题是假命题,本选项不符合题意;D 、有两边及其夹角对应相等的两个三角形全等,真命题,本选项符合题意;故选:D .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【分析】根据等量关系“每人出10元,则多了6元;每人出8元,则少了8元”列出方程组即可.【详解】解:设x 人参与组团,物价为y 元,由题意可得,10688x y y x -=⎧⎨-=⎩.故选:C .【点睛】此题考查了由实际问题抽象出二元一次方程组,根据物价得到等量关系是解决本题的关键.10.D【分析】利用菱形的性质和全等三角形的判定证明①,证明FCE FGC △∽,从而证明②,由含30°直角三角形的性质和相似三角形的性质分析求解,从而证明③和④.【详解】解:在菱形ABCD 中,AD DC ADB CDB =∠=∠,,又∵DF DF =,∴()SAS ADF CDF ≌,∴DAF DCF AF CF ∠=∠=,,故①正确;∵AD BC ∥,∴DAF FEC ∠=∠,∴DCF FEC ∠=∠,又∵CFG EFC ∠∠=,∴CFG CFG ∠=∠,∴FC FGEF FC=,即2FC EF FG =⋅,故②正确;∵在菱形ABCD 中,120BAD ∠=︒,∴113022DBC BDC ABC ADC ∠=∠===︒∠∠,又∵DE BC ⊥,∴在Rt DCF 中,30∠=︒CDE ,∴12CE DC =,∴在菱形ABCD 中,12,23CE AD AD BE ==,又∵AD BC ∥,∴ADF BEF ∽,∴23AF AD EF BE ==,∴23FC EF =由②已证2FC EF FG =⋅,设23FC k EF k ==,,∴43FG k =,53EG k =,∴:4:5FG EG =,故③正确;由③已知23DF AD BF BE ==,设23DF a BF a ==,,∴5BD a =,∴在Rt BDE △中,1522DE BD ==,在Rt CDE △中,CE DE a,23CD CE ==,在Rt DFH △中,12FH FD a ==,DH ,∴CH =,∴在Rt FCH △中,3FC a =,又由②③已证,2FC EF FG =⋅,:4:5FG EG =,设45FG m EG m ==,,则9EF m =,∴2493m m ⎛⎫⋅= ⎪ ⎪⎝⎭,解得18m a =±(负值舍去),∴FG a =,∴4cos 1GFH FH FG ∠==,故④正确,故选D .【点睛】本题考查菱形的性质,相似三角形的性质与判定,勾股定理以及解直角三角形,题目有一定难度,掌握相关性质定理正确推理计算是解题关键.11.2(2)x x -【分析】首先提取公因式x ,然后利用完全平方式进行因式分解即可.【详解】解:3244x x x-+()244x x x =-+2(2)x x =-,故答案为2(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.16【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顺序恰好为“数学、英语、语文”的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图由树形图可知所有可能情况共6种,其中顺序恰好为“数学、英语、语文”的情况只有1种,所以顺序恰好为“数学、英语、语文”的概率为16.故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.13.2+【分析】由题目作图知,AD 是∠CAB 的平分线,过点D 作DH ⊥AB ,则CD =DH =2,进而求解.【详解】解:过点D 作DH ⊥AB ,则DH =2,由题目作图知,AD 是∠CAB 的平分线,则CD =DH =2,∵△ABC 为等腰直角三角形,故∠B =45°,则△DHB 为等腰直角三角形,故BD ,则BC =CD +BD =2+,故答案为:2+【点睛】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,解题的关键是灵活运用所学知识解决问题.14.365【分析】过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,可得2CN MN =,设OC a =,2CN b =,则MN b =,根据OABC 的面积为6表示出BM 的长度,根据3BC BD =求出ND 的长,进而表示出A ,D 两点的坐标,根据反比例函数系数k 的几何意义即可求出.【详解】解:过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,∴DN BM ∥,∴CN CD MN BD=,∵3BC BD =,∴2CN CD MN BD ==,即2CN MN =,设OC a =,2CN b =,则MN b =,∵OABC 的面积为6,∴6BM a=,∵DN BM ∥,∴CDN CBM ∽△△,∴DN CD BM CB=,∵3BC BD =,∴23CD CB =,∴243ND BM a ==,∴A ,D 点坐标分别为6432b a b a a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,,,,∴()6432b a b a a⋅=+,∴25b a =,∴623356365k b a a a =⋅=⨯=,故答案为:365.【点睛】本题主要考查了平行四边形的性质和反比例函数的几何意义,相似三角形的性质和判定,利用数形结合思想是解题的关键.15.43【分析】在CD 上截取CG =CF ,连接AG ,可得ACG DCF ≌,设AC =CD =3x ,则CF =CG =2x ,GD =x ,再证明GAB FEA ≌,进而即可求解.【详解】解:在CD 上截取CG =CF ,连接AG ,∵AC =CD ,∠ACG =∠DCF =90°,∴ACG DCF ≌,∴∠AGC =∠CFD ,设AC =CD =3x ,则CF =CG =2x ,GD =x ,∵∠EAB =∠EAF +∠CAB =∠CAB +∠B =90°,∴∠EAF =∠B ,∴∠E =∠CFD -∠EAF =∠AGC -∠B =∠GAB ,又∵AE =AB ,∴GAB FEA ≌,∴AF =BG =5x ,∴BD =BG -GD =4x ,∴BD CD =43.【点睛】本题主要考查全等三角形的判定和性质,添加辅助线,构造全等三角形,是解题的关键.16.1【分析】利用有理数的乘方、零指数幂法则、绝对值的意义以及特殊角的三角函数值进行化简即可得到结果.【详解】解:()0202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭11122=-+-+⨯1=++1=.【点睛】本题考查有理数的乘方,零指数幂,化简绝对值,特殊角的三角函数值,准确熟练地化简各式是解题的关键.17.13x -,3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭()2336333x x x x x +-⎛⎫=÷+ --⎝⎭-()23333x x x x ++=÷--()23333x x x x +-=⋅+-13x =-,当3x =+时,原式3=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.(1)50,20;(2)86.4(3)3000人中大约有720人是A 型血【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值;(2)计算出A 型人数百分比,从而可计算出A 型部分所占的圆心角的度数;(3)用3000乘以此百分比可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m =1050×100=20;故答案为50,20;(2)A 型献血的人所占百分比为:1-46%-10%-20%=24%,A 型部分所占的圆心角的度数是:,360°×24%=86.4°,故答案为∶86.4;(3)这3000人中大约是A 型血约有:3000×24%=720(人).【点睛】本题考查了用样本估计总体、统计表、扇形统计图,解决本题的关键是综合运用以上知识.19.(1)见解析(2)6【分析】(1)依据三角形内心的性质可得BAD CAD ∠=∠,ABE CBE ∠=∠,由圆周角定理的推论可得CAD CBD BAD ∠=∠=∠.从而可证BED DBE ∠=∠,根据等角对等边即可得结论;(2)由D D DBF CAD BAD ∠=∠∠=∠=∠,,即可判定ABD BFD ∽ ,所以BD AD FD BD=,设EF x =,可化为4744x x x ++=+,解得2x =,从而可求DB 的长;【详解】(1)证明: 点E 是BAC ∠和ABC ∠角平分线的交点,∴AE 平分BAC ∠,BE 平分ABC ∠,∴BAD CAD ABE CBE ∠=∠∠=∠,,又 CAD ∠与CBD ∠所对弧为 DC,∴CAD CBD BAD ∠=∠=∠,∴BED ABE BAD DBE CBE CBD ∠=∠+∠∠=∠+∠,,即BED DBE ∠=∠,故DB DE =;(2)解: D D DBF CAD BAD ∠=∠∠=∠=∠,,∴ABD BFD ∽ ,∴BD AD FD BD=①, 43DF AE ==,,设EF x =,由(1)可得4DB DE x ==+,则①式化为4744x x x++=+,解得:1226x x =,=﹣(不符题意,舍去),则4426DB x =+=+=.【点睛】本题考查了三角形内心的性质、圆周角定理的推论,相似三角形的判定与性质,证明ABD BFD ∽ 是解题的关键.20.(1)每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元(2)购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【分析】(1)设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,利用“用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等”构建分式方程,解之即可得到答案;(2)由题意:购买资金不超过39.16万元,并且甲型电脑不少于乙型电脑的3倍,列出一元一次不等式组,解得6066m ≤≤,然后由一次函数的性质即可得出W 的最大值.【详解】(1)解:设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,依题意,得:5000044000600x x=+,解得:4400x =,经检验,4400x =是原方程的解,且符合题意,∴6005000x +=.答:每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元;(2)解:设最大利润是W 元,∵购进m 台甲型电脑,∴购进()80m -台乙型电脑,依题意,得:()()()55005000480044008010032000W m m m =-+--=+.∵购买资金不超过39.16万元.甲型电脑不少于乙型电脑的3倍,∴()()5000440080391600380m m m m ⎧+-≤⎪⎨≥-⎪⎩,解得:6066m ≤≤,由10032000W m =+,∵1000k =>,∴W 随m 值的增大而增大,∴当66m =时,利润W 取得最大值,最大值100663200038600max W =⨯+=(元).答:购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(1)①关于y 轴对称;②1232,0,2x x x =-==;③10a -<<;(2)将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【分析】(1)①根据函数图象可直接进行作答;②由函数图象及方程可得当y =-1时,自变量x 的值,则可看作直线y =-1与函数()21y x =--的图象交点问题,进而问题可求解;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,进而问题可求解;(2)由函数图象平移可直接进行求解,然后结合函数图象可求解x 的范围问题.【详解】解:(1)①由图象可得:该函数的一条性质为关于y 轴对称,(答案不唯一);故答案为关于y 轴对称;②由题意及图象可看作直线y =-1与函数()21y x =--的图象交点问题,如图所示:∴方程()211x --=-的解为1232,0,2x x x =-==;故答案为1232,0,2x x x =-==;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,如图所示:∴由图象可得若方程()21x a --=有四个实数根,则a 的取值范围是10a -<<;故答案为10a -<<;(2)由题意得:将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,则平移后的函数图象如图所示:∴由图象可得:当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.22.(1)BD =ED (2)正方形,理由见解析【分析】(1)根据直角三角形斜边中线等于斜边的一半可以得到AC =CD =BD ,根据旋转的性质可以得到CD =DE ,则DE =BD ,又在Rt △CGD 中,根据含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD =∠EDM =∠CDM ,得CF =CD =ED ,又CF ∥DE ,则四边形CDEF 是平行四边形,又∠CDE =90°,CD=CE 证出四边形CDEF 是正方形;②由题意可得,∠EGB =∠FCH ,∠EBG =∠CFD ,则BEG FHC ∽,利用相似三角形的性质列比例式,结合DG =BG ,CD =CF ,则得BE BG GD FH FC CD ==;(3)过点D 作DN ⊥BC 于点N ,由()tan tan 60DG NDG a m DN ∠=-︒==,得NG =m ,所以BGm ,根据条件通过角的反复转换求出BEG 和FHC 的两个对应角相等,证明△BEG ∽△FHC ,DG =BG ,CD =CF ,最后得出2BE BG m FH FC ==.