2014级硕士研究生数值分析期末考试试卷A卷

合集下载

2014_2015学年第一学期末数值分析考试试题A

2014_2015学年第一学期末数值分析考试试题A

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统内。

(2)试题类别指A卷或B卷。

2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u= 作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩ 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。

5. 取权函数()x ρ=[-1,1]上计算函数()1f x =与()221g x x =-的内积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+= ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。

2014_2015学年第一学期末数值分析考试试题A

2014_2015学年第一学期末数值分析考试试题A

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。

(2)试题类别指A卷或B卷。

(3)试题印制手续命题教师到院教务科办理。

2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。

5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。

《数值分析》A卷期末考试试题及参考答案

《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。

2014年河海大学数值分析试卷

2014年河海大学数值分析试卷

河海大学2014-2015学年硕士生《数值分析》试题(A)任课教师姓名姓名专业学号成绩一、填空题 (每小题3分, 共24分)1、已知方程的根是二重根,则求此根的具有二阶收敛的牛顿迭代格式是。

2. 作为的近似值,有 位有效数字。

3、是以为插值区域,为插值节点的插值函数,满足哪些条件会成为三次样条插值函数:。

4、给定矩阵,则_________, _________, _________,条件数____________.5、解常微分方程初值问题数值解的改进欧拉预测-校正公式是:预测:校正: 。

6、设矩阵,的杜利特尔()分解为: , 则; 。

7、给定方程,写出求解此方程的牛顿迭代格式___________________________以及弦截法迭代格式____________________________________.8、写出求解的复化辛普森求积公式______________________________________,该公式的误差阶为_____________.《数值分析》2014级(A) 第1页共5页二、(本题10分)已知,且有x0.10.20.3f (x) 2.1 3.0 3.4(1).求f (x)的二次拉格朗日插值多项式;(2).用二次拉格朗日插值多项式,求f(2.4)的近似值(取小数点后三位),并估计误差。

三、(本题10分)用最小二乘法求一个形如的经验公式,使它与下列数据相拟合。

x-10123f (x)-0.50.20.51 1.8《数值分析》2014级(A) 第2页共5页四、(本题8分)用追赶法求解三对角方程组五、(本题10分)写出方程组的雅科比和高斯-赛德尔迭代格式,确保对任意初始向量都收敛,并取初始向量,分别计算出迭代2次后的结果(取小数点后四位)。

《数值分析》2014级(A) 第3页共5页六、(本题8分)确定求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

武汉大学硕士2014级数值分析期末考题

武汉大学硕士2014级数值分析期末考题

武 汉 大 学2014~2015学年第一学期硕士研究生期末考试试题 科目名称:数值分析 学生所在院: 学号: 姓名:一、(12分)已知方程0410=-+x e x 在]4.0,0[内有唯一根。

(1)迭代格式A :)104ln(1n n x x -=+;迭代格式B :)4(1011n x n e x -=+ 试分析这两个迭代格式的收敛性;(2)写出求解此方程的牛顿迭代格式。

二、(12分)用Doolittle 分解法求线性方程组Ax b =的解,并求行列式A 。

其中244378112A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 386018b ⎛⎫ ⎪= ⎪ ⎪⎝⎭三、(14分)设方程组11223300a c x d c b a x d a c x d , 且0abc(1) 分别写出Jacobi 迭代格式及Gauss-Seidel 迭代格式;(2) 导出Gauss-Seidel 迭代格式收敛的充分必要条件。

四、(12分)已知 )(x f y = 的数据如下:求)(x f 的Hermite 插值多项式)(3x H 及其余项。

五、(12求常数a , b , 使3220[]min i i i i ax bx y六、(12分)确定常数 a ,b 的值,使积分120()x I a bx e dx取得最小值。

七、(14分)设)(x f 在],[b a 上二阶导数连续。

将],[b a n 等分,分点为b x x x a n =<<<= 10,步长na b h -= (1)证明中矩形公式11()()2i i x i i x x x f x dx hf ………………(*) 的误差为: 311()[,]24i i i i Rh f x x (2)公式(*)是否为高斯型求积公式? (3)写出求 ⎰b adx x f )( 的复化中矩形公式及其误差。

