走进中考看《分式与分式方程》考点
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
2025年中考数学考点分类专题归纳之分式方程
2025年中考数学考点分类专题归纳分式方程知识点一、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根——增根.备注:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程无解的原因:(1)将分式方程化为整式方程后,整式方程无解;(2)解出的整式方程的根是增根。
备注:解题时需要区分“分式方程无解”和“分式方程有增根”.知识点二、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解,所得结果应使分式方程有意义,且符合实际意义.1.(2024•甘孜州)若x=4是分式方程的根,则a的值为()A.6 B.﹣6 C.4 D.﹣42.(2024•张家界)若关于x的分式方程1的解为x=2,则m的值为()A.5 B.4 C.3 D.23.(2024•海南)分式方程0的解是()A.﹣1 B.1 C.±1 D.无解4.(2024•重庆)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程2的解为非负数,则符合条件的所有整数a的和为()A.﹣3B.﹣2 C.1 D.25.(2024•德州)分式方程1的解为()A.x=1 B.x=2 C.x=﹣1 D.无解6.(2024•重庆)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣187.(2024•哈尔滨)方程的解为()A.x=﹣1 B.x=0 C.x D.x=18.(2017•河南)解分式方程2,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3 D.1﹣2x+2=39.(2024•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.B.C.D.10.(2024•鄂尔多斯)如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A.B.C.D.11.(2024•辽阳)九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x千米/时,根据题意列方程得()A.30B.30C.D.12.(2024•南岸区)市政府决定对一块面积为2400m2的区域进行绿化,根据需要,该绿化工程在实际施工时增加了施工人员,每天绿化的面积比原计划增加了20%,结果提前5天完成任务.设计划每天绿化xm2,则根据意可列方程为()A.5B. 5C.5D. 513.(2024•巴彦淖尔)小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了x本笔记本,则根据题意可列方程为()A. 1 B. 1C. 1 D. 114.(2024•绥化)某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.B.C.D.15.(2024•青海)某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是()A.B.C.D.16.(2024•怀化)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为vkm/h,则可列方程为()A.B.C.D.17.(2024•通辽)学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.100 B.100C.100 D.10018.(2024•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.19.(2024•常德)分式方程0的解为x=____.20.(2024•潍坊)当m=___时,解分式方程会出现增根.21.(2024•达州)若关于x的分式方程2a无解,则a的值为____.22.(2024•眉山)已知关于x的分式方程2有一个正数解,则k的取值范围为_________.23.(2024•黄石)分式方程1的解为_______.24.(2024•无锡)方程的解是__ _.25.(2024•贺州)解分式方程:1.26.(2024•柳州)解方程.27.(2024•广西)解分式方程:1.28.(2024•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.29.(2024•襄阳)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.30.(2024•南京)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?31.(2024•百色)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?32.(2024•德阳)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?33.(2024•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?34.(2024•抚顺)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?35.(2024•盘锦)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?36.(2024•宁夏)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?37.(2024•包头)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?38.(2024•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?39.(2024•乌鲁木齐)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?40.(2024•山西)2024年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.41.(2024•邵阳)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?42.(2024•云南)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?43.(2024•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?。
分式方程篇(解析版)--中考数学必考考点总结+题型专训
知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。
2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。
3.解分式方程。
具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
分式及分式方程知识点总结
分式及分式方程 聚焦考点☆温习理解一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