【详解】(1)解:∵∠ACB =90°,∴△ACB 为直角三角形,∵点D 为AB 的中点,∴AD =BD =CD ,∵旋转,∴BD =CD ,∴BD =ED ;∵∠A =60°,∴∠B =90°-∠A =30°,∵BD =CD ,∴∠DCG =∠B =30°,∵∠CDE =90°,∴tan tan 303GD DCG CD =∠=︒=;(2)①四边形CDEF 是正方形,理由如下:∵DM 平分∠CDE ,∠CDE =90°,∴∠CDF =∠EDF =45°,∵CF ∥DE ,∴∠DCF =180°-∠CDE =90°,∴△DCF 是等腰直角三角形,∴CD =CF ,∵CD =DE ,∴CF =DE ,∴四边形CDEF 是平行四边形,∵∠CDE =90°,CD =CE ,∴四边形CDEF 是正方形;②由(1)知,∠ADC =60°,∠CGD =60°,BD =DE ,∴∠BDE =∠BDC -∠CDG =30°,∴∠DBG =∠BDG =30°,∠EGB =60°,∴∠DBE =∠DEB =75°,∴45EBG DBE DBC ∠=∠-∠=︒,∵∠GDB =90°-∠ADE =30°,∠ABC =30°,∴∠GDB =∠ABC ,由(1)知∠CFD =∠CDF =45°,∠DCF =90°,∴∠FCH =∠DCF -∠DCB =60°,∴∠EGB =∠FCH ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC=,∵DG =BG ,CD =CF ,∴BE BG GD FH FC CD ==(3)如图,过点D 作DN ⊥BC 于点N ,∴AC ∥DN ,∴∠ACD =∠CDN ,∵△ACD 是等边三角形,AC =2,∴FC =CD =AC =2,∠CDN =∠ACD =60°,∴∠NDG =α-60°,DN =1,∴tan ∠NDG =tan(α-60°)=DG m DN =,∴NG =m ,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,∴AB =4,BC =,∴BN =CN∴BG m ,∵∠ADC =60°,∠CDG =α,∴∠BDE =120°-α,∴302BEG BED α∠=∠=︒+,∴∠EBG =2α,∴180150BGE BEG EBG α∠=︒-∠-∠=︒-,∵DM 平分∠CDE ,∠CDE =α,∴∠CDM =∠EDM =2α,∵CF DE ,∴2CFD EDM α∠=∠=,∵∠DCF +∠CDE =180°,∴∠DCF =180°-α,∴∠FCG =150°-α,∴∠EGB =∠FCG ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC =.【点睛】本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,利用三角函数求解,三角形内角和等知识点,证明△BEG ∽△FHC 是解题关键.。
(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)
(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)一、选择题。
(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.有理数,﹣5,﹣2.5,6中,最大的数是()A.B.﹣5C.﹣2.5D.62.如图,在下列四个几何体中,其主视图是矩形的是()A.B.C.D.3.据统计,第22届冬季奥运会的电视转播时间长达88000小时,其中数据88000用科学记数法表示为()A.0.88×105B.8.8×104C.88×103D.880×1024.点(1,4)关于x轴对称的点的坐标是()A.(1,﹣4)B.(﹣1,4)C.(4,1)D.(﹣1,﹣4)5.下列事件中属于必然事件的是()A.打开电视机,正在播放“天宫课堂”B.对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.下列运算正确的是()A.(﹣m2n)3=﹣m6n3B.m5﹣m3=m2C.(m+2)2=m2+4D.(12m4﹣3m)÷3m=4m37.如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=()A.100°B.110°C.120°D.130°8.如图是一张矩形纸板,顺次连接各边中点得到四边形.将一个飞镖随机投掷在矩形纸板上,则飞镖落在阴影区域的概率是()A.B.C.D.9.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.B.C.D.10.如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,2),(2,0),AC=2BC.若函数y=(k>0,x>0)的图象经过点B,则k的值为()A.3B.2C.D.11.如图,点E在矩形纸片ABCD的边CD上,将纸片沿AE折叠,点D的对应点D′恰好落在线段BE 上.若AD=2,DE=1,则AB的长为()A.B.4C.D.512.当﹣3<x<2时,抛物线y=x2+t与直线y=2x+1有交点,则t的取值范围是()A.﹣2≤t<14B.﹣14<t≤2C.1<t≤2D.t≤2二、填空题。
初中数学 2024年甘肃省兰州市安宁区中考数学模拟试卷(一)
2024年甘肃省兰州市安宁区东方学校中考数学模拟试卷(一)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.A.B.C.D.1.(3分)《国家宝藏》节目立足于中华文化宝库资源.通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A.a5b5B.a4b5C.ab5D.a5b62.(3分)计算(a2b)3•的结果是( )b2aA.B.C.D.3.(3分)不等式组的解集在数轴上可以表示为( ){-x≤-1x<3A.4b(b-a)+a2B.(2b-a)2C.(2b-a)(2b-a)D.(2b+a)24.(3分)因式分解4b2-4ab+a2正确的是( )A.130°B.140°C.150°D.160°5.(3分)如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=30°,∠2=50°,则∠3的度数为( )A .3-B .-2C .-1D .3-6.(3分)如图的数轴上,点A ,C 对应的实数分别为1,3,线段AB ⊥AC 于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为( )M 5M 5M 5M 10A .1B .2C .1.5D .07.(3分)若一次函数y =(k -1)x -2的函数值y 随x 的增大而减小,则k 值可能是( )A .B .C .D .8.(3分)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( ){x +5y =35x +y =2{5x +y =3x +5y =2{5x =y +3x =5y +2{5x =y +2x =5y +3A .k <4B .k ≤4且k ≠3C.k >4D .k ≤49.(3分)已知二次函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .扇形统计图中“自驾”所对应的扇形的圆心角是120°D .样本中选择公共交通出行的有2500人10.(3分)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )11.(3分)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线AC 上,D =1,则CF的长为( )A二、填空题:本大题共4小题,每小题3分,共12分.A .B .C .D .π√28π√24π8π4A .1B .C .2D .2.512.(3分)如图,在Rt △ABC 中,∠ACB =90°,AD 为中线,E 为AD 的中点,F 为BE 的中点,连结DF .若AC =4,DF ⊥BE ,则DF 的长为( )M 3M 313.(3分)函数y =的自变量x 的取值范围是 .M x -1214.(3分)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《子》的概率是.15.(3分)如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC :CF =1:2.若△ABC 的周长为4,则△DEF 的周长是.16.(3分)已知正方形ABCD 的边长为4,若G 为AB 的中点,连接DG 交正方形的对角线AC 于点E ,F 是DG 延长线上一点,FB ⊥BE ,则AF 的长是.三、解答题:本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:2+-.M 813M 1834M 3218.(4分)解方程:-1=.y y -12y3y -319.(4分)先化简,再求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =-1.5.20.(5分)请阅读下列材料,完成相应的任务:有这样一个题目:设有两只电阻,分别为R 1和R 2,问并联后的电阻值R 是多少?我们可以利用公式=+,求得R 的值,也可以设计一种图形直接得出结果,具体如下:如图①,在直线l 上任取两点A 、B ,分别过点A 、B 作直线l 的垂线,并在这两条垂线上分别截取AC =R 1,BD =R 2,且点C ,D 位线l 的同侧,连接AD 、BC ,交于点E ,过点E 作EF ⊥直线1,则线段EF 的长度就是并联后的电阻值R .证明:∵EF ⊥l ,CA ⊥l ,∴∠EFB =∠CAB =90°,又∵∠EBF =∠CBA ,∴△EBF ∽△CBA (依据1),∴=(依据2).同理可得:=,∴+=+,∴1=+,∴=+,即:=+.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)如图②,两个电阻并联在同一电路中,已知R 1=3千欧,R 2=6千欧,总阻值R =千欧;(3)请仿照①的作图过程在图③中(1个单位长度代表1千欧,例:AB =CD =9千欧)画出(2)中表示该电路图中总阻值R 段长;用无刻度直尺和圆规将所给图形补充完整.(保留作图痕迹,不写作法)1R 1R 11R 2BF AB EF ACAF AB EFBDBF AB AF AB EF AC EFBDEF ACEF BD 1EF 1AC 1BD 1R 1R 11R 221.(5分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y (单位:cm ),宽x (单位:cm )的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0荔枝树叶的长宽比2.02.02.02.41.81.91.82.01.31.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比 3.74m 4.00.0424荔枝树叶的长宽比 1.912.0n0.0669【问题解决】(1)上述表格中:m =,n =;(2)①A 同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B 同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm ,宽5.6cm 的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.22.(7分)在平面直角坐标系中,已知k 1k 2≠0,设函数=与函数y 2=k 2(x -2)+3的图象交于点A ,B .已知点A 的横坐标是2,点B 的纵坐标是-1.(1)求k 1,k 2的值.(2)连接OA 并延长至点P ,使得OA =AP ,过点P 作x 轴的垂线,交x 轴于点C ,交y 1的图象于点D ,连接OD .设△OPD 的面积为S 1,△OCD 的面积为S 2,求的值.y 1k 1x S 1S 223.(6分)实验是培养学生的创新能力的重要途径之一.如图是小红同学安装的化学实验装置,安装要求为试管略向下倾斜管夹应固定在距试管口的三分之一处.已知试管,AB =30cm ,BE =AB ,试管倾斜角α为10°.(1)求酒精灯与铁架台的水平距离CD 的长度;(2)实验时,当导气管紧贴水槽MN ,延长BM 交CN 的延长线于点F ,且MN ⊥CF (点C ,D ,N ,F 在一条直线上),经测得:D 1.7cm ,MN =8cm ,∠ABM =145°,求线段DN 的长度.(参考数据:sin 10°≈0.17,cos 10°≈0.98,tan 10°≈0.18)1324.(7分)如图,在△ABC 中,AB =AC .以AB 为直径的⊙O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且∠CBF =∠BAC .12(1)试说明FB 是⊙O 的切线;(2)过点C 作CG ⊥AF ,垂足为C .若CF =4,BG =3,求⊙O 的半径.25.(7分)如图,将⏥ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交BC 于点F .(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,判断四边形BECD 的形状并给出证明.26.(6分)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式x (dm )024********…y (dm ) 3.843.9643.96m3.642.561.44…表2 间发式x (dm )024681012141618y (dm )3.36n1.680.841.402.4033.203根据以上信息,回答问题:(1)表格中m =,n =;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d 1,“间发式”模式下球第二次接触台面时距离出球点的平距离为d 2,则d 1d 2(填“>”“=”或“<”).27.