八、(12分)对于下面求解常微分方程初值问题 ⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的改进欧拉法:112121()2(,)(,)n n n n n n h y y k k k f x y k f x h y hk (1)确定此方法的绝对稳定域;(2)用此方法求解如下初值问题:22(0)1y x y y ]1,0[∈x 。

研究生数值分析期末考试试题A答案

研究生数值分析期末考试试题A答案

2010年秋研究生数值分析期末考试试题答案一、单选题(4*5=20分)1、D; 2、B ; 3、D ; 4、B ; 5、D 。

二、填空题(4*5=20)1、4; 2、⎪⎪⎪⎭⎫ ⎝⎛323203*⎪⎪⎪⎪⎭⎫⎝⎛320323; 3、)]23()0()23([3f f f ++-∏;4、kk k k x x x x 2221--=+;5、9.605。

三、(10分)由两点三次Hermite 插值多项式公式秋得:)2()(23x x x H -=,设所求多项式223)1()()(-+=x Ax x H x P ,。

(4分) 由P(2)=1,得A=1/4,。

(4分) 故22)3(41)(-=x x x P 。

.。

(2分) 四、(10分)设⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=1001001*10010021321u u l l l A ,由追赶法公式求得, 15/56,15/4,4/15,4/1,432211=-==-==l u l u l ,。

(4分) 由Ly=d,求得T y )77.0,87.0,25.0(=,(3分) 由Ux=y,求得,T x )5179.0,0714.1,7679.0(=(3分)五、(10分)Jacobi 迭代计算格式:⎪⎩⎪⎨⎧++-=--=--=+++3/)221(5/)327(24)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x 。

(2分) G-S 迭代计算格式: ⎪⎩⎪⎨⎧++-=--=--=++++++3/)221(5/)327(24)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x 。

(2分) 由于016415)(3=-+=-λλλJ B I del ,,11516)(>=J B ρ即Jacobi 迭代发散;。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。

( )2. 为了减少误差,进行计算。

( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。

( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。

5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。

n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。

( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。

( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。

5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。

2014级硕士研究生数值分析期末考试试卷A卷

2014级硕士研究生数值分析期末考试试卷A卷

时间t 浓度y
35
40
45
50
55
4.37
4.51
4.58
4.62
4.64
1.474763 1.506297 1.521698 1.530394 1.534714
用最小二乘法求。
三、证明题(共8分)
1. 设在区间上二阶导数连续,证明: ,其中。
值范围

6. 设,,则 ,= , = 。
7.设,的Gauss-Seidel迭代的矩阵形式,其迭代矩阵为

该迭代格式收敛的充要条件__________________。
8.求解一阶常微分方程初值问题,取步长的Euler法公式为
,其截断误差的首项为

二、计算题(第4题12分,其余各题10分,共62 分)
1. 求次数小于等于3的多项式P(x), 使其满足条件: ,,,。
2. 解线性方程组, 其中,。 (a) 作Doolittle分解。 (b) 通过求解解线性方程组,其中。
3. 写出雅可比迭代法求解线性方程组的分量迭代格式和矩阵迭代格 式,并判断该迭代格式是否收敛?
4. 设区间为[-1,1], 权函数。 (a) 求由作施密特正交化得到的多项式。 (b) 设,函数是在区间[-1,1]上的二次最佳平方逼近,求。 (c) 确定求积公式 。
位有效数字,近似值的相
对误差为

2.函数过点(0,1), (1,3)和(2,9),对应的基函数分别为,过这三个节点的
二次拉格朗日插值多项式为
,余项为

3. 已知,二阶均差=

4.方程在附近有个根,构造不动点迭代收敛的格式

,若用牛顿法迭代求根,其收敛阶是

2015年研数值分析A卷

2015年研数值分析A卷

武 汉 大 学2015-2016第一学期硕士研究生期末考试试题(A 卷)科目: 数值分析 学生所在院: 学号: 姓名:一、(12分)设方程230x x e -=,为求其最大正根与最小正根的近似值,试分别确定两个含根区间[,]a b 和两个迭代函数()g x ,使当0[,]x a b Î时,迭代格式1()n n x g x +=分别收敛于最大正根与最小正根。

