人教版七年级数学下册第七章专题训练教程文件
(2020年整理)人教版七年级数学下册第七章教案.doc
第七章平面直角坐标系7.1.1有序数对德育目标:学习《中学生日常行为规范》第18条:认真预习、复习,主动学习,按时完成作业,考试不作弊。
教学目标:1.理解有序数对的应用意义,了解平面上确定点的常用方法2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:有序数对及平面内确定点的方法.教学难点:利用有序数对表示平面内的点.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。
能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。
教学方法:启发、讨论、探究教学过程:一.创设问题情境,引入新课1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。
2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。
3.某人买了一张8排6号的电影票,很快找到了自己Array的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?二、新课讲授1、由学生回答以下问题:(1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。
(2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。
”学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定教室里坐位的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。
(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。
人教版数学七年级下册 第七章7.1---7.2同步教学课件
A(-2,4) 点的坐标变化与点的平移之间有什么联系?
你所发现点的左右、上下平移与点的坐标变化之间的关系是:
• 将点(x,y)向右平移a个单位长度,得到对应点 (x+a,y), • 将点(x,y)向左平移a个单位长度,得到对应点 (x-a,y),
将点(x,y)向上平移a个单位长度,得到对应点 (x,y+a), 将点(x,y)向下平移a个单位长度,得到对应点 (x,y-a)。
长度,就构成了数轴.
· A•
原点 •B C•
-3 -2 -1 0 1 2 3 4
数轴上每个点都对应一个实数,这个实数叫做这个点
在数轴上的坐标.
例如: 点A 在数轴上的坐标为__-3__,
点B 在数轴上的坐标为__2__,
数轴上坐标为4的点是点_C___.
思考:如何确定平面上点的位置?
A C
D B
如何确定平面上点的位置?
y
D(0,6)
C(6,6)
(A0(O,0))
B(66,0)
x
练习 :建立平面直角坐标系,使点B、C的坐标
分G的别坐为标(,0,指0出)象和限(.4,0y),写出点A、D、E、F、
A( -2 ,3) D( 6 ,1) E( 5 ,3) F( 3,2) G( 1,5)
6 5G
4
A
3
2
1
B(0,0)
-3
9
4
• (6)在平面直角坐标系中, • 已知点M(a-1,5)向右平移3个单位长度,之后又向上平移4个单
位长度得到点N的坐标(2,b-1), • 则a= ,b= ;
0
10
• 在平面直角坐标系中,有三角形ABC。
2021春人教版七年级数学下册 第7章 点拨训练习题课件(付,147)
解:点 D 的位置如图②所示,点 C 可表示为(-4,0),如图②.
人教版 七年级下
第七章 平面直角坐标系
7.1 平面直角坐标系 第2课时 平面直角坐标系
提示:点击 进入习题
1 见习题 2B 3 见习题 4D 5A
6B 7C 8D 9D
10 C
答案显示
提示:点击 进入习题
11 见习题 12 见习题 13 见习题 14 见习题 15 见习题
答案显示
课堂导练
1.在平面内画两条互相垂直、__原__点_重__合_____的数轴,组成 _平_面__直_角__坐_标__系______.水平的数轴称为_x_轴_或__横_轴______,习惯上 取向右为_正__方_向____;竖直的数轴称为_y_轴_或__纵_轴____,取向上为 __正_方__向___;两坐标轴的交点为__平_面__直_角__坐_标__系_的__原_点________.
课堂导练
6.通常情况下,用有序数对表示一个点的位置时,把这对数用 __括__号____括起来,两数之间用__逗_号_____隔开,如_(_3_,_2_),_____ (5_,__7)_(答__案_不__唯_一__) ____(写出两个即可).
课堂导练
7.若(1,2)表示教室里第 1 列第 2 排的位置,则教室里第 2 列第 3 排的位置表示为( C ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)
如图是某中学新生入学军训时的一个67的方阵队列小华小军小刚的位置如图所示分别以行列所在的直线为x轴建立平面直角坐标系要使得小华小军在同一象限内则可以作为原点的位置是课堂导练a
人教版七年级数学 下册 第七章 7.2.2 用坐标表示平移 课时练(含答案)
第七章平面直角坐标系7.2.2 用坐标表示平移一、选择题1、如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1) B.(1,1)C.(7,1) D.(3,3)2、如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )A.(4,3) B.(2,4)C.(3,1) D.(2,5)3、将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A.向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位4、把点P1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P2处,则P2的坐标是()A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)5、在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)二、填空题6、线段CD是由线段AB平移得到的。
点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为7、如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为.8、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB 平移后得到线段A′B′(点A’与点A对应).若点A′的坐标为(-2,2),则点B′的坐标为__________.9、△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3)将其平移到点A′(-1,-2)处,使A与A′重合,则B′、C′两点坐标分别为, .10、点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为。
人教版数学七年级下册-第七章 7.1.1有序实数对
激趣导学
想一想 天安门广场上出现的壮观的背景图案是怎样 形成的呢?
学科网
想一想 在电影院中如何快速准确找到自己的座位呢?
戴眼镜的同学坐错位了吗?
(((11325)),在 如电16电果影)影将院和院“确(内9定1排6如一,7何号个15找”座)到简位各自记,表己作需示的(要什位9几么,置个含7?)数义,??那么 “这7两排对9号数”中如的何15表的示含?义有什么不同?
5
馬
馬
(5,0)
4
3
(0,7)
2
仕
仕
相
1
帥
炮 1 2 34 5 6 78
10
帅
9 马 马 士炮
5、右图:若黑马 马8
相
的位置用(3,7) 表示,请你用有序 数对表示黑马可以 走到的哪几个位置。
7
马6
5
马·
楚兵河 马炮汉ຫໍສະໝຸດ 界(1,6)(1,8) 4
卒
3
(2,9)(4,9) 2
(5,6)
1 1
士将 象
我们把这种有顺序的两个数a与b组 成的数对,叫做有序数对,记做 (a,b)。
有了有序数对就能很准确地表示出一个位置!
“神舟”五号载人飞 船于2003年10月16日6 时23分在内蒙古主着 陆场成功着陆。
实际着陆地点与理论 地点相差4.8公里,
返回舱完好无损,我 国首次载人航天飞行 圆满成功。
在神舟六号着落时,地面搜救人员找到 后如何迅速的报告精确的着落地点?