(8分)旋转是几何图形中最基本的图形变换之一,利用旋转可将分散的条件相对集中,以达到解决问题的目的.【探究发现】如图①,在等边三角形ABC 内部有一点P ,PA =2,PB =,PC =1,求∠BPC 的度数,爱动脑筋的小明发现:段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,则△BPC ≌△BP ′A ,然后利用△BPP ′和△APP ′形状的特殊性求出P ′A 的度数,就可以解决这道问题.下面是小明的部分解答过程:解:将线段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,∵BP =BP ′,∠P ′BP =60°,∴△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB =.∵△ABC 是等边三角形,M 3M 3∴∠ABC =60°,BC =BA ,∴∠ABC -∠ABP =∠P ′BP -∠ABP ,即∠PBC =∠P ′BA .(1)请你补全余下的解答过程.【类比迁移】(2)如图②,在正方形ABCD 内有一点P ,且PA =,PB =2,PC =1,求∠BPC 的度数.【拓展延伸】(3)如图③,在②的条件下,若正方形ABCD 的边长为2,则线段PD 的最小值为.M 17√228.(9分)在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段PQ ,给出如下定义:若线段PQ 关于直线l 的对称图形是⊙O 的弦P ′Q ′(P ′,Q ′分别为P ,Q 的对应点),则称线段PQ 是⊙O 关于直线l 的“对称弦”.(1)如图,点A 1,A 2,A 3,B 1,B 2,B 3的横、纵坐标都是整数.线段A 1B 1,A 2B 2,A 3B 3中,是⊙O 关于直线y =x +1的“对称弦”的是 ;(2)CD 是⊙O 关于直线y =kx (k ≠0)的“对称弦”,若点C 的坐标为(-1,0),且CD =1,求点D 的坐标;(3)已知直线y =-x +b 和点M (3,2),若线段MN 是⊙O 关于直线y =-x +b 的“对称弦”,且MN =1,直接写值.M 33M 3M 33。
2023年初中数学中考冲刺模拟卷一(含解析)
2023年初中数学中考冲刺模拟卷(含解析)一、单选题1.下列四个数中,最大的数是().A .0B .2C .3-D .42.技术融合打破时空限制,2020服贸会全面上“云”,据悉本届服贸会共有境内外5372家企业搭建了线上电子展台,共举办32场纯线上会议和173场线上直播会议,线上发布项目1870个,发起在线洽谈550000次,将550000用科学记数法表示为()A .45510⨯B .55.510⨯C .65.510⨯D .60.5510⨯3.如图,在O 中,弦,AB CD 相交于点P ,若48,80A APD ∠=︒∠=︒,则B ∠的大小为()A .32︒B .42︒C .52︒D .62︒4.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同.从中任意摸出一个球,是红球的概率为()A .B .C .D .5.在平面直角坐标系中,若抛物线2211y x =-+()先向右平移3个单位长度,再向上平移2个单位长度,则所得到的抛物线的解析式为()A .2243y x =+(-)B .2242y x =++()C .2242y x =+(-)D .2241y x =+()-6.如图,正方形ABCDAC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是()A.B.C.D.7.如图,在直角坐标系中,点A,B分别在x轴和y轴上,点A的坐标为(﹣2,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果3P点运动一周时,点Q运动的总路程是()A.3B.6C.3D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是()A.B.C.D.二、填空题9.因式分解:22ab ac -=_______________10.小华家客厅有一张直径为1.2,m 高为0.8m 的圆桌,AB 有一盏灯E 到地面垂直距离EF 为2,m 圆桌的影子为,2CD FC =,则点D 到点F 的距离为_______.11.不等式组240431x x -<⎧⎨-≤⎩的解集是______.12.把多项式2x 3﹣8x 分解因式的结果是_____.13.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是DE 延长线上的一点,若∠AFC =90°,AC =6,BC =10,则DF 的长为________.14.在平面直角坐标系中,ABC 和111A B C △的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为()2,4,则其对应点1A 的坐标是________.15.如图,在△ABC 中,∠A =45°,∠B =60°,AB =4,P 是BC 边上的动点(不与B ,C 重合),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是_____.16.如图,Rt ABC 中,90ACB ∠=︒,2AB AC =,3BC =,点E 是AB 上的点,将ACE △沿CE 翻折,得到'A CE ,过点B 作BF AC ∥交BAC ∠的平分线于点F ,连接'A F ,则'A F 长度的最小值为______.三、解答题17.化简或化简求值:212(1)211a a a a +÷+-+-,其中3a =18.如图,△ABC 是等腰三角形,AB =BC ,点D 为BC 的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B 作AC 的平行线BP ;②过点D 作BP 的垂线,分别交AC ,BP ,BQ 于点E ,F ,G .(2)在(1)所作的图中,连接BE ,CF .求证:四边形BFCE 是平行四边形.19.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考虑各种因素,预计明年种植该作物的总成本y (元)与种植面积x (亩)之间满足一次函数关系,且部分数据如下:种植面积x (亩)4060种植该作物的总成本y (元)880012800(1)求y 与x 之间的函数关系式;(2)如果张大爷计划种植该作物120亩,请你帮张大爷计算一下种植该作物的总成本是多少?20.计算:()()3425284+-⨯--÷.21.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P的坐标.22.(1)化简求值:222442111x x x x x x++++÷+--,其中x 是一元二次方程x (x ﹣1)=2x ﹣2的解.(2)解不等式组:23(3)9212135x x x x --≥⎧⎪⎨+-->-⎪⎩①②,并求其整数解的和.23.先化简,再求值:23193m m m ⎛⎫÷+ ⎪--⎝⎭,其中4m =-.24.如图,拋物线2y x bx c =-++交y 轴于点(02)A ,,交x 轴于点(40)B ,、C 两点,点D为线段OB 上的一个动点(不与O B 、重合),过点D 作DM x ⊥轴,交AB 于点M ,交抛物线于点N.(1)求抛物线的解析式;(2)连接AN 和BN ,当ABN 的面积最大时,求出点D 的坐标及ABN 的最大面积;(3)在平面内是否存在一点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系xOy 中,二次函数2223y x bx =+-的图像与x 轴交于点()3,0A ,B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b =______;(2)将AOC 平移到EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若180CPT DAC ∠+∠=︒,求AHT △与CPT △的面积之比.参考答案与解析1.D【详解】试题分析:根据正数大于0,0大于负数,正数大于一切负数,给出的数中,最大的数是4,故选D.考点:有理数比较大小.2.B【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵550000=55.510⨯,故选:B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.3.A【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案.【详解】C A APD ∠+∠=∠ ,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.4.C【详解】试题分析:根据概率公式可得,摸到红球的概率为,故答案选C.考点:概率公式.5.A【分析】先根据二次函数的性质得到抛物线2211y x =-+()的顶点坐标为(1,1),再利用点平移的规律得到点(1,1)平移后所得对应点的坐标为43(,),然后利用顶点式写出平移后抛物线的解析式.【详解】解:∵抛物线2211y x =-+()的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位长度,再向上平移2个单位长度所得对应点的坐标为43(,),∴所得到的抛物线的解析式为2243y x =+(-);故选:A .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.A【分析】证明△BEF ∽△CFH ,可得BF BECH CF=,由此构建函数关系式即可解决问题.【详解】∵四边形ABCD 是正方形,∴∠EBF =∠ECG =45°,AC ⊥BD ,EB =EC ,∵EF ⊥EG ,∴∠BEC =∠FEG =90°,∴∠BEF =∠CEG ,∴△BEF ≌△CEG (ASA ),∴EF =EG ,∴∠EFG =45°,∵∠EFC =45°+∠CFH =45°+∠BEF ,∴∠CFH =∠BEF ,∴△BEF ∽△CFH ,∴BF BECH CF =,∴x y=∴y =2(0x x -+<<,故选A .【点睛】本题考查动点问题的函数图象,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.D【详解】在Rt △AOB 中,∵∠ABO=30°,AO=2,∴AB=4,BO=①当点P 从O→B 时,点Q 刚好从原位置移动到点O 处,如图2所示,此时点Q 运动的路程为PQ=②如图3所示,作QC ⊥AB ,则∠ACQ=90°,即PQ 运动到与AB 垂直时,垂足为P ,当点P 从B→C 运动到P 与C 重合时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°,∴cos30°=CQAQ,∴AQ=4cos 30CQ,∴OQ=4﹣2=2,∴此时点Q 运动的路程为QO=2,③当点P 从C→A 运动到点P 与点A 重合时,如图3所示,点Q 运动的路程为QQ′=4﹣④当点P 从A→O 运动到P 与点O 重合时,点Q 运动的路程为AO=2,∴点Q 运动的总路程为:﹣.故选D .8.A【详解】解:分析题中所给函数图像,O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.9.()()a b c b c +-##()()a b c b c -+【分析】先提取公因式,再用平方差公式进行因式分解.【详解】解:22ab ac -=22()a b c -=()()a b c b c +-,故答案为:()()a b c b c +-.【点睛】本题主要考查因式分解——提公因式法与公式法的综合运用,找准公因式是解题的关键.10.4【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB CD =20.82-.∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.11.12x ≤<【分析】分别求出各个不等式的解,再取各个解的公共部分,即可求解.【详解】解:240431x x -<⎧⎨-≤⎩①②,由①得:x <2,由②得:x≥1,∴不等式组的解:12x ≤<.故答案是:12x ≤<.【点睛】本题主要考查解一元一次不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.12.2x (x +2)(x ﹣2)【分析】先提取公因式2x ,再运用平方差公式分解因式即可.【详解】解:原式=2x (x 2﹣4)=2x (x +2)(x ﹣2),故答案为:2x (x +2)(x ﹣2).【点睛】本题考查分解因式,能够熟练应用乘法公式进行分解因式是解决本题的关键.13.8【分析】根据直角三角形斜边上的中线等于斜边的一半求出EF ,根据三角形中位线定理求得DE ,则DF =DE +EF .【详解】解:在直角△AEC 中,EF 是斜边AC 上的中线,AC =6,则EF =12AC =3.在△ABC 中,DE 是中位线,BC =10,则DE =12BC =5.则DF =DE +EF =3+5=8.故答案是:8.【点睛】本题考查的是三角形中位线定理、三角形的三边关系,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(4,8)或(﹣4,﹣8)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k ,即可求得答案.【详解】解:在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(4,8),不在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(﹣4,﹣8),故答案为:(4,8)或(﹣4,﹣8).【点睛】此题考查了位似图形的性质,此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .15.