二、(12分)用杜利特尔(Doolittle )分解算法求解方程 b Ax =,其中211625608A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 226768b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦三、(14分)设方程组123121113a a x a a x a a x 轾轾轾犏犏犏犏犏犏=-犏犏犏犏犏犏臌臌臌其中a 为常数。

(1)分别写出Jacobi 迭代格式及 Gauss-Seidel 迭代格式;(2)导出Gauss-Seidel 迭代格式收敛的充分必要条件。

四、(12分)已知 )(x f y = 的数据如下:求)(x f 的Hermite 插值多项式)(3x H 及其余项。

五、(12分)确定常数 a ,b 的值,使积分21320(,)I a b x ax bx dx 轾=--犏臌ò 取得最小值。

六、(12求形如 y bx x=+ 的拟合曲线。

七、(14分)(1)对初值问题00(,)[,]()dy f t y t a b dt y t y ìïï=ïÎíïï=ïî验证改进欧拉方法(也称预估-校正法)与微分方程是相容的;(2) 用改进欧拉方法求下面方程的数值解(取步长5.0=h ):(0)1dy dt y ⎧=⎪⎨⎪=⎩ [0,1]t ∈ (取5位有效数字计算) 八、(12分)设求积公式 ∑⎰=≈nk k k ba x f A dx x f 1)()(为高斯型求积公式,并记 )())(()(21n n x x x x x x x ---= ω(1)问给定的求积公式的代数精度是多少次?(2)证明: 对任意次数小于等于1-n 的多项式)(x q ,必有⎰=ba n dx x x q 0)()(ω; (3)证明:n k A k ,,2,1,0 =>。

060708研究生数值分析试卷(A).doc

060708研究生数值分析试卷(A).doc

武汉大学2006〜2007学年第一学期硕士研究生期末考试试题(A 卷)科H 名称:数值分析 学生所在院: 学号: 姓名:注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

一、(12分)设方程组Ax = 0为■1、 (1\J 1>(1)用Doolittle 分解法求解方程组;(2) 求矩阵A 的条件数Cwd(A)g 二、(12分)设A 为n 阶对称正定矩阵,A的n 个特征值为山 < 心< .•. V 九,为 求解方程组Ax = b,建立迭代格式求出常数s 的取 值范围,使迭代格式收敛。

三、(12分)已知数据试用二次多项式p ⑴=ax 1 2+hx + c 拟合这些数据。

四、(14分)已知y = /(x)的数据如下:取得最小值。

六、 (12)确定常数片,使求积公式1求f (x)的Hermite 插值多项式W 3(x);2 为求\\f{x)dx 的值,采用算法:•⑴必:=「久3)击+ R 试导出截断误差R五、(12分)确定常数。

,b 的值,使积分r I.2I(a,b) = J 0(czx + /?-/) dxc 2^f{x)dx a A/(0) + A2/(l) + A3/(2)的代数精度尽可能高,并问是否是Gauss型公式。

七、(12分)设伊⑴导数连续,迭代格式x M =(p{x k)—阶局部收敛到点x*。

对于常数人,构造新的迭代格式:A 1 ,、队=一从+ 一心)1 +2 1 + 人问如何选取人,使新迭代格式有更高的收敛阶,并问是儿阶收敛。

八、(14分)对于下面求解常微分方程初值问题」方= 的单步法:Mo) = JoA)'〃+】=儿 + hk2< k、=(1)验证它是二阶方法;(2)确定此单步法的绝对稳定区域。

武汉大学2007~2008学年第一学期硕士研究生期末考试试题科目名称:数值分析学生所在院:学号:姓名:注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。