14 13 12 11 10 9 8 7 6 5 4 3 2 1
练习测评
答一答
B点是 (1,6) C点是 (9, 8 ) D点是 (5, 4 )
精品解析2022年最新人教版初中数学七年级下册第七章平面直角坐标系专题训练试题(含详细解析)
初中数学七年级下册第七章平面直角坐标系专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2、在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2018的面积是( )A .5052mB .504.52mC .5042mD .5032m3、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒4、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-5、如图,在平面直角坐标系中,将四边形ABCD 平移得到四边形A 1B 1C 1D 1,点E ,E 1分别是两个四边形对角线的交点.已知E (3,2),E 1(﹣4,5),C (4,0),则点C 1的坐标为( )A .(﹣3,3)B .(1,7)C .(﹣4,2)D .(﹣4,1)6、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .27、在平面直角坐标系中,李明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数是1时,则向右走1个单位长度;当n 被3除,余数是2时,则向右走2个单位长度.当走完第12步时,棋子所处位置的坐标是( )A .(9,3)B .(9,4)C .(12,3)D .(12,4)8、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)9、如果点P (2,y )在第四象限,则y 的取值范围是( )A .y <0B .y >0C .y ≤0D .y ≥010、已知A 、B 两点的坐标分别是()2,3-和()2,3,则下面四个结论:①点A 在第四象限;②点B 在第一象限;③线段AB 平行于y 轴:④点A 、B 之间的距离为4.其中正确的有( )A .①②B .①③C .②④D .③④二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,正方形ABCD 的顶点A 、D 的坐标分别为(﹣2,1)和(3,1),则点C 的坐标为_________.2、已知点(210,39)P m m --在第二象限,且离x 轴的距离为3,则|3||5|m m ++-=____.3、线段AB =5,AB 平行于x 轴,A 在B 左边,若A 点坐标为(-1,3),则B 点坐标为_____.4、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.5、若点(4,1)P m m +-在y 轴上,则m =_____.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在平面直角坐标系中,已知A (0,﹣2),B (1,2),C (5,1).(1)在平面直角坐标系中画出ABC ;(2)若点D 与点C 关于x 轴对称,则点D 的坐标为______,BCD 的面积为_____.2、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,4),B(-4,2),C(-1,1)(每个小方格都是边长为1个单位长度的正方形).请完成以下画图并填空.(1)画出△ABC关于原点O成中心对称的△A1B1C1(点A,B,C的对应点分别为A1,B1,C1);(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2(点A,B,C的对应点分别为A2,B2,C2);(3)△ABC的面积为.(直接填结果)3、法定节日的确定为大家带来了很多便利,我们用坐标来表示这些节日:元旦用A(1,1)表示(即1月1日),清明节用B(4,4)表示(即4月4日),端午节用C(5,5)表示(即5月初5).(1)用坐标表示出:中秋节D,国庆节E;(2)依次连接C-D-E-C,在坐标系中画出;(3)将(2)中图像向左平移7个单位长度,再向下平移4个单位长度,画出平移后的图像.4、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.(1)根据要求在网格中画出相应图形;(2)写出△A′B′C′三个顶点的坐标.5、在平面直角坐标系xOy中,将三点A,B,C的“矩面积”记为S,定义如下:A,B,C中任意两点横坐标差的最大值a称为“水平底”,任意两点纵坐标差的最大值h称为“铅垂高”,“水平底”与“铅垂高”的乘积即为点A,B,C的“矩面积”,即S=ah.例如:点A(1,2),B(﹣3,1),C(2,﹣2),它们的“水平底”为5,“铅垂高”为4,“矩面积”S=5×4=20.解决以下问题:(1)已知点A(2,1),B(﹣2,3),C(0,5),求A,B,C的“矩面积”;(2)已知点A(2,1),B(﹣2,3),C(0,t),且A,B,C的“矩面积”为12;,求t的值;(3)已知点A(2,1),B(﹣2,3),C(t,t+1),若t<0,且A,B,且A,B,C的“矩面积”为25,求t的值.---------参考答案-----------一、单选题1、C【分析】根据点P(2,b)在第四象限内,确定b的符号,即可求解.【详解】解:点P(2,b)在第四象限内,∴0b ,所以,点Q(b,-2)所在象限是第三象限,故选:C.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.2、D【分析】由题意可得规律42n OA n =知20162017110092=+=,据此得出62018100931006A A =-=,然后运用三角形面积公式计算即可.【详解】解:由题意知42n OA n =,∵20184504......2÷=, ∴20172016110092OA =+=, ∴62018100931006A A =-=,则△OA 6A 2018=1100615032⨯⨯=2m ,故选:D .【点睛】本题考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C 、北偏东30,具体位置不能确定,不符合题意;D 、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D .【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.4、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.5、A【分析】由E(3,2),E1(﹣4,5),确定平移方式,再根据平移方式可得点C1的坐标,从而可得答案. 【详解】解:E(3,2),E1(﹣4,5),且它们是对应点,E∴向左边平移了7个单位,再向上平移了3个单位,C(4,0),∴点C 1的坐标为47,03,即13,3.C 故选A【点睛】本题考查的是由坐标变化确定平移方式,再利用平移方式确定对应点的坐标,掌握“平移的坐标变化规律”是解题的关键.6、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.7、D【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【详解】解:设走完第n步,棋子的坐标用A n来表示.观察,发现规律:A0(0,0),A1(1,0),A2(3,0),A3(3,1),A4(4,1),A5(6,1),A6(6,2),…,∴A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n).∵12=4×3,∴A12(12,4).故选:D.【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A点的坐标,根据坐标的变化发现规律是关键.8、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.9、A【分析】根据第四象限的点的坐标特点解答即可.【详解】解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.10、C【分析】根据点的坐标特征,结合A、B两点之间的距离进行分析即可.【详解】解:∵A、B两点的坐标分别是(-2,3)和(2,3),∴①点A在第二象限;②点B在第一象限;③线段AB平行于x轴;④点A、B之间的距离为4,故选:C.【点睛】本题主要考查了坐标与图形的性质,关键是掌握点的坐标特征.二、填空题1、(3,6)【解析】【分析】根据点的坐标求得正方形的边长,然后根据点D的坐标即可求出点C的坐标.【详解】解:∵点A、D的坐标分别为(﹣2,1)和(3,1),∴AD=3-(-2)=5,∴CD= AD=5,∵点D 的坐标为(3,1),∴点C 的坐标为(3,6),故答案为:(3,6).【点睛】本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的纵坐标相等时,其两点之间的距离为横坐标的差.2、8【解析】【分析】根据题意可得393m -=,求出m 的值,代入|3||5|m m ++-计算即可.【详解】 解:点(210,39)P m m --在第二象限,且离x 轴的距离为3,393m ∴-=,解得4m =,|3||5|m m ∴++-71=+8=.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出m 的值是解本题的关键.3、(4,3)【解析】【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.4、学习【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,组成的英文单词为study,中文为学习,故答案为:学习.【点睛】此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.5、-4【解析】【分析】在y 轴上点的坐标,横坐标为0,可知40m +=,进而得到m 的值.【详解】解:(4,1)P m m +-在y 轴上40m ∴+=4m ∴=-故答案为:4-.【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解y 轴上点坐标的形式.在y 轴上点的坐标,横坐标为0;在x 轴上点的坐标,纵坐标为0.三、解答题1、(1)见解析;(2)(5,1)-,4【解析】【分析】(1)直接将点标到平面直角坐标系中,顺次连接ABC 即可;(2)根据关于x 轴对称的点横坐标相同,纵坐标互为相反数即可得出点D 的坐标,直接利用三角形的面积公式求解即可求出BCD 的面积.【详解】解:(1)如图所示,ABC 为所求,(2)∵C (5,1),点D 与点C 关于x 轴对称,∴点C 的坐标为(5,1)-, ∴BCD 的面积为()1114=42⨯+⨯.【点睛】本题主要考查平面直角坐标系,数形结合是关键.2、 (1)见详解;(2)见详解;(3)4【解析】【分析】(1)根据中心对称图形的概念即可作出图形,求出对应点坐标;(2)根据旋转作图的方法即可.(3)利用三角形所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)如图所示, △A 1B 1C 1为所求;(2)如图所示, △A 2B 2C 2为所求;(3)S △ABC =3×3-12×2×2-12×1×3-12×1×3=9-2-1.5-1.5=4【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.3、(1)(8,15),(10,1);(2)见解析;(3)见解析.