≤MN <【详解】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,如图所示.∵点P 关于直线AB ,AC 的对称点分别为M ,N ,∴AM=AP=AN ,∠MAB=∠PAB ,∠NAC=∠PAC ,∴△MAN 等腰直角三角形,∴∠AMD=45°,∴AD=MD=2AM ,AM .∵AB=4,∠B=60°,∴,∵AM=AP ,∴故答案为≤MN <.【点睛】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,由对称性可知AM=AP=AN 、△MAN 等腰直角三角形,进而即可得出AP ,再根据AP 的取值范围即可得出线段MN 长的取值范围.16【分析】先求出ACAB =AB =BF =由勾股定理可求CF 的长,由点A '在以点C 为圆心,AC 为半径的圆上,则当点A '在FC 上时,A 'F 有最小值,即可求解.【详解】解:如图,90ACB ∠=︒ ,2AB AC =,1cos 2AC CAB AB ∴∠==,60CAB ∴∠=︒,tan BC CAB AC∴∠==AC ∴=AB ∴=,AF 平分BAC ∠,30BAF CAF ∴∠=∠=︒,//BF AC ,30BFA FAC ∴∠=∠=︒,90FBC BCA ∠=∠=︒,AB BF ∴==FC ∴===将ACE △沿CE 翻折,得到'A CE ,'AC A C ∴==∴点'A 在以点C 为圆心,AC 为半径的圆上,则当点'A 在FC 上时,'A F 有最小值,'A F ∴,.【点睛】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF 的长是本题的关键.17.11a -,12.【分析】根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式=()21111a a a a ++÷--=()21111a a a a +-⋅+-=11a -,当a=3时,原式=131-=12.【点睛】本题考查分式的化简求值,熟知分式混合运算的法则是解题的关键.18.(1)作图见解析;(2)证明见解析.【详解】试题分析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;由BP//CE ,可得∠ECD=∠FBD ,∠CED=∠BFD ,又CD=BD ,从而△CDE ≌△BDF ,可得CE=BF ,从而可得BF//CE ,BF=CE ,判定出四边形BFCE 是平行四边形.试题解析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;(2)∵BP//CE ,∴∠ECD=∠FBD ,∠CED=∠BFD ,∵点D 是BC 的中点,∴CD=BD ,∴△CDE ≌△BDF ,∴CE=BF ,∵BF//CE ,BF=CE ,∴四边形BFCE 是平行四边形.考点:1.尺规作图;2.平行四边形的判定.19.(1)200800y x =+(2)张大爷种植该作物的总成本是24800元【分析】(1)根据题意设y 与x 之间的函数关系式()0y kx b k =+≠,利用待定系数法即可求得函数关系式.(2)将120x =代入函数关系式即可解出.(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:880040,1280060,k b k b =+⎧⎨=+⎩解得200,800.k b =⎧⎨=⎩∴y 与x 之间的函数关系式为200800y x =+.(2)当120x =时,20080020012080024800y x =+=⨯+=,∴张大爷种植该作物的总成本是24800元.【点睛】本题考查了一次函数的应用,掌握待定系数法求函数关系式是解答本题的关键.20.29-【分析】根据有理数的运算法则计算即可,注意运算顺序.【详解】()()3425284+-⨯--÷485(7)=-⨯--1140=-29=-【点睛】本题考查了含乘方的有理数的混合运算,掌握运算法则是解题的关键.21.(1)a=﹣1,b=2;(2)P 的坐标为(1,0)或(﹣1,0).【分析】(1)直接利用待定系数法把A (a ,3)代入反比例函数3y x=-中即可求出a 的值,然后把A 的坐标代入y=-x+b 即可求得b 的值;(2)根据直线解析式求得B 的坐标,然后根据题意即可求得P 的坐标.【详解】(1)∵直线y=-x+b 与反比例函数3y x =-的图象相交于点A (a ,3),∴3=-3a ,∴a=-1.∴A (-1,3).把A 的坐标代入y=-x+b 得,3=1+b ,∴b=2;(2)直线y=-x+2与x 轴相交于点B .∴B (2,0),∵点P 在x 轴上,△AOP 的面积是△AOB 的面积的12,∴OB=2PO ,∴P 的坐标为(1,0)或(-1,0).22.(1)﹣23;(2)﹣6.【分析】(1)原式利用除法法则变形,计算得到最简结果,求出方程的解得到x 的值,代入计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出解集,即可求出整数和.【详解】(1)原式=()()()2221•1112x x x x x x +--++-+=2211x x x +-++=1x x -+,已知方程整理得:(x-2)(x-1)=0,解得:x=2或x=1(舍去),当x=2时,原式=-23;(2)由①得:x≤0,由②得:x >-267,∴不等式组的解集为-267<x≤0,即整数解为-3,-2,-1,0,之和为-6.【点睛】此题考查了分式的化简求值,一元二次方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.13m +,1-【分析】先算括号内的加法,把除法变成乘法,算乘法,最后代入4m =-求出答案即可.【详解】解:23193m m m ⎛⎫÷+ ⎪--⎝⎭233933m m m m m -⎛⎫=÷+ ⎪---⎝⎭293m m m m =÷--()()333m m m m m -=⋅+-13m =+当4m =-时代入得,原式1143==--+.【点睛】本题考查分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.24.(1)2722y x x =-++;(2)当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)P 3(0)4+,或(6)2,.【分析】(1)将A ,B 的坐标代入抛物线的解析式组成二元一次方程组,求解即可;(2)设D (0)(04)t t <<,,根据坐标的特点,可得出点M ,N 的坐标,再根据三角形的面积公式可表达ABN 的面积,根据二次函数的性质可得出结论;(3)根据题意,易证AEM AOB ∽,由此得出AE 和AM 的长,再根据题意需要分两种情况讨论:①当AM MN =时,②当AM AN =时,分别求解即可.【详解】(1)解:将点(02)A ,,点(40)B ,代入抛物线2y x bx c =-++,∴21640c b c =⎧⎨-++=⎩,∴722b c ⎧=⎪⎨⎪=⎩.∴抛物线的解析式为:2722y x x =-++;(2)解:∵点(02)A ,,点(40)B ,,∴直线AB 的解析式为:122y x =-+;设D (0)(04)t t <<,,∵DM x ⊥轴,点M 在直线AB 上,点N 在抛物线上,∴217(t,t 2),N(t,t 2)22M t -+-++,∴2271t 2(t 2)t 422MN t t =-++--+=-+,∴ABN 的面积2211()(4)42(2)822B A MN x x t t t =⋅⋅-=⋅-+⋅=--+,∵2004t -<<<,,∴当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)解:存在,如图,过点M 作ME y ⊥轴于点E ,∴ME OB ∥,∴90AEM AOB AME ABO ∠=∠=︒∠=∠,,∴AEM AOB ∽,∴:::AE AO AM AB ME OB ==,Rt AOB ∆中,24OA OB ==,,∴AB =∴24AE t ==,∴12AE t AM ==,.根据题意,需要分两种情况讨论:①AM MN =时,如图,24(04)t t t =-+<<,解得82t =或t =0(舍),∴54AM =,∴54AP AM ==,∵AP MN ∥,∴点P 在y 轴上,∴53244OP =+=,∴P (0;②当AM AN =时,如图,此时AP 与MN 互相垂直平分,设AP 与MN 交于点F ,∴211(4)22MF MN t t ==-+,∵12MF AE t ==,∴211(4)22t t t -+=,解得3t =或0=t (舍),∴26AP t ==,∴P (6)2,.综上,存在点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形,此时P 3(0)4,或(6)2,.【点睛】此题主要考查了二次函数解析式的确定、菱形的判定和性质、分类讨论的思想等知识,能力要求较高,难度较大,关键是掌握菱形的对称性和进行正确的分类讨论.25.(1)43b =-(2)()3,8E -,104,3E ⎛⎫ ⎪⎝⎭(3)8147【分析】(1)由题意,将点(3,0)A 代入2223y x bx =+-中,即可解得b 的值;(2)令0x =,可求得点C 的坐标,再由点D 与点C 关于x 轴对称可求得D 的坐标,求出直线AD 的表达式,由于EFG 是由AOC 平移得到,若设224(,2)33E m m m --,则224(3,4)33G m m m ---,将点G 代入直线AD 的表达式中,即可求得m ,从而得E 的坐标;(3)过C 作CK AD ⊥于K ,作CQ PH ⊥于Q ,先由勾股定理求出AD 的长,再利用等面积法求出CK 的长,再用勾股定理求AK 的长,由180CPT DAC ∠+∠=︒可得CPQ DAC ∠=∠,故tan CK CQ DAC AK PQ ∠==,设出点224(,2)33P n n n --,则可利用上式求出n 的值,由此可进一步计算出PT 与HT 的值,求出两个三角形的面积之比.(1)解: 二次函数2223y x bx =+-的图像经过点(3,0)A ,∴2203323b =⨯+-,解得43b =-.故答案是:43-;(2)解:如图1,对于二次函数224233y x x =--,当0x =时,=2y -.∴()0,2C -.点D 与点C 关于x 轴对称,∴()0,2D .设直线AD 的函数表达式是2y kx =+.()3,0A ,∴320k +=.解得23k =-.∴直线AD 的函数表达式为223y x =-+.设点224(,2)33E m m m --,则点224(3,4)33G m m m ---.点G 在直线223y x =-+上,∴22424(3)2333m m m --=--+,整理得2120m m --=,解得13m =-,24m =.∴()3,8E -,10(4,3E .(3)解:如图2,过点C 作CK AD ⊥,垂足为K .2OD =,3OA =,∴AD =AO CD AD CK ⋅=⋅,∴13CK =.∴13DK =.∴13AK AD DK =-=.∴12tan 5CK CAK AK ∠==.过点C 作CQ PH ⊥,垂足为Q .180CPT DAC ∠+∠=︒,∴CPQ CAK ∠=∠.∴125CQ PQ =.设点224(,2)33P n n n --,则22433PQ n n =-,CQ n =.∴25241233n n n =-.解得218n =,∴2129(,)832P -.∴218CQ =,213388AH =-=. 2tan 3TH OC OAC AH OA ∠===,∴22313384TH AH ==⨯=,∴2912132432TP PH TH =-=-=.∴13118284211212114722328AHT CPT AH TH S S TP CQ ⨯⨯⨯⨯===⨯⨯⨯⨯△△.【点睛】本题考查了二次函数的综合应用、一次函数表达式的求法、三角函数的性质与应用、相似三角形的性质与判定(本题答案中应用三角函数的步骤也可以改用相似三角形的知识解答)、勾股定理的应用,解决本题的关键在于将各模块知识点融会贯通,并作出正确的辅助线.。
中考仿真模拟测试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
山东省潍坊市2024届九年级下学期中考一模数学试卷(含答案)