2014研究生试题答案数值分析

2014研究生试题答案数值分析

+
h2 12
[
f
'
( xi
)

f ' (xi+1)] )
∑ =
n−1 i=0
h[ 2
f
(xi )+f
(
xi+1
))]
+
h2 [
12
f
'(a) −
f
' (b)]
----------------4

第 4页 共 6 页
五、(本题满分 13 分)应用数值积分的有关理论建立常微分方程初值问题: dy = f (x, y) dx y(x0 ) = y0
x n+1 xn
x − xn−1 dx + f xn − xn−1
xn−1, y xn−1
x n+1 xn
=
y ( xn
)
+
h 2
3
f
( xn ,
yn
)

f
( xn−1,
) yn−1
x − xn dx xn−1 − xn
-------------------------------------6 分
第 6页 共 6 页
解:(1)确定V = ϕ(i) 的形式。将表中给出的数据点描绘在坐标纸上,可以看出
这些点位于一条直线的附近,故可选择线性函数来拟合这组实验数据,即取 V = a + bi
(2)建立法方程组。
1 1
1
2

1 4
A = ,---------------------------2
将 y ( xn ) 用 yn 代替,将 ≈ 换成=,则命题得证。

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案太原科技大学硕士研究生2012/2013学年第1学期《数值分析》课程试卷参考答案一、填空题(每小题3分,共30分)1、x x ++11;2、2;3、20;4、6;5、kk k k k x x x x x cos 11sin 1----=+ ( ,1,0=k ); 6、12121)(2++=x x x f ;7、311+=+k k x x ( ,1,0=k );8、12-n ;9、2; 10、+++++++--100052552452552052552525524;二、(本题满分10分)解:Gauss-Seidel 迭代方法的分量形式为+--=+--=++-=++++++3221522)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x -----5分取初始向量T x )0,0,0()0(=时,则第一次迭代可得===315)1(3)1(2)1(1x x x ,--------------7分答案有错误第二次迭代可得=-==7119)2(3)2(2)2(1x x x ,-----------9分所以T x )7,11,9()2(-=.---------------10分三、(本题满分10分)解:构造正交多项式:取)()()()(,)(,1)(01112010x x x x x x x ?β?α?α??--=-==,1)()(402040200=∑∑===i i i i i x x x ??α,1)()(402140211=∑∑===i i i i i x x x ??α,2)()(402040211=∑∑===i i i i x x ??β;所以点集{}1,0,1,2,3-上的正交多项式为12)(,1)(,1)(2210--=-==x x x x x x .-------------------------5分则矩阵???????? ?-----=221111*********A , ??=14000100005A A T ,????? ??=3915y A T ;法方程=????? ??????? ??391514000100005210c c c ----------------8分解得===1431093210c c c ;--------9分所以要求的二次多项式为35667033143)12(143)1(109322++=--+-+=x x x x x y .-----------10分四、(本题满分10分)解:取基函数210)(,1)(x x x ==??,则1),(1000=?=dx ??,31),(10201=?=dx x ??, 51),(10411=?=dx x ?? ππ?2sin ),(100=?=xdx f , 3102141sin ),(πππ?-=?=xdx x f----------------------------------6分法方程-=???? ???????? ??34125131311πππb a -----------------8分解得-=+=33454151543ππππb a .---------------9分所以最佳平方逼近多项式233)45415(1543)(x x ππππ?-++=.---------10分五、(本题满分10分)解:在区间[]1,+n n x x 上对微分方程),(y x f dxdy =进行积分得 ??=++11),(n n n n x x x x dx y x f dx dxdy 即=-+n n y y 1?+1),(n n xx dx y x f -------2分对上式等号右边的积分采用梯形公式进行求解,即+1),(n n x x dx y x f []n n f f h +=+12-------5分所以原微分方程初值问题的数值求解公式为11()2n n n n h y y f f ++=++.-------6分上述数值求解公式的截断误差为 ))](,())(,([2)()(1111n n n n n n n x y x f x y x f h x y x y R +--=++++---8分而又由泰勒公式得)()()()(2'1h O x hy x y x y n n n ++=+;)())(,())(,(11h O x y x f x y x f n n n n +=++;所以))](,()())(,([2)()()()(2'1n n n n n n n n x y x f h O x y x f h x y h O x hy x y R ++--++=+ )()())(,()(22'h O h O x y x hf x hy n n n =+-= 故该方法是一阶的方法.-----------------10分六、(本题满分20分)解:(1)构造的差商表如下:x )(x f 一阶差商二阶差商三阶差商 1 22 4 23 5 1 21- 4 8 3 121 -----------------------------15分(2)取2、3、4作为插值点,----------------------------------------------------17分构造的二次牛顿插值多项式为84)3)(2()2(4)(22+-=--+-+=x x x x x x P -----19分所以25.6)5.3()5.3(2=≈P f .------------------------------20分七、(本题满分10分)解:由泰勒公式可得)2)(()2()('b a x f b a f x f +-++=ξ,),(b a ∈ξ. 把上式代入积分公式?b a dx x f )(可得dx b a x f b a f dx x f b a b a+-++=?)2)(()2()('ξ ?+-++-=b a dx b a x f b a f a b )2)(()2()('ξ 故求积公式的截断误差表达式为?+-b a dx b a x f )2)(('ξ,),(b a ∈ξ.-----------5分当1)(=x f 时,求积公式左边=右边=a b -.当x x f =)(时,求积公式左边=右边=222a b -. 当2)(x x f =时,求积公式左边=333a b -,右边=()()92a b a b +-,左边≠右边. -----8分所以求积公式具有一次代数精度.-------------------------- -----10分。