【解析】【分析】(1)根据节日利用坐标所表示的性质得出即可;(2)根据题意画图即可;(3)根据题意画出平移后的图象即可.【详解】解:(1)∵元旦用(1,1)A 表示(即1月1日),清明节用(4,4)B 表示(即4月4日),端午节用(5,5)C 表示(即5月初5),∴用坐标表示出中秋节(8,15)D ,国庆节(10,1)E ,故答案为:(8,15);(10,1);(2)如图所示:(3)如图所示:【点睛】本题考查网格作图、平移等知识,是基础考点,掌握相关知识是解题关键.4、(1)见解析;(2)(1,1)A '-,(3,0)'B ,(2,2)C '-【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A ',B ′,C '即可.(2)根据平面直角坐标系写出A ',B ′,C '的坐标.【详解】解:(1)如图,△A B C '''即为所求,(2)根据平面直角坐标系可得:(1,1)A '-,(3,0)'B ,(2,2)C '-.【点睛】本题考查作图-平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.5、(1)S =16;(2)t =4 或t =0;(3) 3.t =-【解析】【分析】(1)根据定义即可得出答案;(2)根据题意,4a =,然后求出h ,即可得出t 的值;(3)根据“矩面积”的范围,用“矩面积”为25,建立方程求解,即可得出答案.【详解】解:(1)由题意:a =4,h =4,∴S =4×4=16;(2)由题意:a =4,S =12,∴4h =12,解得:h =3,∴t -1=3 或3-t =3,解得:t=4 或t=0;(3)①当20t-<<时,a=4,h=3-(t+1)=2-t,∴4(2-t)=25,解得:174t∴=-(舍去)②当20t-<<时,a=2-t,h=3-(t+1)=2-t,∴2(2)25t-=,解得:∴t=7(舍去)或t=-3,综上,t=-3.【点睛】本题考查新定义“矩面积”,理解“水平底”与“铅垂高”以及“矩面积”,注意掌握分类讨论思想是解题的关键.。
人教版七年级数学下册第七章列二元一次方程组解应用题专项训练
第7章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经36岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系专题练习试题(含详解)
初中数学七年级下册第七章平面直角坐标系专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)2、平面直角坐标系中,属于第四象限的点是( )A .()3,4--B .()3,4C .()3,4-D .()3,4-3、如图,每个小正方形的边长为1,在阴影区域的点是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)4、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A.(3,2) B.(3-,2)C.(3,2-) D.(3-,2-)5、点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度,则点A的坐标为()A.(0,4)B.(4,0)C.(0,﹣4)D.(﹣4,0)6、在平面直角坐标系中,点A的坐标为(-2,3)若线段AB∥y轴,且AB的长为4,则点B的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)7、根据下列表述,不能确定具体位置的是()A.电影院一层的3排4座B.太原市解放路85号C.南偏西30D.东经108︒,北纬53︒8、根据下列表述,能确定位置的是()A.红星电影院2排 B.北京市四环路C.北偏东30D.东经118︒,北纬40︒9、在图中,所画的平面直角坐标系正确的是()A.B.C.D .10、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--二、填空题(5小题,每小题4分,共计20分)1、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.2、将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是_______.3、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号 0、1、2、3、4、5、6、7、8,将不同边上的序号和为 8 的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点 A 的坐标可表示为(1,2,5),点 B 的坐标可表示为(4,3,1),按此方法,若点 C 的坐标为(2,m ,m -2),则 m =__________.4、如图,在中国象棋棋盘上建立平面直角坐标系,若“帅”位于点(﹣1,﹣2)处,则“兵”位于点__________处.5、如图,将△AOB 沿x 轴方向向右平移得到△CDE ,点B 的坐标为(3,0),DB =1,则点E 的坐标为 ___.三、解答题(5小题,每小题10分,共计50分)1、长方形的两条边长分别为8,6,建立适当的直角坐标系,并写出它的四个顶点的坐标.2、(1)在平面直角坐标系中描出点()()()()()8,7,7,3,6,7,5,3,4,7A B C D E -----,并将它们依次连接;(2)将(1)中所画图形先向右平移10个单位长度,再向下平移10个单位长度,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?3、郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?4、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.5、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC向左平移3个单位,再向下平移2个单位.(1)写出△ABC的三个顶点坐标;(2)请画出平移后的△A′B′C′,并求出△A′B′C′的面积.---------参考答案-----------一、单选题1、C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2、D【分析】根据各象限内点的符号特征判断即可.【详解】解:A.(-3,-4)在第三象限,故本选项不合题意;B.(3,4)在第一象限,故本选项不合题意;C.(-3,4)在第二象限,故本选项不合题意;D.(3,-4)在第四象限,故本选项符合题意;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).3、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.4、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、D【分析】点A 在x 轴上得出纵坐标为0,点A 位于原点的左侧得出横坐标为负,点A 距离坐标原点4个单位长度得出横坐标为4-,故得出点A 的坐标.【详解】∵点A 在x 轴上,位于原点左侧,距离坐标原点4个单位长度,∴A 点的坐标为:(4,0)-.故选:D .【点睛】本题考查直角坐标系,掌握坐标的表示是解题的关键.6、C【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =, ∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.7、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.8、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.9、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.10、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;B 、(2,1)-在第二象限,故本选项不合题意;C 、(2,1)在第一象限,故本选项符合题意;D 、(2,1)--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.2、(﹣1,3)【解析】根据点坐标的平移规律:左减右加,上加下减的变化规律运算即可.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(2-3,1+2)即(-1,3).故答案为:(-1,3)【点睛】本题主要考查了根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的规律.3、4【解析】【分析】根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.【详解】2,4,2,解:根据题意,点C的坐标应该是()∴4m=.故答案是:4.【点睛】本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.4、(-3,1)【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.如图所示:则“兵“位于点:(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了坐标位置的确定,解题的关键是正确建立平面直角坐标系.5、(5,0)【解析】【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB=1,∴OD=OB-DB=3-1=2,∵△AOB沿x轴方向向右平移得到△CDE,∴BE=OD=2,∴点E坐标为(5,0),故答案为:(5,0).本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.三、解答题1、作图见解析;()4,3A -,()4,3B --,()4,3C -,()4,3D【解析】【分析】根据长方形的性质和边长建立平面直角坐标系即可得解;【详解】根据题意可设正方形ABCD 的长为8,宽为6,建立平面直角坐标系如下:∴四个顶点的坐标分别为()4,3A -,()4,3B --,()4,3C -,()4,3D ;【点睛】本题主要考查了建立平面直角坐标系和矩形的性质,准确作图计算是解题的关键.2、(1)见解析;(2)见解析;(3)将(1)中所画图形沿由A到A'的方向平移到(2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10【解析】【分析】(1)利用点平移的坐标规律写出A、B、C、D、E的对应点的坐标,然后描点连接即可;(2)按照平移方式描出对应点,依次连接即可;(3)把(1)中所画图形沿A到A'方向平移2)中所画图形,利用(1)中的平移规律得到平移前后对应点的横坐标和纵坐标的关系.【详解】解:(1)(2)如图所示;(3)将(1)中所画图形沿由A到A'=2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】【分析】(1)先在图中分别找出经七路和纬五路,两条路的交点位置即为“经七纬五"的位置,与上步同理可确定"经六纬五”、“经五纬一"的位置;(2)结合“市区图"即可画出路线图了;(3)根据“市区图”中“华美达广场”的位置确定其所在的“经"路与"纬"路,问题即可解答.【详解】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.【点睛】本题旨在让学生感受平面内确定物体位置的方法,在平面内确定一个物体的位置一般需要两个数据.4、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【解析】【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C 的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.5、(1)A(2,4),B(1,1),C(3,0);(2)图见解析,3.5【解析】【分析】(1)根据图形即可写出三点的坐标;(2)把三个顶点A、B、C分别向左平移3个单位,再向下平移2个单位得到三个点A′、B′、C′,然后依次连接这三个点,即可得到平移后的△A′B′C′;由于平移不改变图形的面积,所以只要计算出△ABC的面积即可,用割补法即可计算出△ABC的面积.【详解】(1)A(2,4),B(1,1),C(3,0),(2)如图△A′B′C′为所求;由平移性质得,△A′B′C′的面积等于△ABC的面积即,11124-12-14-13222A B C ABCS S∆∆'''==⨯⨯⨯⨯⨯⨯⨯=3.5.【点睛】本题考查了点的坐标、平面直角坐标系中图形的平移及求图形的面积,掌握平移的性质是关键.。