2024年初中学业水平模拟考试(一)数学试题2024.04注意事项:1.本场考试时间120分钟,试卷分为第Ⅰ卷和第Ⅱ卷,共22小题,满分150分;2.答卷前,请将试卷密封线内和答题卡上面的项目填涂清楚;3.请在答题卡相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷选择题(共44分)一、单项选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得4分,错选、不选均记0分)1.下列用于证明勾股定理的图形中,是轴对称图形的是()A. B. C. D.2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万吨用科学记数法表示为()A.吨B.吨C.吨D.吨3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为()A. B. C. D.4.实数a,b在数轴上的位置如图所示,则下列判断正确的是()A. B. C. D.5.如图,正五边形ABCDE内接于,P为劣弧上的动点,则的大小为()A. B. C. D.不能确定6.如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与y轴、x轴分别交于C,D两点,下列结论正确的是()A. B.C.当时,D.连接OA,OB,则二、多项选择题(本大题共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)7.下列运算正确的是()A. B. C. D.8.如图,在中,,,观察尺规作图的痕迹,下列结论正确的是()第8题图A. B. C. D.9.如图,是用计算机模拟随机投掷一枚图钉的某次实验的结果.下面是根据实验结果所作出的四个推断,其中合理的是()第9题图A.当投掷次数是1000时,“钉尖向上”的次数是620B.当投掷第1000次时,“钉尖向上”的概率是0.620C.随着实验次数的增加,“钉尖向上”的频率趋近于0.618,故可以估计其概率是0.618D.若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.62010.如图,圆柱体的母线长为2,BC是上底的直径.一只蚂蚁从下底面的点A处出发爬行到上底面的点C处.设沿圆柱体侧面由A处爬行到C处的最短路径长为,沿母线AB与上底面直径BC形成的折线段爬行到C 处的路径的长为.当圆柱体底面半径r变化时,为比较与的大小,记,则d是r的二次函数,下列说法正确的是()A.该函数的图象都在r轴上方B.该函数的图象的对称轴为C.当时,D.当时,第Ⅱ卷非选择题(共106分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上.三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.因式分解:______.12.已知x是满足的整数,且使的值为有理数,则______.13.已知关于x的一元二次方程的两个根为,,且,则______.14.如图,在中,,,,以B为圆心BC为半径画弧,分别交CD,AB 于点F,E,再以C为圆心CD为半径画弧,恰好交AB边于点E,则图中阴影部分的面积为______.四、解答题(本大题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.(本题10分)(1)下面是小亮解一道不等式的步骤,请阅读后回答问题.解不等式:解去分母,得…… 第一步移项,得…… 第二步合并同类项,得…… 第三步系数化为1,得…… 第四步①小亮的解法有错吗?如果有,错在哪一步?并给出改正.②小亮解不等式的过程中从第一步到第二步的变形依据是什么?(2)先化简再求值:,已知.16.(本题10分)如图,在平面直角坐标系中,的顶点坐标分别是,,,按要求完成下列问题.(1)将向左平移2个单位长度得到,直接写出点,,的坐标;(2)将绕点A顺时针旋转得到,画出,并写出,的坐标;(3)点C的坐标为,用作图的方法在x轴上确定一点M,使最小,并写出点M的坐标.17.(本题11分)如图1,某社区服务中心在墙外安装了遮阳棚,便于居民休憩.在如图2的侧面示意图中,遮阳棚AM长为5米,其与墙面的夹角,其靠墙端离地高AB为3.9米,ME是为了增加纳凉面积加装的一块前挡板(前挡板垂直于地面).(参考数据:,,,)图1 图2(1)求出遮阳棚前端M到墙面AB的距离;(2)已知本地夏日正午的太阳高度角(太阳光线与地面夹角)最小为,若此时房前恰好有3.7米宽的阴影BC,则加装的前挡板的宽度ME的长是多少?18.(本题11分)随着快递行业在农村的深入发展,全国各地的特色农产品有了更广阔的销售空间.不同的快递公司在配送、服务、收费和投递范围等方面各具优势,某农产品种植户经过前期调研,打算从甲、乙两家快递公司中选择一家合作.为此,该种植户收集了10家农产品种植户对两家公司的相关评价,并整理、描述、分析如下:配送速度和服务质量得分统计表项目配送速度得分服务质量得分统计量快递公司平均数中位数平均数方差甲7.8m7乙887(1)补全频数直方图,并求扇形统计图中圆心角的度数;(2)表格中的______;______(填“>”“=”或“<”);(3)综合上表中的统计量,你认为该农产品种植户应选择哪家公司?请说明理由;(4)如果A,B,C三家农产品种植户分别从甲、乙两个快递公司中任选一个公司合作,求三家种植户选择同一快递公司的概率.19.(本题12分)某校羽毛球社团的同学们用数学知识对羽毛球技术进行分析,下面是他们对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离米,米,米,击球点P在y轴上.他们用仪器收集了扣球和吊球时,羽毛球的飞行高度y(米)与水平距离x(米)的部分数据,并分别在直角坐标系中描出了对应的点,如下图所示.同学们认为,可以从,,中选择适当的函数模型,近似的模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系.(1)请从上述函数模型中,选择适当的模型分别模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系,并求出函数表达式;(2)请判断上面两种击球方式都能使球过网吗?如果能过,选择哪种击球方式使球的落地点到C点的距离更近;如果不能,请说明理由.20.(本题12分)如图,内接于,AB是直径,点E在圆上,连接EB,EC,交AB于点F,过点C作CD交AB 的延长线于点D,使.(1)求证:CD是的切线;(2)若,,,求的长.21.(本题11分)某无人机租赁公司有50架某种型号的无人机对外出租,该公司有两种租赁方案:方案A:如果每架无人机月租费300元,那么50架无人机可全部租出.如果每架无人机的月租费每增加5元,那么将少租出1架无人机.另外,公司为每架租出的无人机支付月维护费20元.方案B:每架无人机月租费350元,无论是否租出,公司均需一次性支付月维护费共计185元.说明:月利润=月租费-月维护费.设租出无人机的数量为x架,根据上述信息,解决下列问题:(1)当时,按方案A租赁所得的月利润是______元,按方案B租赁所得的月利润是______元;(2)如果按两种方案租赁所得的月利润相等,那么租出的无人机数量是多少?(3)设按方案A租赁所得的月利润为,按方案B租赁所得的月利润为,记函数,求w的最大值.22.(本题13分)【问题情境】综合与实践课上,老师发给每位同学一张正方形纸片ABCD.在老师的引导下,同学们在边BC上取中点E,取CD边上任意一点F(不与C,D重合),连接EF,将沿EF折叠,点C的对应点为G,然后将纸片展平,连接FG并延长交AB所在的直线于点N,连接EN,EG.探究点F在位置改变过程中出现的特殊数量关系或位置关系.图1 图2 图3【探究与证明】(1)如图1,小亮发现:.请证明小亮发现的结论.(2)如图2、图3,小莹发现:连接CG并延长交AB所在的直线于点H,交EF于点M,线段EN与CH 之间存在特殊关系.请写出小莹发现的特殊关系,并从图2、图3中选择一种情况进行证明.【应用拓展】在图2、图3的基础上,小博士进一步思考发现:将EG所在直线与AB所在直线的交点记为P,若给出BP 和BC的长,则可以求出CF的长.请根据题意分别在图2、图3上补画图形,并尝试解决:当,时,求CF的长.九年级数学试题参考答案一、单选题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.12.5 13.214.四、解答题(本题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.解:(本题10分,第(1)题4分,第(2)题6分)(1)①有错误,第四步,……2分②不等式的基本性质1(只答不等式的基本性质不得分)………………………4分(2) (1)分 (3)分……4分由得………………………………………………………5分所以,原式…………………………………………………………………6分16.(本题10分)(1),,……3分题号123456答案CBADCD题号78910答案BDACDACBCD(2)……5分,…………………………………………………………………7分(3)……9分……………………………………………………………………………10分17.(本题11分)解:(1)过点M作,垂足为F,在中,……2分所以,………………………………………3分(2)延长ME交BC于点N,由题意可知,垂足为N,又因为,,所以四边形MFBN为矩形,所以,,……………………………………4分所以,……………………………………5分在中,………………7分在中,……………9分所以,,所以,……………………………………………10分所以,…………………………11分18.(本题11分)解:(1)……………………………………………1分……………………………………………2分(2)7.5,<…………………………………………………………………………………4分(3)应选择甲公司(答案不唯一),……………………………………………………5分理由:因为,甲和乙配送速度得分的平均数和中位数相差不大,服务质量得分的平均数相同,但是甲的方差明显小于乙的方差.所以,甲更稳定,故应选择甲公司.…………………………………………………7分(4)……………………………9分所以,三家种植户选择同一快递公司的概率是…………………………………11分19.(本题12分)(1)扣球方式:将,代入得:…………………………………………………………………………1分解得:………………………………………………………………………2分所以,………………………………………………………………3分吊球方式:将,代入中,得:……………………………………………………………4分解得:…………………………………………………………………………5分所以,…………………………………………………………6分(2)能,将代入,得,,将代入,得,,所以,两种击球方式都能过网…………………………………………………………8分将代入,得,,将代入,得,,(舍去)…………………………………………10分因为米,米,所以米,所以点C的横坐标为5.因为………………………………………………………………11分所以,选择吊球方式,球的落地点到C点的距离更近………………………………12分20.(本题12分)(1)证明:连接OC,因为AB为的直径所以,所以………………………………1分因为,所以,因为,所以--------------------------------2分所以,因为,所以----------------------------------3分所以---------------------------4分所以,所以CD是的切线-------------------------------5分(2)解:因为,AB为的直径,所以,---------7分在中,,所以-------------------------------------------------8分所以------------9分因为,所以为等边三角形,所以---------------------------10分所以的长度--------------12分21.(本题11分)解:(1)当时,,……………………………………………1分当每月租出的无人机为10架时,按方案A租赁所得的月利润是4800元;,………………………………………………………………2分当每月租出的无人机为10架时,按方案B租赁所得的月利润是3315元;(2)由题意可得:,……………………………4分解得:或(舍),……………………………………………………………6分∴当租出的无人机为37架时,按两种方案租赁所得的月利润相等;………………7分(3)根据题意,得………………………………………8分…………………………………………………………………………9分因为,函数图象开口向下,因为对称轴为直线,………………………………………………………10分所以当时,w最大,.………………11分22.(本题13分)(1)证明:因为四边形ABCD是正方形,所以,因为是由沿EF折叠所得,点C的对应点为G,所以,,.…………………………………1分所以.所以和均为直角三角形.因为E为BC的中点,所以.所以.因为,…………………………………………………2分所以.所以.…………………………………………3分所以.所以.……………………………………………4分图1(2)且.证明:因为是由沿EF折叠所得所以.…………………5分因为,所以.所以.所以.…………………6分所以.…………………7分因为E为BC中点,所以.所以,即N为BH的中点,图2 图3(3)解:①如图4,因为E为BC中点,,所以.所以.因为,所以在中,.所以.………………………………………………………………9分因为,所以.设GN为x,所以.所以.所以在中,.所以.解得.所以.…………………………………………………………………………10分因为,所以.因为,所以在中,.所以,又因为,所以.所以.图4②如图5因为E为BC中点,,所以.所以.因为,所以在中,.所以.因为,,所以.所以.所以.所以.…………………………………………………12分同①可得,所以.所以…………………………………………………………13分图5。
2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)
2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2024年广东省中考数学模拟卷及答案
2024年广东省初中数学中考模拟卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.352.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.63.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1 4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-946.如图所示,水平放置的几何体的俯视图是()A. B. C. D.7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.599.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.1010.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A .3B .√10C .9√15D .√152二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy 2﹣2x = .12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .14.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-417.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ②18. (8分)先化简,再求值:(1+)÷,其中a=+1.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。