研究生数值分析试题a卷

 研究生数值分析试题a卷
4、下列说法不正确的是()。
(A)、 是3次勒让德多项式;
(B)、 余项为 ;
(C)、矩阵的谱半径 ;
(D)、设 为 的不动点, ,则迭代 局部收敛。
5、下列说法正确的是( )。
(A)、梯形公式 是Newton-Cotes公式;
(B)、对于迭代 用不动点迭代是收敛的;
(C)、用迭代法解线性方程组 ,此时迭代是收敛的;
5、高斯-赛德尔迭代法收敛的充要条件是。
三、(10分)求满足条件 的三次Hermite插值多项式 ,并估计余项。
1、世界是由物质构成的。我们身边的书、橡皮、电灯、大树、动物、植物包括我们自己都是由物质构成的。四、(10分)分别用梯形公式、Simpson公式、Cotes公式计算
16、在北部天空的小熊座上有著名的北极星,可以借助大熊座比较容易地找到北极星。黑夜可以用北极星辨认方向。(保留小数点后4位)。
1、 是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位数,则它的有效位数是()。
(A)、4;(B)、3;(C)、2;(D)、1。
2、设 是 个互异节点 的拉格朗日插值基函数,则下列选项中正确的是()。
(A)、 ;(B)、 ;
(C)、 ;(D)、 。
3、设 ,则 , 分别为( )
(A)、-2,3;(B)、6,1;(C)、6,7;(D)、6,3。
10、由于煤、石油等化石燃料消耗的急剧增加,产生了大量的二氧化碳,使空气中的二氧化碳含量不断增加,导致全球气候变暖、土壤沙漠化、大陆和两极冰川融化,给全球环境造成了巨大的压力。五、(10分)用平方根法求解方程组 。
21、血液中的细胞好像运输兵,负责运输吸入的氧气和产生的二氧化碳。六、(10分பைடு நூலகம்对于方程组