2020--2021学年人教版七年级数学下册 第七章 平面直角坐标系 7.1.1 有序数对 课后练习
人教版七年级数学下册第七章平面直角坐标系7.1.1 有序数对课后练习一、选择题1.下列数据中不能确定物体的位置的是()A.1单元201号B.北偏东60°C.清风路32号D.东经120°,北纬40°2.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)3.如图,将正整数按下图所示规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46B.47C.48D.494.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)5.气象台为了预报台风,首先要确定它的位置,下列说法中,能确定台风具体位置的是()A.西太平洋B.距台湾30海里C.东经33°,北纬36°D.台湾岛附近6.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)7.中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,那么“将”的位置应表示为()A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)8.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )A.(2,2)→(2,5)→(5,6)B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)9.如图是李明家附近区域的平面示意图,如果宠物店所在位置的坐标为(2,-4),儿童公园所在位置的坐标为(0,-3),则学校所在的位置是( )A .(4,-3)B .(4,3)C .(5,-1)D .(2,1)10.如图,将1(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B C D第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是_____排_____号.12.如下图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,横 线用数字表示,纵线用英文字母表示,这样白棋②的位置可记为(E ,3),则白棋⑥的位置 应记为________.13.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.14.教室里座位整齐摆放,若小华坐在第四排第6行,用有序数对(4,6)表示,则(2,4)表示的含义是________.15.将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2017对应的有序数对为________________.三、解答题16.如图,图中显示了10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:h)(1)用有序实数对表示图中各点;(2)平均每周用于阅读课外书的时间和用于看电视的时间的总共10h的同学有多少名?(3)如果设平均每周用于阅读课外书的时间超过用于看电视的时间的同学为a名,设平均每周用于阅读课外书的时间少的值.于用于看电视的时间的同学为b名,求b a17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?18.如图,甲处表示两条路的交叉口,乙处也是两条路的交叉口,如果用(1,3)表示甲处的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(4,2)→(4,1)→(4,0)”表示甲处到乙处的一种路线,若图中一个单位长度表示5Km,请你用上述表示法写出甲处到乙处的另两种走法,最短距离是多少千米?19.如图是中国象棋一次对局时的部分示意图,若“帅”所在的位置用有序数对(5,1)表示.(1)请你用有序数对表示其他棋子的位置;(2)我们知道马行“日”字,如图中的“马”下一步可以走到(3,4)的位置,问还可以走的位置有几个?分别如何表示?20.如图1,将射线Ox按逆时针方向旋转β角,得到射线Oy,如果点P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠xOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下列问题:(1)如图3中,如果点N 在平面内的位置记为N(6,30),那么ON= ,∠xON= ;(2)如果点A 、B 在平面内的位置分别记为A(4,30),B(4,90),试求A 、B 两点间的距离.21.如图,在5×5的方格(每小格边长为1)内有4只甲虫A 、B 、C 、D ,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A 到B 的爬行路线记为:A→B (+1,+4),从B 到A 的爬行路线为:B→A (-1,-4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1) A→C ( , ),B→D ( , ),C→ (+1, );(2) 若甲虫A 的爬行路线为A→B→C→D ,请计算甲虫A 爬行的路程;(3) 若甲虫A 的爬行路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),最终到达甲虫P 处,请在图中标出甲虫A 的爬行路线示意图及最终甲虫P 的位置.22.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.23.如图,正方形网格中的交点,我们称之为格点,点A用有序数对(2,2)表示,其中第一个数表示排数,第2个数表示列数,在图中有一个格点C,使三角形ABC的面积为1,写出所有符合条件的表示点C的有序数对.【参考答案】1.B 2.A 3.C 4.C 5.C 6.B 7.C 8.A 9.B 10.C11.5 912.(G,5)13.(6,5)14.第二排第4行.15.(45,9).16.(1)(1,9)、(1,6)、(2,7)、(3,5)、(4,2),(5,5)(6,4)(7,2)(7,3)(9,1);(2)平均每周用于阅读课外书的时间和用于看电视的时间的总共10h的同学有5名;(3)b-a=117.3格18.答案不唯一,最短距离为30km19.(1)马(2,2),兵(2,4),车(6,5),炮(8,3)(2)“马”下一步可以走到的位置还有3个,表示为(1,4),(4,3),(4,1)20.(1)6,30°(2) 1321.(1)A→C(+3 ,+4 ),B→D(+3 ,-2 ),C→ D (+1,-2 );(2)10;(3)略.22.(1)+3,+4;+2,0;+1,-2;(2)略23.(1,3),(2,4),(3,5),(3,1),(4,2),(5,3)。
精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系课时练习试题(含答案解析)
初中数学七年级下册第七章平面直角坐标系课时练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、点P 在第二象限内,P 点到x 、y 轴的距离分别是4、3,则点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)2、已知点P (﹣3,﹣3),Q (﹣3,4),则直线PQ ( )A .平行于x 轴B .平行于y 轴C .垂直于y 轴D .以上都不正确3、如图所示的象棋盘上,若“帅”位于点()1,2--.“马”位于点()3,2-,则位于原点位置的是( )A .炮B .兵C .相D .车4、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--5、平面直角坐标系中,将点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点,则下列结论:①B 点的坐标为(223+m ,1);②线段AB 的长为3个单位长度;③线段AB 所在的直线与x 轴平行;④点M (2m ,23m +)可能在线段AB 上;⑤点N (22m +,1)一定在线段AB 上.其中正确的结论有( )A .2个B .3个C .4个D .5个6、已知点P (1+m ,2)在第二象限,则m 的取值范围是( )A .m >-1B .m <-1C .m ≤-1D .m ≥-17、点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(4,-3)C .(-3,4)D .(3,-4)8、在平面直角坐标系中,点()9,0A -在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上9、如图,在平面直角坐标系中,A 、B 、C 、D 四点坐标分别为:A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长度的速度运动,运动时间为t 秒,若t =2020秒,则点P 所在位置的点的坐标是( )A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)10、如果点(3,1)P m m ++在直角坐标系的x 轴上,那么P 点坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,-4)二、填空题(5小题,每小题4分,共计20分)1、若点()P m n ,在第二象限,则点(),Q m n -在第______象限.2、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2,…,第n 次移动到点An ,则点A 2022的坐标是__________.3、线段AB =5,AB 平行于x 轴,A 在B 左边,若A 点坐标为(-1,3),则B 点坐标为_____.4、平面直角坐标系中,点P (3,-4)到x 轴的距离是________.5、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.2、已知点P (a +1,2)关于y 轴的对称点为Q (3,b -1),求(a +b )2021的值.3、如图,在平面直角坐标系中,已知O 是原点,四边形ABCD 是长方形,且四个顶点都在格点上.