河南省开封市2024届九年级下学期中考一模数学试卷(含解析)
2024年中招第一次模拟考试数学试题注意事项:1.本试题卷共6页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效,3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分,下列各题均有四个答案,其中只有一个是正确的.)1. 的相反数是()A. 正有理数B. 负有理数C. 正无理数D. 负无理数答案:B解析:解:的相反数是,是负的有理数,故选:B .2. 如图所示几何体,其主视图是()A. B. C. D.答案:A解析:解:根据题意可得,该几何体是一个长方体挖去半个圆柱体,∴其主视图是“”,故选:A.3. 年我国经济回升向好,国内生产总值超过万亿元,增长,增速居世界主要经济体前列.数据万亿用科学记数法可以表示为的形式,则n的值为()A. B. C. D.答案:B解析:解:万亿,故选:B .4. 提高全民安全意识,倡导安全文明风尚.下列安全提示标志既是轴对称图形又是中心对称图形的是()A. 紧急出口B. 避险处C. 小心地滑D. 急救药箱答案:D解析:解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D .5. 传统文化如同一颗璀璨的明珠,熠熠生辉.为增强学生体质,同时让学生感受中国传统文化,某校将国家非物质文化遗产“抖空竹”引入阳光特色大课间.如图①是某同学“抖空竹”时的一个瞬间,小红同学把它抽象成数学问题:如图②,已知,,,则的度数为()A. B. C. D.答案:C解析:解:如图所示,过点作,∵,∴,∴,∴,∴,故选:C .6. 下列计算正确的是()A. B.C. D.答案:D解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算错误,不符合题意;D、,原式计算正确,符合题意;故选;D.7. 如图,把两个边长为的小正方形沿对角线剪开,用得到的个直角三角形拼成一个大正方形,则大正方形的边长最接近的整数为()A. B. C. D.答案:A解析:解:根据题意,小正方形的对角线为,∵,∴,∴,∴大正方形的边长最接近的整数是3, 故选:A .8. 已知二次函数(是常数,),当时,,若此一元二次方程有两个不相等的实数根,则该二次函数的图象可能是()A. B. C. D.答案:C 解析:解:当时,有两个不相等的实根,∴,即二次函数图象与轴有两个交点,∴根据图示可得,A 、与轴无交点,不符合题意;B 、与轴有一个交代,不符合题意;C 、与轴有两个交点,符合题意;D 、与轴有一个交代,不符合题意; 故选:C .9. “准、绳、规、矩”是古代使用的测量工具, 一个简单结构的“矩”(如图①),由于使用时安放的位置不同,能测定物体的高低远近及大小,把矩放置在如图②所示的位置,令(单位:),(单位:),若,则关于的函数解析式为( )A. B. C. D.答案:A解析:解:根据题意,,∴,∵四边形是矩形,∴,,,,∴,∴,故选:A .10. 如图,在平面直角坐标系中,的顶点A,B,O的坐标分别为、、.点,,,…中的相邻两点关于的其中一个顶点对称.如:点,关于点A对称;点,关于点B对称;点,关于点O对称;点,关于点A对称;点,关于点B对称;点,关于点O对称,…,对称中心分别是A,B,O,…,且这些对称中心依次循环,若的坐标是,则点的坐标是()A. B. C. D.答案:B解析:解:∵的坐标是,A的坐标为,∴的坐标是同理可得:的坐标是,的坐标是,的坐标是,的坐标是,的坐标是,由此可知:与的坐标相同∵∴与的坐标相同故选:B二、填空题(每小题3分,共15分)11. 实数在数轴上的位置如图所示,请把按从小到大的顺序用“”号连接为______________.答案:解析:解:如图所示,∴,故答案为:.12. 用配方法解方程时,配方后得到的方程为________________.答案:解析:解:,移项得,,等式两边同时加上1得,,∴,故答案:.13. 在某市初中升学体育终结性评价考试的素质类项目中,小明从“1分钟跳绳”、“立定跳远”、“双手正面掷实心球”、“50米跑”四个项目中随机选择两项,则他选择“立定跳远”与“50 米跑”两个项目的概率是_________________.答案:解析:解:将“1分钟跳绳”,“立定跳远”,“双手正面掷实心球”,“50米跑”表示为A,B,C,D,列表把所有等可能结果表示出来,如表所示,A B C DA----B----C----D----共有种等可能结果,出现“立定跳远”,“50米跑”的结果为,共种,∴选择“立定跳远”与“50 米跑”两个项目的概率是,故答案为:.14. 如图①是清明上河园中供人们游玩的古代的马车.如图②是马车的侧面示意图,车轮的直径为,车架经过圆心,地面水平线与车轮相切于点,连接,.小明测出车轮的直径米,米,则的长为__________米答案:解析:解:如图所示,连接,延长,作延长线于点,∵与切与点,∴,且,∴,∴,∴,∵是直径,∴,则,,∴,在中,,在中,,∴,∴在中,,∴的长为,故答案为:.15. 如图1,点P从矩形的顶点A出发,沿A→D→B以的速度匀速运动到点B,图2是点P 运动时,的面积y()随时间x(s)变化的关系图象,则a的值为_____.答案:4解析:解:∵矩形中,,∴当点P在边上运动时,y的值不变,由图像可知,当时,点与点重合,,∴,即矩形的长是,∴,即.当点P在上运动时,y逐渐减小,由图像可知:点从点运动到点共用了,∴,在中,,∴,解得.故选:C.三、解答题(本大题共8个小题,共75分)16. (1)计算:(2)化简:答案:(1),(2)解析:(1)解:;(2)17. 今年春节期间,开封跻身全国热门文旅目的地前五名,人们常常穿着汉服进入各大景区,汉服的销售成为热门,某汉服商店计划购进A ,B 两款汉服,为调研顾客对两款汉服的满意度,调整进货方案,设计了下面的调查表.序号维度分值A 款得分B 款得分满意度打分标准1舒适性202性价比203时尚性20不满意基本满意满意非常满意商店随机抽取了20名顾客试穿两款汉服,并对其进行评分,收回全部问卷,并将调查结果绘制成如下统计图和统计表.A 、B 两款汉服性价比满意度人数分布统计图A 、B 两款汉服各项得分平均数统计表舒适性得分平均数性价比得分平均数时尚性得分平均数综评平均数A B注:将舒适性、性价比和时尚性三个方面得分的平均数按的权重计算,可得出综评平均数.(表中数据精确到)B 款汉服性价比满意度得分在范围的数据是:11 12131313 14 1414请根据以上信息,回答下列问题:(1)此次调研中A 款汉服性价比满意度达到“非常满意”的人数为;(2)补全条形统计图,根据图、表中信息可得出:B 款汉服性价比得分的中位数为分;(3)根据统计图、表中数据,请计算 B 款汉服综评平均数,并参照调查问卷中的满意度打分标准,分析并写出顾客对B 款汉服的满意度情况;(4)综合以上信息,请你给该汉服商店进货方面提一条建议,并说明理由.答案:(1)6(2)补全条形图见解析:,(3)顾客对B 款的满意情况良好,尤其是对B 款的时尚性方面满意度良好(4)汉服商店在进货时,可考虑A 款汉服在数量比B 款汉服的数量多一些(答案不唯一)小问1解析:解:根据题意,非常满意的百分比为,∴(人),故答案为:6;小问2解析:解:共有人,∴基本满意的人数为:(人),补全条形统计图如下,B款汉服性价比得分的中位数是第10,11位顾客分数的平均值,∴,故答案为:;小问3解析:解:B款基本满意的占,满意的占,非常满意的占,在舒适性和性价比方面,B款的平均分小于A款的平均分;在时尚性方面,B款的平均分高于A款的平均分;∴顾客对B款的满意情况良好,尤其是对B款的时尚性方面满意度良好;小问4解析:解:根据题意,A款基本满意的占,满意的占,非常满意的占,∴汉服商店在进货时,可考虑A款汉服在数量比B款汉服的数量多一些(答案不唯一).18. 如图所示是小华完成的尺规作图题,已知:矩形.作法:①分别以点为圆心,以大于长为半径,在两侧作弧,分别交于点;②作直线;③以点为圆心,以长为半径作弧,交直线于点,连接.根据小华的尺规作图步骤,解决下列问题.(1)填空:.(2)过点作,交直线于点.①求证:四边形是平行四边形;②请直接写出平行四边形的面积和矩形的面积的数量关系.答案:(1)(2)①证明过程见解析:;②小问1解析:解:根据作图可得,是线段的垂直平分线,,∴,∴,即是等边三角形,∴,∴,故答案为:;小问2解析:解:∵四边形是矩形,∴,,∴,①∵是的垂直平分线,∴,∴,即,∵,∴四边形是平行四边形;②如图所示,设与交于点,∴,∴平行四边形的面积为,矩形的面积为,∴.19. “黄河风”雕塑位于开封市金明广场,寓意着开封像一艘巨轮,开足马力,永往直前. 某数学小组开展综合与实践数学活动,以“测量黄河风雕塑高度”为课题,制定了测量方 案.为了减小测量误差,该小组在测量仰角以及两点间的距离时,都分别测量了两次并取它 们的平均值作为测量结果,测量数据如下表:课题测量黄河风雕塑的高度实物图成员组长:×××组员:×××,×××,×××测量工具卷尺、测角仪 …测量示意图说明:表示黄河风雕塑的高度,测角仪的高度,点C ,F 与点B 在同一直线上,点C ,F 之间的距离可直接测得,且点A ,B ,C ,D ,E ,F 在同一平面内测量项目第一次第二次平均值的度数的度数测量数据C,F之间的距离参考数据(1)请帮助该小组的同学根据上表中的测量数据,求黄河风雕塑的高度.(结果精确到)(2)为测量结果更加准确,你认为在本次方案的实行过程中,该小组成员应该注意的事项有哪些.(写出一条即可)答案:(1)黄河风雕塑的高度约为(2)测角仪测量时要与地面垂直(答案不唯一,合理即可)小问1解析:解:设,交于G,如图,由题意知,,,在中,,,在中,,,,,解得,,即黄河风雕塑的高度约为.小问2解析:解:该小组成员应该注意的事项有:测角仪测量时要与地面垂直;测量时卷尺要拉直(答案不唯一,合理即可).20. 某数学活动小组研究一款如图①简易电子体重秤,当人踏上体重秤的踏板后,读数器可以显示人的质量(单位:).图②是该秤的电路图,已知串联电路中,电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为.根据与之间的关系得出一组数据如下:…123q6…4p2(1)填空:,;(2)该小组把上述问题抽象为数学模型,请根据表中数据在图③中描出实数对的对应点,画出函数的图象,并写出一条此函数图象关于增减性的性质.(3)若电流表量程是,可变电阻与踏板上人的质量之间函数关系如图④所示,为保护电流表,求电子体重秤可称的最大质量为多少千克?答案:(1),(2)作图见解析:,电流随可变电阻的增大而减小(3)电子体重秤可称的最大质量为千克小问1解析:解:已知电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为,∴当时,,即;当时,,解得,,即;故答案为:,;小问2解析:解:根据题意,…12346…432根据表格数据在平面直角坐标系中描点如下,∴根据图示,电流随可变电阻的增大而减小;小问3解析:解:根据题意,设可变电阻与人的质量的函数关系为,且该直线过,,∴,解得,,∴可变电阻与人的质量的函数关系为:,∴可变电阻随人质量增大而减小,当时,,∴;当时,,∴;∵,∴不能超过;当时,,解得,,∴,解得,,∴电子体重秤可称的最大质量为千克.21. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某生产厂家销售的甲、乙两种头盔,已知甲种头盔比乙种头盔的单价多元,购进甲种头盔个,乙种头盔个,共需元.(1)求甲、乙两种头盔的单价;(2)某商店欲购进两种头盔共个,正好赶上厂家进行促销活动,其方式如下:甲种头盔按单价的八折出售,乙种头盔每个降价元出售.如果此次购买甲种头盔的数量不低于乙种头盔的数量,那么应购买多少个甲种头盔可以使此次购买头盔的总费用最少?最少费用是多少元?答案:(1)甲种头盔的单价是元,乙种头盔的单价是元(2)应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元小问1解析:解:设购买乙种头盔的单价为元,则甲种头盔的单价为元,根据题意,得,解得:,,答:甲种头盔的单价是元,乙种头盔的单价是元;小问2解析:解:设购只甲种头盔,则购只乙种头盔,设总费用为元,则,解得:,,∵,∴随的增大而增大,∴时,取最小值,最小值,答:应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元.22. 开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离为50米,若以点O为原点,所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离为72米,请求出此时这条钢拱之间水面的宽度;(3)当时,求y的取值范围.答案:(1)(2)(3)小问1解析:解:∵,,∴,,设抛物线解析式为,把代入得:,解得:,∴抛物线解析式为.小问2解析:解:∵,∴,∴,把代入得:,解得:,∴此时这条钢拱之间水面的宽度为;小问3解析:解:∵,∴抛物线的定做坐标为,∴当时,y取最大值50,∵,∴抛物线开口向下,则离对称轴越远,函数值越小,∵,∴当时,y取最小值,,∴当时,.23. 问题情境:在数学课上,张老师带领学生以“图形的平移”为主题进行教学活动.在菱形纸片中,,对角线,将菱形沿对角线剪开,得到和.将沿射线方向平移一定的距离,得到.观察发现:(1)如图①,菱形中,;如图②,连接,四边形的形状是;操作探究:(2)将沿直线翻折,得,如图③,然后沿射线方向进行平移,连接,若添加一个条件,能否使得四边形是一个特殊的四边形?若能,请写出添加的条件和这个特殊的四边形,并写出证明过程,若不能,说明理由.拓展应用:(3)在(2)的条件下,设和相交于点,当是的三等分点时,直接写出的面积.答案:(1),平行四边形;(2)添加点为中点,可得四边形是矩形,证明见解析:;(3)的面积为或解析:解:如图所示,连接与交于点,∵四边形是菱形,∴,,,且,在直角中,,∴,如图所示,连接,∵四边形是菱形,图形平移,∴,,∴,∴四边形是平行四边形,故答案为:,平行四边形;(2)如图所示,连接,根据题意,,添加点为中点,可得四边形是矩形,证明如下,∵四边形菱形,∴,,∴,,且,∴,∴,,,∴四边形是矩形;(3)当是的三等分点,第一种情况,如图所示,过点作于点,过点作于点,,根据题意,,∴,,∴,∴,∴,根据(1)的证明可得,,∴,∴,则,∴的面积为;第二种情况,如图所示,,∴由上述证明可得,,∴,则,∴的面积为;综上所,的面积为或.。