(完整版)合肥工业大学2014级研究生《数值分析》试卷(A)评分标准

(完整版)合肥工业大学2014级研究生《数值分析》试卷(A)评分标准

合肥工业大学研究生考试试卷(A)课程名称数值分析考试日期学院2014级研究生姓名年级班级学号得分一、填空题(每空2分,满分20分)1. 设20142012()657f x xx,则差商[1,2,,2015]f L 6 .2.设函数(0.9) 1.2178,(1)1,(1.1)0.6018f f f , 用三点数值微分公式计算(1)f 的近似值为3.08, (1)f 的近似值为18.04.3.设T(2,5,7,3)x ,2345A,则2x87,1Cond()A 36 .4. 函数()f x 以0,1,2为节点的二次Lagrange 插值多项式2()p x (1)(2)(0)(2)(0)(1)(0)(1)(2)(01)(02)(10)(12)(20)(21)x x x x xx f f f .5.设S 是函数f在区间[0,2]上的三次样条:32312,01,()2111,12,x x x S x b xx x xc 则b -1,c-3.6.四阶Runge-Kutta 方法的局部截断误差是4()O h ,其整体截断误差是5()O h .二、(本题满分8分)要使397的近似值*x的相对误差的绝对值不超过0.01%,求*x至少应具有几位有效数字?解设*x至少应具有l位有效数字. 因为34597, 所以397的第一个非零数字是4,即*x的第一位有效数字14a ,L L L2分根据题意及定理1.2.1知,3**1114971122410100.01%10l l xa x,L L L6分解得5lg850.903 4.097l . 故取5l ,即*x至少应具有5位有效数字。

L L L8分三、(本题满分12分)已知线性方程组1231231231041,21072,3210 3.xx x x x x xxx(1) 写出求解上述方程组的Gauss –Seidel 迭代格式。

(2) 写出求解上述方程组的Jacobi 迭代格式的迭代矩阵J B .(3) 计算范数JB ,判断上述Jacobi 迭代格式是否收敛?若收敛,试估计要达到精度410,Jacobi 迭代法所需的迭代步数;取初值T(0,0,0)x .解(1) 求解上述方程组的Gauss –Seidel 迭代格式为(1)()()123(1)(1)()213(1)(1)(1)31211011011041,272,323.k k k k k k k k k x x x xxx x x x L L L4分(2) 因为原方程组的系数矩阵1041000100004121072000100007321032010ALD U,--------------------------------------------------------------------------------------------------------------------------------------------------------装订线所以求解上述方程组的Jacobi 迭代格式的迭代矩阵为1125110()15071031015J B D LU I D A.L L L8分(3) 因为9101JB ,所以解原方程组的Jacobi 迭代格式收敛。

(完整版)合肥工业大学2014级研究生《数值分析》试卷(A)评分标准

(完整版)合肥工业大学2014级研究生《数值分析》试卷(A)评分标准

合肥工业大学研究生考试试卷(A)课程名称 数值分析 考试日期 学院 2014级研究生 姓名 年级 班级 学号 得分一、填空题 (每空2分,满分20分) 1. 设20142012()657f x xx=-+,则差商[1,2,,2015]f =L 6 .2. 设函数(0.9) 1.2178,(1)1,(1.1)0.6018f f f =-=-=-, 用三点数值微分公式计算(1)f '的近似值为 3.08 , (1)f ''的近似值为 18.04 .3. 设T(2,5,7,3)=-x ,2345A -=-⎡⎤⎢⎥⎣⎦,则2=x 1Cond()A = 36 .4. 函数()f x 以0,1,2为节点的二次Lagrange 插值多项式2()p x =(1)(2)(0)(2)(0)(1)(0)(1)(2)(01)(02)(10)(12)(20)(21)x x x x x x f f f ------++------.5. 设S 是函数f 在区间[0,2]上的三次样条:()()()32312,01,()2111,12,x x x S x b x x x x c +-≤≤=--+-≤≤++⎧⎨⎩则b= -1 ,c = -3 .6. 四阶Runge-Kutta 方法的局部截断误差是4()O h ,其整体截断误差是5()O h .二、(本题满分8分) *x 的相对误差的绝对值不超过0.01%,求*x 至少应具有几位有效数字?解 设*x 至少应具有l 位有效数字. 因为45, 的第一个非零数字是4,即*x 的第一位有效数字14a =, L L L2分根据题意及定理1.2.1知,11141122410100.01%10l l a -+-+-≤⨯=⨯⨯≤=,L L L6分解得5lg850.903 4.097l ≥-≈-=. 故取5l =,即*x 至少应具有5位有效数字。