(1)分别写出A ,B ,C ,D 四个点的坐标;(2)画出将长方形ABCD 先向下平移4个单位,再向右平移2个单位得到的四边形1111D C B A ,并写出其四个顶点的坐标.4、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-2,4),B (-4,2),C (-1,1)(每个小方格都是边长为1个单位长度的正方形).请完成以下画图并填空.(1)画出△ABC 关于原点O 成中心对称的△A 1B 1C 1(点A ,B ,C 的对应点分别为A 1,B 1,C 1);(2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得到的△A 2B 2C 2(点A ,B ,C 的对应点分别为A 2,B 2,C 2);(3)△ABC 的面积为 .(直接填结果)5、如图,在平面直角坐标系中,点A 的坐标为()2,4,点B 的坐标为()3,0.三角形AOB 中任意的一点()00,P x y 经平移的对应点为()1002,P x y +,并且点A、O B 、的对应点分别为,,D E F .(1)指出平移的方向和距离(2)画出平移后的三角形DEF ,并写出,,D E F 的坐标;(3)求线段OA 在平移过程中扫过的面积.---------参考答案-----------一、单选题1、C【分析】点P 到x 、y 轴的距离分别是4、3,表明点P 的纵坐标、横坐标的绝对值分别为4与3,再由点P 在第二象限即可确定点P 的坐标.【详解】∵P 点到x 、y 轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.2、B【分析】横坐标相同的点在平行于y轴的直线上,纵坐标相同的点在平行于x轴的直线上,由此分析即可.【详解】解:∵P(﹣3,﹣3),Q(﹣3,4),∴P、Q横坐标相等,∴由坐标特征知直线PQ平行于y轴,故选:B.【点睛】本题考查平面直角坐标系中点的特征,理解横坐标相同的点在平行于y轴的直线上,纵坐标相同的点在平行于x轴的直线上,是解题关键.3、A【分析】根据题意可以画出平面直角坐标系,从而可以写成炮所在点的坐标.【详解】解:由题可得,如下图所示,故炮所在的点的坐标为(0,0),故选:A.【点睛】本题考查了坐标确定位置,解题的关键是明确题意,画出相应的平面直角坐标系.4、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;-在第二象限,故本选项不合题意;B、(2,1)C、(2,1)在第一象限,故本选项符合题意;--在第三象限,故本选项不合题意;D、(2,1)故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得AB的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤【详解】解:∵点A(2m,1)沿着x的正方向向右平移(23m+)个单位后得到B点,∴B点的坐标为(2m,1);+23故①正确;则线段AB的长为23m+;故②不正确;∵A(2m,1),B(2m,1);纵坐标相等,即点A,B到x轴的距离相等23+∴线段AB所在的直线与x轴平行;故③正确若点M(2m,23m+)在线段AB上;则231m=-m=-,不存在实数21m+=,即21故点M(2m,23m+)不在线段AB上;故④不正确同理点N(22m+,1)在线段AB上;故⑤正确综上所述,正确的有①③⑤,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.6、B【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P(1+m,2)在第二象限,∴1+m<0,解得:m<-1.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.8、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点A (9-,0),纵坐标为0∴点A (9-,0)在x 轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x 轴上点的纵坐标为0,y 轴上点的横坐标为0.9、A【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由202020210=⨯可得出当2020t =秒时点P 与点A 重合,然后问题可求解.【详解】解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,2AB CD ∴==,3AD BC ==,()210ABCD C AB AD ∴=+=矩形.∵202020210=⨯,∴当2020t =秒时,点P 与点A 重合,∴此时点P 的坐标为(1,1).故选A .【点睛】本题主要考查坐标规律问题,解题的关键是找到当t =2020时,点P 的位置.10、B【分析】因为点(3,1)P m m ++在直角坐标系的x 轴上,那么其纵坐标是0,即10m +=,1m =-,进而可求得点P的横纵坐标.【详解】 解:点(3,1)P m m ++在直角坐标系的x 轴上,10m ∴+=,1m ∴=-,把1m =-代入横坐标得:32+=m .则P 点坐标为(2,0).故选:B .【点睛】本题主要考查了点在x 轴上时纵坐标为0的特点,解题的关键是掌握在x 轴上时纵坐标为0.二、填空题1、三【解析】【分析】根据直角坐标系的性质,得0m <,0n >,从而得0n -<,根据坐标的性质分析,即可得到答案.【详解】∵点()P m n ,在第二象限∴0m <,0n >∴0n -<∴点(),Q m n -在第三象限故答案为:三.【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握直角坐标系的性质,从而完成求解.2、(1011,-1).【解析】【分析】由点的移动规律发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,用2022÷8即可解决问题.【详解】解:由题意知:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),可以发现每移动8次构成一个循环,一个循环相当于向右平移4个单位,∴2022÷8=252⋯6,∴252×4=1008,∴A2022(1011,-1),故答案为:(1011,-1).【点睛】本题考查了平面直角坐标系中的点的规律探索问题,仔细观察图形,得出每移动8次构成一个循环,一个循环相当于向右平移4个单位结论是解题的关键.3、(4,3)【解析】【分析】由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.【详解】解:∵AB∥x轴,A点坐标为(-1,3),∴点B的纵坐标为3,当A在B左边时,∵AB=5,∴点B的横坐标为-1+5=4,此时点B(4,3).故答案为:(4,3).【点睛】本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.4、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.5、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.三、解答题1、(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC CS =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.2、 (a +b )2021=-1 【解析】【分析】根据关于y 轴对称点的特征确定出a 与b 的值,代入原式计算即可求出值.【详解】解:因为点P (a +1,2)关于y 轴的对称点为Q (3,b -1),所以a +1=- 3,b - 1=2,解得a =-4,b =3,所以(a +b )2021=(-4+3)2021=(-1)2021=-1.【点睛】此题考查了关于x 轴、y 轴对称的点的坐标,熟练掌握二次根式性质是解本题的关键.3、(1)A (-3,1),B (-3,3),C (2,3),D (2,1);(2)图见解析,四个顶点的坐标分别为:A1(-1,-3),()11,1B --,()14,1C -,()14,3D -【解析】【分析】(1)根据已知图形写出点的坐标即可;(2)求出A ,B ,C ,D 四个点向下平移4个单位,再向右平移2个单位的点,连接即可;【详解】(1)由图可知:A (-3,1),B (-3,3),C (2,3),D (2,1);(2)∵A (-3,1),B (-3,3),C (2,3),D (2,1),∴向下平移4个单位,再向右平移2个单位后对应点为()11,3A --,()11,1B --,()14,1C -,()14,3D -,作图如下,【点睛】本题主要考查了平面直角坐标系中写点的坐标,图形的平移,准确分析作图是解题的关键.4、 (1)见详解;(2)见详解;(3)4【解析】【分析】(1)根据中心对称图形的概念即可作出图形,求出对应点坐标;(2)根据旋转作图的方法即可.(3)利用三角形所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)如图所示, △A1B1C1为所求;(2)如图所示, △A2B2C2为所求;(3)S△ABC=3×3-12×2×2-12×1×3-12×1×3=9-2-1.5-1.5=4【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5、(1)向右平移2个单位长度;(2)D点坐标为(4,4),E点坐标为(2,0),F点坐标为(5,0),画图见解析;(3)8【解析】【分析】(1)根据点平移的规律:上加下减,左减右加,进行求解即可;(2)根据平移方式下得到D、E、F的坐标,然后描点,最后顺次连接D、E、F即可;(3)根据线段OA在平移过程中扫过的面积即为平移四边形AOED的面积,进行求解即可.【详解】解:(1)∵三角形AOB 中任意的一点()00,P x y 经平移的对应点为()1002,P x y +,∴平移方式为向右平移2个单位长度;(2)∵△DEF 是△AOB 向右平移两个单位长度得到的,A (2,4),B (3,0),O (0,0), ∴D 点坐标为(4,4),E 点坐标为(2,0),F 点坐标为(5,0),如图所示,△DEF 即为所求:(3)如图所示,线段OA 在平移过程中扫过的面积即为平移四边形AOED 的面积,∵A 点坐标为(2,4),E 点坐标为(2,0),∴AE =4,OE =2,∠AEO =90°,∴线段OA 在平移过程中扫过的面积248OE AE =⋅=⨯=.【点睛】本题主要考查了根据点的坐标判断平移方式,根据平移方式确定点的坐标,画平移图形,坐标与图形等等,解题的关键在于能够熟练掌握点的平移坐标变化规律.。
人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)
教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。
第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.