中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题
某某市铜梁区巴川中学2016届中考数学模拟试卷一一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠15.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠211.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29212.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为(结果保留π).17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=, =, =;(2)2x2﹣7x+2=0(x≠0),求的值.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年某某市铜梁区巴川中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵ =2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值X围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对某某“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100X该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【考点】切线的性质.【专题】计算题.【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理的运用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分【考点】函数的图象.【专题】探究型.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项A错误;前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项B正确;由图可知,5分钟时两人都跑了500米,故选项C正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;故选A.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值X围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值X围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【专题】规律型.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 6.02×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:602 000 000 000=6.02×1011,故答案为:6.02×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥B C,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为8﹣2π(结果保留π).【考点】扇形面积的计算.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故答案为:8﹣2π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【考点】概率公式;根的判别式;解一元一次不等式组.【分析】首先解不等式组,即可求得a的取值X围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.【点评】此题考查了概率公式的应用、不等式组的解集以及一元二次方程的解法.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值X围,再利用w与x之间的函数关系式,求出函数最值即可.【解答】解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 , = 14 , = 194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【考点】一元二次方程的解.【专题】阅读型.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用;解直角三角形的应用-仰角俯角问题.【分析】(1)延长FE交AB于M,设ME=x,根据直角三角形函数得出AM=tanα•x,BM=tanβ•x,然后根据tanα•x+tanβ•x=36,即可求得EM的长,然后通过余弦函数即可求得AE;(2)根据BM=NG=DN,得到DN的长,然后解直角三角形函数求得EN和FN,进而求得EF和DF的长,然后根据题意列出方程,解方程即可求得.【解答】解:(1)延长FE交AB于M,∵EF∥BC,∴MN⊥AB,MN⊥DG,设ME=x,∴AM=tanα•x,BM=tanβ•x,∵AB=36,∴tanα•x+tanβ•x=36,∴tan37°x+tan24°x=36,0.75x+0.45x=36,解得x=30,∴AE==≈37.5(米);(2)延长EF交DG于N,∵GN=BM=tan24°•30=13.5,DE=CE,EF∥BC,∴DN=GN=13.5(米),∵∠DCG=30°,∴∠DEN=30°,∴EN=DN•cot30°=13.5×,∵=,∴∠DFN=60°,∴∠EDF=30°,FN=DN•cot60°=13.5×,∴DF=EF=EN﹣FN=13.5×,∴EF+DF=27×=18,设施工队原计划平均每天修建y米,根据题意得, =+2,解得x=3(米),经检验,是方程的根,答:施工队原计划平均每天修建3米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,。
河南省2020年中考模拟数学试卷及答案参考(一) 解析版 (1)
河南省2020年中考模拟数学试卷 (一)一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0 .【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6 .【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1 时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB=60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50 名学生,A级人数占本次抽取人数的百分比为24 %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72 度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为 1 ;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD ∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM=BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D 点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x轴上方时,即m>3,如图1,利用S=S△PAB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ 的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△PAB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。
2024年山西省中考模拟预测数学试题(含答案)
2024年山西省初中学业水平测试信息卷数 学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
本试卷共6页,满分120分,考试时间120分钟。
2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.答案全部在答题卡上完成,答在本试卷上无效。
4.考试结束后,将本试卷与答题卡一并交回。
第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.下列实数中,是无理数的是( )A.2024B. C.2272.山西运城高台花鼓是一种古老的传统民间鼓乐舞蹈,源远流长.某校将腰鼓作为特色教育项目引入校园,强健学生体魄,弘扬传统文化.如图为腰鼓实物图,则其三视图中正确的是()A. B. C.D.3.“双减”政策实施后,中小学生的家庭作业明显减少.如图是某班甲、乙两名同学一周内每天完成家庭作业所花费时间的折线统计图,则下列说法正确的是()A.甲、乙平均每天完成家庭作业花费的时间相同B.乙完成家庭作业的平均效率比甲高C.同一天中,甲、乙两人完成家庭作业花费的时间最长相差1hD.乙完成家庭作业所花费的时间比甲稳定4.抖空竹是一种传统杂技节目,是国家级非物质文化遗产之一.如图1是某同学“抖空竹”的一个瞬间,若将其抽象成图2的数学问题:在平面内,已知//AB CD ,80EBA ∠=︒,25E ∠=︒,则EDC ∠的度数为( )图1 图2A.125°B.115°C.105°D.95°5. 1月23日晚,董宇辉带货《人民文学》杂志,短短四个小时,售出杂志超8.26万套,销售额更是超过了1785万,让文化成为爆款.1785万用科学记数法表示为( )A.81.78510⨯ B.71.78510⨯ C.90.178510⨯ D.617.8510⨯6.已知锐角ABC △中,O 是AB 的中点,小明、小英二人想在AC 线段上找一点P ,使得APB ∠为直角,其做法如图.对于小明、小英二人的做法,正确的是()小明的作法过点B 作与AC 垂直的直线,交AC 于点P ,则P 即为所求小英的作法以O 为圆心,OA 长为半径画弧,交AC 于点P ,则P 即为所求A.只有小明正确B.只有小英正确C.两人都正确D.两人都不正确7.“朝三暮四”是一个源自于《庄子·齐物论》的寓言故事,某数学老师将其情景内容改编成一道数学题:老翁计划早上给猴子的粮食是晚上的34,猴子们很不满意,于是老翁进行了调整,从晚上的粮食中取3千克放在早上投食,这样早上的粮食是晚上的43,猴子们非常满意.问老翁每天给猴子的食物总量共多少千克?设原计划早上投食3x 千克,那么晚上投食4x 千克,根据这一情景,你认为下列等式正确的是( )A.43333x x -+= B.433x x -=C.3344x x += D.()433433x x +=-8.第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.则八进制数2024换算成十进制数是()A.1044B.1048C.1024D.10289.如果1230x x x <<<,点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数21k y x+=-的图象上,那么1y ,2y ,3y 的大小关系是( )A.123y y y << B.213y y y << C.321y y y << D.231y y y <<10.如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得 EC,连接AC ,AE ,则图中阴影部分的面积为()A.8π-B.8πC.D.π8-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.因式分解:224m n -=______.12.已知直线//m n ,将一副三角板按如图所示的方式放置,直角顶点D 在直线m 上,30F ∠=︒,另一直角三角板一直角边与直线n 重合,45C ∠=︒,若//BC EF ,则MDE ∠=______.13.“天水麻辣烫”火了!如图,太原的小李乘坐高铁由太原南去天水吃麻辣烫时,在距离铁轨100米的B 处观察他所乘坐的由太原南开往天水的“和谐号”动车.他观察到,当“和谐号”动车车头在A 处时,恰好位于B 处的北偏东60°方向上;10秒钟后,动车车头到达C 处,恰好位于B 处的西北方向上.根据所学知识,该时段动车的平均速度是______米/秒.14.琮为内圆外方之器,如图1,此玉琮素面琢磨细腻,色泽温润,两端射口稍露,比例恰到好处.图2是“琮”的横截面示意图,其“外方”是一个正方形,“内圆”圆O 的圆心与正方形的中心重合,正方形的四个角上各有一个腰长为4cm 的等腰直角三角形,圆O 与其斜边相切,若圆O 的半径为,则正方形的边长为______cm.图1 图215.如图,在正方形ABCD 中,点E 是边BC 上的一点,点F 在边CD 的延长线上,且BE DF =,连接EF 交边AD 于点G .过点A 作AN EF ⊥,垂足为点M ,交边CD 于点N .若10BE =,16CN =,则线段AN 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本题共2个小题,每小题4分,共8分)(1)计算:(1111454-⎛⎫-+-︒+ ⎪⎭⎝;(2)先化简,再求值:2211121x x x x x ÷⎛⎫-+⎝+⎪-⎭- ,其中1x =-.17.(本题8分)如图,AB 是O 的直径,点C 是O 上的一点,射线BD AB ⊥,10AB =,6AC =.CP 与O 相切时,连接CP ,求BP 的长。
河北省保定市雄县2022-2023学年中考一模数学试卷(含答案)
A.