L L L8分三、(本题满分12分) 已知线性方程组1231231231041,21072,3210 3.x x xx x xx x x --+=-+-=++=⎧⎪⎨⎪⎩(1) 写出求解上述方程组的Gauss –Seidel 迭代格式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014级硕士研究生试卷
科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号:
不予计分;可带计算器。

一、 填空题(每空2分,共30分)
1.设14.30=x 是准确值21.30=*
x 的近似值,则近似值x 有 位有效数字,近
似值x 的相对误差为 。

2.函数)(x f 过点(0,1), (1,3)和(2,9),对应的基函数分别为)(),(),(210x l x l x l ,过这三个节点的二次拉格朗日插值多项式为 ,余项为 。

3. 已知0)1(,3)1(,0)2(=-==f f f ,二阶均差]1,1,2[-f = 。

4.方程012
3
=--x x 在5.10
=x 附近有个根,构造不动点迭代收敛的格式
为 ,若用牛顿法迭代求根,其收敛阶是 。

5.设⎪⎪⎪⎭

⎝⎛=2021012a a A ,为了使A 可分解成T
LL A =,其中L 是对角元素为正的下三角矩阵,
则a 的取值范围 。

6. 设⎪⎪⎪⎭⎫ ⎝⎛-----=232221413A ,⎪⎪⎪

⎫ ⎝⎛-=111x ,则∞||||Ax ,1||||A = ,
2||||A = 。

7.设U L D A --=,b Ax =的Gauss-Seidel 迭代的矩阵形式b Ux Lx Dx
k k k ++=++)()1()
1(,
其迭代矩阵为 ,该迭代格式收敛的充要条件__________________。

8.求解一阶常微分方程初值问题⎪⎩
⎪⎨⎧=<<-=1)0(1
0,2'
y x y
x y y ,取步长1.0=h 的Euler 法公式为 ,其截断误差的首项为 。

二、计算题(第4题12分,其余各题10分,共62分)
1. 求次数小于等于3的多项式P (x ), 使其满足条件: 0)0(=P ,1)0('=P ,1)1(=P ,
2)1('=P 。

2. 解线性方程组b Ax =, 其中⎪
⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=201814,513252321b A ,⎪⎪⎪
⎭⎫ ⎝⎛=321x x x x 。

(a) 作Doolittle 分解LU A =。

(b) 通过求解y Ux b Ly ==,解线性方程组b Ax =,其中⎪⎪⎪

⎫ ⎝⎛=321y y y y 。

3. 写出雅可比迭代法求解线性方程组⎪⎩⎪⎨⎧=-+=++=+-1
211
2321
3
21321x x x x x x x x x 的分量迭代格式和矩阵迭代格式,并判断
该迭代格式是否收敛?
4. 设区间为[-1,1], 权函数1)(≡x ρ。

(a) 求由{}2
,,1x x 作施密特正交化得到的多项式)(),(),(2
1
x P x P x P 。

(b) 设
x e x f =)(,函数)()()()(221100x P x P x P x αααϕ++=是)(x f 在区间[-1,1]上的二次最
佳平方逼近,求210,,a αα。

(c) 确定求积公式 )()()(11011
0x f A x f A dx x f +≈⎰
-。

5. 分别用复合梯形公式和复合辛普森公式计算积分⎰+1
024dx x x
,8=n 。

6. 某化学反应中,由实验得分解物浓度与时间关系如下:
用最小二乘法求t
b ae y =。

三、证明题(共8分)
1. 设)(x f 在区间],[b a 上二阶导数连续,证明:
|)(|max )(8
1
|)]()()()([)(|max ''2x f a b a x a b a f b f a f x f -≤---+
-,其中b x a ≤≤。

相关文档
最新文档