人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题
2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。
考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。
考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。
注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。
例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。
2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
2020-2021学年七年级数学人教版下册 第七章 平面直角坐标系 综合训练(含答案)
人教版七年级数学下册第七章平面直角坐标系综合训练一、选择题1. 已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)2. 下列说法中,正确的是()A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.平面直角坐标系中,两条坐标轴的原点不重合3. 在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位4. 已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限6. 四边形ABCD经过平移得到四边形A'B'C'D',若点A(a,b)变为点A'(a-3,b+2),则对四边形ABCD进行的变换是()A.先向上平移3个单位长度,再向右平移2个单位长度B.先向下平移3个单位长度,再向左平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向左平移3个单位长度,再向上平移2个单位长度7. 已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC的面积为6,则点C的坐标为()A.(0,4)B.(0,2)C.(0,2)或(0,-2)D.(0,4)或(0,-4)8. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O 运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A'的坐标为.10. 若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=.11. 如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为.12. 如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为.13. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为.14. 如图,将1,三个数按图中方式排列.若规定(a,b)表示第a排第b列的数,则(20,3)表示的数是.15. 如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P(2,-1),P6(2,0),…,则点P60的坐标是.516. 在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4).(1)求四边形ABCD的面积;(2)如果把四边形ABCD先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D',求点A',B',C',D'的坐标.18. 已知点A(-5,m+4)和点B(4m+15,-8)是平行于y轴的直线上的两点,求A,B两点的坐标.19. 如图,若三角形A1B1C1是由三角形ABC平移后得到的,且三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2).(1)求点A1,B1,C1的坐标;(2)求三角形A1B1C1的面积.20. 已知点A(3,0),B(0,2),C(-2,0),D(0,-1),在同一平面直角坐标系中描出点A,B,C,D,并顺次连接AB,BC,CD,DA得到四边形ABCD,求出四边形ABCD的面积.21. 如图,在平面直角坐标系中,S三角形ABO=6,OA=OB,BC=12,求三角形ABC三个顶点的坐标.22. 三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A; B;C.(2)三角形ABC可以由三角形A'B'C'经过怎样的平移得到?(3)若P(x,y)是三角形ABC内部一点,则三角形A'B'C'内部的对应点P'的坐标为;(4)求三角形ABC的面积.23. 如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC 的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.24. 如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM=S三角形ABC,试求点M的坐标.人教版七年级数学下册第七章平面直角坐标系综合训练-答案一、选择题1. 【答案】C2. 【答案】C3. 【答案】B4. 【答案】A【解析】∵点P(0,m)位于y轴负半轴,∴m<0,∴-m>0,-m +1>0,∴点M(-m,-m+1)的横坐标和纵坐标都大于0,故其在第一象限.5. 【答案】B[解析] 因为点P(0,a)在y轴的负半轴上,所以a<0,所以-a2-1<0,-a+1>0,所以点Q在第二象限.故选B.6. 【答案】D7. 【答案】D[解析] ∵点A(-1,0),B(2,0),三角形ABC的面积为6,点C的y轴上,∴S三角形ABC=AB·|y c|=×3|y c|=6,∴|y c|=4,则点C的坐标为(0,4)或(0,-4).故选D.8. 【答案】A[解析] 点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P的坐标是(2021,1).故选A.二、填空题9. 【答案】(-2,2)10. 【答案】-1[解析] ∵点P(x,y)在第四象限,且|x|=2,|y|=3,∴x=2,y=-3,∴x+y=2+(-3)=-1.11. 【答案】(a-2,b+3)[解析] 由图可知线段AB向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12. 【答案】(-2,0)[解析] S三角形ABC=BC·4=10,解得BC=5,∴OB=5-3=2,∴点B的坐标为(-2,0).13. 【答案】(45,5)[解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).14. 【答案】1[解析] 从第1排到第20排的第3个数,所有数的个数为(1+2+3+…+19)+3=+3=193(个).因为数列按1,循环排列,且193÷3=64……1,所以(20,3)表示的数是第65个循环节中的第1个数,即1.15. 【答案】(20,0)[解析] 因为P3(1,0),P6(2,0),P9(3,0),…,所以P3n(n,0).当n=20时,P60(20,0).16. 【答案】(16,1+3)解析:可以求得点A(-2,-1-3),则第一次变换后点A的坐标为A1(0,1+3),第二次变换后点A的坐标为A2(2,-1-3),可以看出每经过两次变换后点A的y坐标就还原,每经过一次变换x坐标增加2.因而第九次变换后得到点A9的坐标为(16,1+3).三、解答题17. 【答案】解:(1)如图,过点D 作DE ⊥x 轴,垂足为E ,过点C 作CF ⊥x 轴,垂足为F , 则S 四边形ABCD =S 三角形ADE +S 四边形DEFC +S 三角形CFB .因为S 三角形ADE =×1×4=2, S 四边形DEFC =×(3+4)×1=, S 三角形CFB =×2×3=3, 所以S 四边形ABCD =2++3=.(2)因为四边形ABCD 先向左平移3个单位长度,再向下平移1个单位长度得四边形A'B'C'D',所以平移后,各顶点的横坐标减小3,纵坐标减小1. 因为A (1,0),B (5,0),C (3,3),D (2,4), 所以A'(-2,-1),B'(2,-1),C'(0,2),D'(-1,3).18. 【答案】解:依题意,得4m+15=-5,解得m=-5. 所以A (-5,-1),B (-5,-8).19. 【答案】解:(1)∵三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5), 点B 1的坐标为(-2,3), 点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.20. 