B.Biblioteka C.D.3.与 2 的计算结果相同的是( )
A.2 的倒数
B.2 的相反数
C. 2 的相反数
1
D. 的倒数
2
4.如图,一个球体在长方体上沿虚线从左向右滚动,在滚动过程中,球体与长方体的组合图形的视图始终不 变的是( )
A.左视图
B.主视图
5.下列计算错误的是( )
A. 5 3 2
C.俯视图
20.解:(1) 9 2m 6 m 9 2m 6 m 3 3m . 答:景点 C,D 之间的距离为 3 3m 千米. (2)由题意得 5 6 m 3 3m ,
解得 m 2 , ∴ BD 9 2m 13 .
答:景点 B,D 之间的距离 13 千米.
21.解:(1)“智”所占的比例为1 20% 20% 20% 10% 30% , ∴扇形图中“智”所对圆心角的度数为 360 30% 108 .
A.80
B.100
C.150
D.160
8.如图所示的是琳琳作业中的一道题目,“ 破损处“0”的个数为( )
”处都是 0 但发生破损,琳琳查阅后发现本题答案为 2,则
A.2
B.3
9.下列图形一定为矩形的是( )
C.4
D.5
A.
B.
C.
D.
10.图 1 是伸缩折叠不锈钢晾衣架的实物图,图 2 是它的侧面示意图, AD 与 CB 相交于点 O, AB∥CD ,
n
供的信息,下列关于这组数据的说法错误的是( )
A.中位数是 4
B.众数是 4
C.平均数是 4
1
D.方差是
4
15.某种玻璃原材料需在 0℃环境保存,取出后匀速加热至 600℃高温,之后停止加热,玻璃制品温度会逐渐 降低至室温(30℃),加热和降温过程中可以对玻璃进行加工,且玻璃加工的温度要求不低于 480℃.玻璃温
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟题(一)一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选 项,其中有且只有一个选项正确)1.下面几个数中,属于正数的是( ) A .3B .12-C.D .0鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A .平均数 B .众数 C .中位数 D .方差 4.已知方程||x 2=,那么方程的解是( ) A .2x =B .2x =-C .1222x x ==-,D .4x =5、如图(3),已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )A 、25ºB 、29ºC 、30ºD 、32°6.下列函数中,自变量x 的取值范围是2x >的函数是( ) A .y =B .y =C .y =D .y =7.在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( ) A .60D ∠=B .120A ∠=C .180CD ∠+∠= D .180C A ∠+∠=8.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米二、填空题(每小题3分,共24分)A .B .C .D .(第2题)9.2008年北京奥运圣火在厦门的传递路线长是17400米,用科学记数法表示为 米. 10.一组数据:3,5,9,12,6的极差是 . 11= . 12.不等式组2430x x >-⎧⎨-<⎩的解集是 .13.如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米. 14.若O 的半径为5厘米,圆心O 到弦AB 的距离为3厘米,则弦长AB 为 厘米.15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=,,则PFE ∠的度数是 .16.如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,则DE = cm ,ABC △的面积= cm 2.三、解答题(每题8分,共16分) 17.已知131-=a ,131+=b ,求⎪⎪⎭⎫⎝⎛+a b b a ab 的值。
18.先化简,再求值2221x x xx x+-,其中2x =.四、解答题(每题10分,共20分)19.四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张. (1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取得的两张卡片上的数字之积为奇数的概率.(第14题)C F DBE AP(第16题) A B E G C D (第17题)20.如图,为了测量电线杆的高度AB ,在离电线杆25米的D 处,用高1.20米的测角仪CD 测得电线杆顶端A 的仰角22α=,求电线杆AB 的高.(精确到0.1米)参考数据:sin 220.3746=,cos 220.9272=,tan 220.4040=,cot 22 2.4751=.五、解答题(每题10分,共20分)21.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?22.(本题满分10分)已知一次函数与反比例函数的图象交于点(21)P -,和(1)Q m ,. (1)求反比例函数的关系式; (2)求Q 点的坐标;(3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?ABE C Dα(第20题)六、解答题(每题10分,共20分)23、如图 在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。
求证:BD =2CE24.已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)、七、解答题(本题12分)25已知:如图所示的一张矩形纸片ABCD (AD AB >),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若10cm AE =,ABF △的面积为224cm ,求ABF △的周长; (3)在线段AC 上是否存在一点P ,使得22AE AC AP =? 若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.AEDCFB(第25题)八、解答题(本题14分)26、如下图:某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?中考数学模拟题数学试题参考答案及评分标准1.A 2.C 3.B 4.C 5.B 6.B 7.B 8 D9.41.7410⨯ 10.9 1112.23x -<< 13.2πr 14.8 15.18 16.2,1817:答案:没有 18.解:原式2(1)(1)(1)x x x x x x +=+-11x =- 当2x =时,原式1=. 19.解:(1)(2)P (积为奇数)16=. 20.解:在Rt ACE △中, tan AE CE α∴=⨯tan DB α=⨯25tan22=⨯10.10≈10.10 1.2011.3AB AE BE AE CD ∴=+=+=+≈(米)答:电线杆的高度约为11.3米.21.解:根据题意得:(30)(1002)200x x --= 整理得:28016000x x -+=2(40)040x x ∴-=∴=,(元)100220p x ∴=-=(件)答:每件商品的售价应定为40元,每天要销售这种商品20件.22.解:(1)设反比例函数关系式为ky x=, 反比例函数图象经过点(21)P --,. 2k ∴=-.2 3 41 3 41 2 41 2 312 3 4 第一次第二次 ABE C Dα(第20题)∴反比例函数关第式2y x =-.(2)点(1)Q m ,在2y x=-上,2m ∴=-.(12)Q ∴-,.(3)示意图.当2x <-或01x <<时,一次函数的值大于反比例函数的值. 23.(1)证明:AB AC =, C B ∴∠=∠. 又OP OB =, OPB B ∠=∠C OPB ∴∠=∠. OP AD ∴∥ 又PD AC ⊥于D ,90ADP ∴∠=,90DPO ∴∠=. PD ∴是O 的切线.(2)连结AP ,AB 是直径,90APB ∴∠=2AB AC ==,120CAB ∠=,60BAP ∴∠=.BP BC ∴=∴=.24.解:(1)依题意得:2(1)(1)(1)2b c b -+--+=-,2b c ∴+=-.(2)当3b =时,5c =-,2225(1)6y x x x ∴=+-=+- ∴抛物线的顶点坐标是(16)--,.(3)当3b >时,抛物线对称轴112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,且2BP PA =. (32)B b ∴--,122b -∴-=-. 5b ∴=.又2b c +=-,7c ∴=-.∴抛物线所对应的二次函数关系式247y x x =+-.解法2:(3)当3b >时,112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,,且2(32)BP PA B b =∴--,, 2(3)3(2)2b c b ∴---+=-.又2b c +=-,解得:57b c ==-,∴这条抛物线对应的二次函数关系式是247y x x =+-.解法3:(3)2b c +=-,2c b ∴=--,2(1)2y x b x b ∴=+---分BP x ∥轴,2(1)22x b x b b ∴+---=-即:2(1)20x b x b +-+-=.解得:121(2)x x b =-=--,,即(2)B x b =-- 由2BP PA =,1(2)21b ∴-+-=⨯.57b c ∴==-,∴这条抛物线对应的二次函数关系式247y x x =+-25.解:(1)连结EF 交AC 于O ,当顶点A 与C 重合时,折痕EF 垂直平分AC ,OA OC ∴=,90AOE COF ∠=∠=在平行四边形ABCD 中,AD BC ∥, EAO FCO ∴∠=∠, AOE COF ∴△∽△. OE OF ∴=分∴四边形AFCE 是菱形.(2)四边形AFCE 是菱形,10AF AE ∴==. 设AB x =,BF y =,90B ∠=,22100x y ∴+=AE DCFBPO2()2100x y xy ∴+-= ①又124242ABF S xy =∴=△,,则48xy =. ②由①、②得:2()196x y +=14x y ∴+=±,14x y +=-(不合题意舍去)ABF ∴△的周长为141024x y AF ++=+=.(3)过E 作EP AD ⊥交AC 于P ,则P 就是所求的点. 证明:由作法,90AEP ∠=,由(1)得:90AOE ∠=,又EAO EAP ∠=∠,AOE AEP ∴△∽△, AE AO AP AE∴=,则2AE AO AP = 四边形AFCE 是菱形,12AO AC ∴=,212AE AC AP ∴=.22AE AC AP ∴=26.解:(1)90OAB ∠=,24OA AB OB ==∴=, 12BM OM =,412OM OM -∴=,83OM ∴= (2)由(1)得:83OM =,43BM ∴=.DB OA ∥,易证12DB BM OA OM == 1DB∴=,(1D . ∴过OD 的直线所对应的函数关系式是y =.(3)依题意:当803t <≤时,E 在OD 边上, 分别过E P ,作EF OA ⊥,PN OA ⊥,垂足分别为F 和N ,tan PON ∠==60PON ∴∠=,122OP t ON t PN =∴==,,.直线OD 所对应的函数关系式是y =,∴设()E n 易证得APN AEF △∽△,PN ANEF AF∴=,1222tn-=- 整理得:422t tn n-=- 82n nt t ∴-=,(8)2n t t -=,28t n t∴=-分由此,1122228AOE tS OA EF t==⨯⨯-△,8(0)83S t t ∴=<-≤当843t <<时,点E 在BD 边上, 此时,ABE OABD S S S =-△梯形,DB OA ∥,易证:EPB APO ∴△∽△BE BP OA OP ∴=,42BE tt-∴=2(4)t BE t -= 112(4)422ABE t tSBE AB t t--==⨯⨯=⨯△1(4)4(12)2tt S t t t--∴=+⨯⨯=⨯=-+ 综上所述:803843t S t <=⎨⎪<<⎪⎩≤(1)解法2:90OAB ∠=,2OA AB ==,易求得:304OBA OB ∠=∴=,(3)解法2:分别过E P,作EF OA ⊥,PN OA ⊥,垂足分别为F 和N ,由(1)得,13022OBA OP t ON t PN ∠==∴==,,,, 即:122P t ⎛⎫ ⎪ ⎪⎝⎭,,又(20),, 设经过A P ,的直线所对应的函数关系式是y kx b =+则1220tk b k b ⎧+=⎪⎨⎪+=⎩解得:k b ==∴经过A P ,的直线所对应的函数关系式是y x =. 依题意:当803t <≤时,E 在OD边上,()E n ∴在直线AP 上,+= 整理得:2244tn t n t t -=-- 28t n t ∴=-S ∴=(803t <≤) 当843t <<时,点E 在BD 上,此时,点E坐标是(n ,因为E 在直线AP 上,+= 整理得:2244tn t t t +=--.82n nt t ∴-=. 48t n t-∴= 482(4)22t t BE n t t --=-=-=1(4)4(12)2t t S t t t--∴=+⨯⨯=⨯=-+综上所述:8083843t t S t ⎧<⎪⎪-=⎨⎪<<⎪⎩≤。