【答案】解:描点连线如图所示.S 四边形ABCD =S 三角形AOB +S 三角形BOC +S 三角形COD +S 三角形AOD = (3×2+2×2+2×1+1×3)=,所以四边形ABCD 的面积为.21. 【答案】解:∵S 三角形ABO =OB ·OA=6,OA=OB ,∴OA=OB=,∴A (0,),B (-,0).∵BC=12,∴OC=BC-OB=12-,∴C (12-,0).故三角形ABC 三个顶点的坐标分别为A (0,),B (-,0),C (12-,0).22. 【答案】解:(1)(1,3) (2,0) (3,1)(2)答案不唯一,如:先向右平移4个单位长度,再向上平移2个单位长度. (3)(x-4,y-2)(4)三角形ABC 的面积=2×3-×1×3-×1×1-×2×2=6-1.5-0.5-2=2.23. 【答案】解:(1)若将点A 平移到原点O 处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B ,C 的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).24. 【答案】解:(1)∵|a+2|+=0,∴a+2=0,b-4=0,∴a=-2,b=4,∴点A(-2,0),点B(4,0),∴AB=|-2-4|=6.∵C(0,3),∴CO=3,∴S三角形ABC=AB·CO=×6×3=9.(2)设点M的坐标为(x,0),则AM=|x-(-2)|=|x+2|.∵S三角形ACM =S三角形ABC,∴AM·OC=×9,∴|x+2|×3=3,∴|x+2|=2,即x+2=±2,则x=0或x=-4,故点M的坐标为(0,0)或(-4,0).。
第七章 平面直角坐标系 分专题培优单元复习综合练习人教版数学七年级下册
《平面直角坐标系》分专题培优单元复习综合练习③七.作图—复杂作图33.(2021春•伊通县期末)已知在平面直角坐标系中,点A(3,4),点B(3,﹣1),点C(﹣3,﹣2),点D(﹣2,3).(1)在平面直角坐标系中,画出四边形ABCD,其面积为;(2)若P为四边形ABCD内一点,已知P点的坐标为(﹣1,1),将四边形ABCD平移后,点P的对应点P点的坐标为(2,﹣2),根据平移的规则,直接写出四边形ABCD平移后的四个顶点的对应点A′,B′,C′,D′的坐标.34.(2021春•江夏区期末)如图所示,在由边长为1的小正方形组成的网格所在的坐标平面里,有A、B两个格点,其中A点的坐标为(﹣2,4).(1)先画出网格所在的坐标平面里的平面直角坐标系,再直接写出格点B的坐标;(2)请在网格中找出格点D(0,1),并求出△ABD的面积;(3)平移线段AD到BC(使A点的对应点为B点,D点的对应点为C点),连接CD交x轴于一点P,直接写出点P的坐标:.35.在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(﹣4,﹣1),B(1,1),C(﹣1,4);点P(x1,y1)是△ABC内一点,当点P(x1,y1)平移到点P1(x1+4,y1﹣2)时.①请画出平移后新△A1B1C1,并直接写出△A1B1C1三个顶点的坐标;②若三角形ABC外有一点M经过同样的平移后得到点M1(5,3),则M点的坐标是.若连接线段MM1,PP1,则这两条线段之间的关系是.③求△A1B1C1的面积.八.作图—应用与设计作图36.(2021秋•高新区期末)如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段的长度表示点A到直线CD的距离;(3)三角形ABC的面积=cm2.37.(2021秋•高邮市期末)如图,A、B、C为网格图中的三点,利用网格作图.(1)过点A画直线AD∥BC;(2)过点A画线段BC的垂线AH,垂足为H;(3)点A到直线BC的距离是线段的长;(4)三角形ABC的面积为.38.(2021秋•新吴区期末)如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于.九.坐标与图形变化-平移39.(2013•金湾区一模)将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为()A.(﹣2,5)B.(﹣6,1)C.(﹣6,5)D.(﹣2,1)40.(2021春•枣阳市期末)线段EF是由线段PQ平移得到的,点P(1,﹣4)的对应点为E(4,﹣2),则点Q(﹣3,1)的对应点F的坐标为()A.(﹣6,﹣3)B.(﹣1,﹣1)C.(0,3)D.(﹣6,3)41.(2021秋•肇源县期末)将点P(2m+3,m﹣2)向上平移2个单位得到P′,且P′在x轴上,那么点P 的坐标是()A.(3,﹣2)B.(3,0)C.(7,0)D.(9,1)42.(2021春•青山区期末)若点A(n﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第三象限,则n的取值范围是()A.n<﹣2B.n<﹣4C.n>1D.﹣4<n<﹣243.(2021春•江夏区期末)已知△ABC内任意一点P(a,b)经过平移后对应点P1(a+2,b﹣6),如果点A 在经过此次平移后对应点A1(4,﹣3),则A点坐标为()A.(6,﹣1)B.(2,﹣6)C.(﹣9,6)D.(2,3)44.(2018春•柘城县期末)在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0)、B(5,0)、C (3,3),D(2,4).(1)求:四边形ABCD的面积.(2)如果把四边形ABCD先向左平移3个单位,再向下平移1个单位得四边形A′B′C′D',求A',B′,C',D′点坐标.45.(2021春•饶平县校级期末)在平面直角坐标系中,点P的坐标为(a﹣7,3﹣2a),将点P向上平移4个单位,再向右平移5个单位后得到点Q.(1)若点Q位于第一象限,求a的取值范围.(2)若a为整数,求出P、Q两点坐标.46.(2021春•江夏区期末)如图所示,在平面直角坐标系中,A(﹣3,0),B(1,4),BC∥y轴与x轴交于点C,BD∥x轴与y轴交于点D,平移四边形ABCD,使点D的对应点为DO的中点E,则图中阴影部分的面积为.47.(2019春•柳江区期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C 点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C ﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.48.(2009秋•南昌期中)如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC 向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明P A1=P A2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?【参考答案】七.作图—复杂作图33.解:(1)如图,四边形ABCD为所作;S四边形ABCD=6×6−12×6×1−12×1×6=30;故答案为30;(2)A ′(6,1),B ′(6,﹣4),C ′(0,﹣5),D ′(1,1). 34.解:(1)如图,平面直角坐标系如图所示,B (﹣5,0), 故答案为:(﹣5,0).(2)S △ABD =5×4−12×3×4−12×2×3−12×1×5=8.5. (3)设P (m ,0),则有12•(m +5)×4=8.5,∴m =−34, ∴P (−34,0).35.解:①如图,△A 1B 1C 1即为所求作,A 1(0,﹣3),B 1(5,﹣1),C 1(3,2).②由平移的性质可知,M(1,5),MM1=PP1,故答案为:(1,5),MM1=PP1.③S△A1B1C1=5×5−12×5×3−12×2×3−12×5×2=9.5.八.作图—应用与设计作图36.解:(1)如图,①直线MN即为所求作的图形;②AB的垂线CD即为所求;(2)图中线段AD的长度表示点A到直线CD的距离;故答案为AD;(3)三角形ABC的面积为:6−12×2×1−12×2×1−12×3×1=2.5cm2.故答案为2.5.37.解:(1)如图,直线AD即为所求;(2)如图,直线AH即为所求;(3)点A到直线BC的距离是线段AH的长;故答案为:AH;(4)三角形ABC的面积=2×3−12×1×2−12×1×2−12×1×3=2.5.故答案为:2.5.38.解:(1)如图,直线PT,线段PQ即为所求;(2)如图②中,以线段AB、CD、EF的长为边长的三角形的面积等于△ABR的面积=3×4−12×2×4−12×1×2−12×2×3=4.故答案为:4.九.坐标与图形变化-平移39.解:将点P(﹣4,3)先向左平移2个单位,再向下平移2个单位,即坐标变为(﹣4﹣2,3﹣2),即点P′的坐标为(﹣6,1).故选B.40.解:由点P(1,﹣4)的对应点为E(4,﹣2),知线段PQ向右平移3个单位、向上平移2个单位即可得到线段EF,∴点Q(﹣3,1)的对应点F的坐标为(﹣3+3,1+2),即(0,3),故选:C.41.解:∵将点P(2m+3,m﹣2)向上平移2个单位得到P′,∴P′的坐标为(2m+3,m),∵P′在x轴上,∴m=0,∴点P 的坐标是(3,﹣2). 故选:A .42.解:点A (n ﹣1,n +2)先向右平移3个单位,再向上平移2个单位得到点A ′(n +2,n +4), ∵点A ′位于第三象限, ∴{n +2<0n +4<0, 解得,n <﹣4, 故选:B .43.解:由题意,点A 向右平移2个单位,向下平移6个单位得到A 1(4,3), ∴点A 坐标(4﹣2,﹣3+6),即(2,3), 故选:D .44.解:(1)如图,过D 作DE ⊥x 轴,垂足为E ,过C 作CF ⊥x 轴,垂足为F ,∴S 四边形ABCD =S △ADE +S 四边形DEFC +S △CFB ∵S △ADE =12×1×4=2, S 四边形DEFC =12(3+4)×1=72, S △CFB =12×2×3=3, ∴S 四边形ABCD =2+72+3=172;(2)由题可得,四边形ABCD 先向左平移3个单位,再向下平移1个单位得四边形A ′B ′C ′D ', ∴平移后,各顶点的横坐标减小3,纵坐标减小1, ∵A (1,0)、B (5,0)、C (3,3),D (2,4),∴A ′(﹣2,﹣1),B ′(2,﹣1),C ′(0,2),D ′(﹣1,3). 45.解:(1)∵点P 的坐标为(a ﹣7,3﹣2a ),∴将点P 向上平移4个单位,再向右平移5个单位后得到点Q (a ﹣2,7﹣2a ),∵点Q 位于第一象限, ∴{a −2>07−2a >0, 解得2<a <3.5.(2)∵a 为整数,2<a <3.5, ∴a =3,∴P (﹣4,﹣3),Q (1,1).46.解:由题意,E (0,2),J (﹣1.5,0),C (1,0),T (﹣3,﹣2),Q (1,﹣2).∵四边形EPQT 是由四边形DBCA 平移得到, ∴S 四边形DBCA =S 四边形EPQT ,∴S 阴=S 四边形JCQT =12×(2.5+4)×2=6.5, 故答案为:6.5.47.解:(1)根据长方形的性质,可得AB 与y 轴平行,BC 与x 轴平行; 故B 的坐标为(4,6); 故答案为:(4,6);(2)根据题意,P 的运动速度为每秒2个单位长度, 当点P 移动了4秒时,则其运动了8个长度单位, 此时P 的坐标为(4,4),位于AB 上;(3)根据题意,点P 到x 轴距离为5个单位长度时,有两种情况: P 在AB 上时,P 运动了4+5=9个长度单位,此时P 运动了4.5秒; P 在OC 上时,P 运动了4+6+4+1=15个长度单位,此时P 运动了152=7.5秒.48.解:(1)画图如下图:(2)当点A 1与点A 2重合时,A 2(3,4)∵A 2(﹣3+m ,4)∴m =6(4分)由B 2C 2=B 1C 1∴B 2C 1=B 1C 2(5分)(3)如右图,当m =8时,△A 1B 1C 1与△A 2B 2C 2一边重合,则B 2C 2与B 1C 1重合;(6分)∵△A 1B 1C 1≌△A 2B 2C 2 在△A 1C 1P 和△A 2C 2P 中 {∠A1=∠A 2∠A 1PC 1=∠A 2PC 2A 1C 1=A 2C 2∴△A 1C 1P ≌△A 2C 2P ∴P A 1=P A 2;(9分)(4)当m =4时,B 2、C 2的横坐标是正数4的两个不同的平方根.(10分) ∵B 2(﹣6+m ),C 2(﹣2+m ) ∴(﹣6+m )+(﹣2+m )=0 ∴m =4(12分).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学第七章专题训练
班级 姓名 一、象限内点的坐标
1. 在平面直角坐标系中,A (2,-1)在第 象限,B (1,-3)在第 象限,C (-4,-3.5)在第 象限。
2、点P (x,y )在第二象限,则x 0,y 0.
3、已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限
4、如果x
y
<0,那么点P (x ,y )在第 象限
5、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
二、坐标轴上点的坐标
1、点A(2,0)在 轴上;点B(0,9)在 轴上,点C 在
2、点P (a-1,2a-9)在x 轴上,则P 点坐标是 。
3、点P (a-1,2a-9)在y 轴上,则P 点坐标是 。
三、点到坐标轴的距离
1、点A(2,3)到x 轴的距离为 ;到y 轴的距离为 点B(-4,-5)到x 轴的距离为 ;到y 轴的距离为 点P(x ,y )到x 轴的距离为 ;到y 轴的距离为
2、点C 在第三象限,且到x 轴的距离为1,到y 轴的距离为3,则C 点坐标是 。
3、点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。
四、平行于x 轴,y 轴的直线上的点的坐标
1.过A(4,-2) 和B(-2,-2) 两点的直线一定( )
A.垂直于x 轴
B.与Y 轴相交但不平于x 轴
C.平行于x 轴
D.与x 轴、y 轴平行 2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥y 轴,则m 的值为 。
3.在平面直角坐标系中,点A 的坐标为(-1,5),线段AB ∥X 轴,且AB=4,则点B 的坐标为 五、象限平分线上点的坐标
1、若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .
2、已知点P (3-x ,1)在一、三象限夹角平分线上,则x= .
检测
1.在平面直角坐标系内,下列说法错误的是( )
A.原点O 不在任何象限内
B.原点O 的坐标是0
C.原点O 既在X 轴上也在Y 轴上
D.原点O 在坐标平面内 2.在平面直角坐标系中,点(-3,-1)在第________象限.
3.点P (x ,y )在第二象限,且|x|=3,|y|=2,则P 点的坐标是 .
4.已知点P 在第二象限,且到x 轴的距离是3,到y 轴的距离是2,则点P 的坐标为______. 5.点P(x,y)满足xy>0,则点P 在第 象限
6.点P (m ,1)在第二象限内,则点Q (m -,0)在( ). A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半上
7. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限. 8.点M (1m +,3m +)在x 轴上,则点M 坐标为_______.
9.X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )
A.(2.5,0)
B.(-2.5,0)
C.(0,2.5)
D.(2.5,0)或(-2.5,0) 10.直角坐标系中,在y 轴上有一点p ,且线段OP=5,则P 的坐标为 . 11.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 12.已知点A (3-,2),B (3,2),则A ,B 两点相距( ). A.3个单位长度 B.4个单位长度 C.5个单位长度
D.6个单位长度
13.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标
是 .
14.矩形OABC 在坐标系中的位置如图,点B 坐标为(3,-2),则
矩形的面积等于_________ .
D
C 3
-1
B
A O
x
y
平移以及面积专题训练
1、坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.
2、(综合题)在如图所示的平面直角坐标系中描出A (2,3),B (-3,-2),•C (4,1)三点,并用线段将A 、B 、C 三点依次连接起来,你能求出它的面积吗?
3.如图,在平面直角坐标系中:
(1)分别写出△ABC 的顶点坐标(3分); (2)求出△ABC 的面积(3分);
(3)将△ABC 各个顶点的横坐标增加3,纵坐标减少2,请画出所得的△C B A '''(3分)。
4、这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.
体育场
文化宫
医院
火车站宾馆
市场
超市
5如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将
点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形。