名师点睛☆典例分类考点典例一、分式的值【例1】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【点睛】分式6265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】1.要使分式x 1x 2+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=-2.(2015·湖南常德)若分式211x x -+的值为0,则x = 考点典例二、分式的化简【例2】化简:2x x x 1x 1---=( ) A 、0 B 、1 C 、x D 、1x x -【点睛】观察所给式子,能够发现是同分母的分式减法。
考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点05 分式、分式方程及其应用分式在中考中的考察难度不大,考点多在于分式有意义的条件,以及分式的化简求值。
浙江中考中,分式这个考点的占比并不太大,其中分式的化简求值问题为主要出题类型,出题多以简答题为主;个别城市会同步考察分式方程的简单应用,多以选择填空题为主,有些城市甚至不会出分式的单独考题;而分式方程的应用也和分式方程一样,较少出题,出题也基本是以选择题或者填空题的形式考察,整体难度较小。
但是,分式的化简方法以及分式方程的解法的全面复习对后期辅助几何综合问题中的计算非常重要!考向一、分式有意义的条件考向二、分式的运算法则考向三、分式方程的解法考向四、分式方程的应用考向一:分式有意义的条件1.分式:一般地,如果A,B 表示两个整式,并且B中含有分母,那么式子叫做分式,分式中A叫做分子,B 叫做分母。
最简分式:分子分母中不含有公因式的分式2.分式有意义的条件3.分式值=0需满足的条件【易错警示】1.下列四个式子:,x 2+x ,m ,,其中分式的个数有( )A .1个B .2个C .3个D .4个【分析】根据分式的定义可得.【解答】解:分母上含有字母的式子是分式,题目中所给的式子中只有,两个分母中都含有字母,所以这两个是分式,故选:B .2.若分式无意义,则x 的取值范围是( )A .B .C .D .【分析】根据分式无意义的条件可得2x ﹣1=0,再解即可.【解答】解:由题意得:2x ﹣1=0,解得:x =,若 <故选:C .3.若分式的值为零,则x 的值为( )A .2或﹣2B .2C .﹣2D .1【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:依题意,得x 2﹣4=0,且x +2≠0,解得,x =2.故选:B .4.已知=,则的值为( )A .﹣B .﹣C .D .【分析】先化简,代入数值计算即可.【解答】解:∵,===.故选:C .考向二:分式的运算法则1.分式的基本性质:分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
中考数学 专题09 分式与分式方程(知识点串讲)(解析版)
专题09 分式与分式方程专题总结【思维导图】【知识要点】知识点一:分式的基础概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子叫做分式,A为分子,B 为分AB 母。
【注意】判断式子是不是分式是从原始形式上去看,而不是从化简后的结果上去看。
与分式有关的条件:要求表示分式有意义分母≠0B ≠0分式无意义分母=0B =0分式值为0分子为0且分母不为0A =0,B ≠0分式值为正或大于0分子分母同号①A>0,B>0②A<0,B<0分式值为负或小于0分子分母异号①A>0,B<0②A<0,B>0分式值为1分子分母值相等A=B 分式值为-1分子分母值互为相反数A+B=01.(2019·湖北中考模拟)无论a 取何值时,下列分式一定有意义的是( )A .B .C .D .a 2+1a2a +1a2a 2‒1a +1a ‒1a 2+1【答案】D 【详解】当a=0时,a 2=0,故A 、B 中分式无意义;当a=-1时,a+1=0,故C 中分式无意义;无论a 取何值时,a 2+1≠0,故选D .2.(2019·江苏中考真题)若代数式有意义,则实数的取值范围是( )x +1x ‒3x A .B .C .D .x =‒1x =3x ≠‒1x ≠3【答案】D 【详解】代数式有意义,∵x +1x ‒3,∴x ‒3≠0∴x ≠3故选:D .3.(2018·沭阳县马厂实验学校中考模拟)在,,,,,中分式的个数有()1x 12x 2+123xy π3x +y a +1m A .2 个B .3 个C .4 个D .5 个【答案】B【详解】解:,,中的分母中均不含有字母,因此它们是整式,而不是分式;12x 2+123xyπ,,中的分母中含有字母,因此是分式;1x 3x +y a +1m 故选:B .考查题型一 分式值为0的判断方法1.(2018·安徽中考模拟)分式的值为0,则x 的取值为( )x 2+2x ‒3|x |‒1A .x=-3B .x=3C .x=-3或x=1D .x=3或x=-1【答案】A 【详解】∵原式的值为0,∴,{x 2+2x ‒3=0|x |‒1≠0∴(x-1)(x+3)=0,即x=1或x=-3;又∵|x|-1≠0,即x≠±1.∴x=-3.故选:A .2.(2018·云南中考模拟)当式子的值为零时,x 的值是()|x |‒5x 2‒4x ‒5A .B .C .D .或±55‒551【答案】C 【详解】由题意,得:|x |−5=0,且 x 2‒4x ‒5≠0;由|x |−5=0,得:x =±5;由,得:x ≠5,x ≠−1;x 2‒4x ‒5≠0综上得:x =−5,故选C.3.(2019·广西中考真题)若分式的值为0,则x 的值为( )x 2‒1x +1A .0B .1C .﹣1D .±1【答案】B【详解】∵分式的值为零,x 2‒1x +1∴,{x2‒1=0x +1≠0解得:x=1,故选B .知识点二:分式的运算(重点)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
中考数学知识点梳理第7讲分式方程
中考数学知识点梳理第7讲分式方程分式方程是指方程中含有分式表达式的方程。
分式方程在中考中占有一定的比重,是考查学生对分式的理解和运用的重要途径。
下面将梳理中考数学中与分式方程相关的知识点。
一、分式的定义和性质分式是指整数与整数之间用斜线分隔的写法,如a/b。
其中,a称为分子,b称为分母,a称为真分数,当a<b时。
分式的性质:1.当分子为0时,分式的值为0。
2.当分母为1时,分式的值等于分子。
3.分子和分母同时乘以一个非零数,分式的值不变。
4.分子和分母同时除以一个非零数,分式的值不变。
二、分式方程的解法1.消去分母法消去分母法是分式方程的基本解法。
其基本思路是通过两边同时乘以分母的公倍数,去除分母并化简方程。
2.交叉相乘法交叉相乘法适用于分式方程中含有两个分式的情况。
其基本思路是将两个分式相乘并等于0,然后将原分式方程化为两个整式方程,再求解。
3.增加分母法增加分母法适用于分式方程中含有分式的情况。
其基本思路是通过增加分母使得方程化为整式方程,再求解。
三、分式方程的典型题型1.分式方程的基本题型(1)形如a/b+c/d=e/f的方程,其中a、b、c、d、e、f都是已知的实数。
(2)形如(a/b)/(c/d)=(e/f)/(g/h)的方程,其中a、b、c、d、e、f、g、h都是已知的实数。
2.均分问题均分问题是指把一个数量等分成若干份的问题。
通常可以建立如下的分式方程:若等分成n份,则每份的数量为总数量除以n,即总数量/n。
3.速度问题速度问题是指涉及速度、时间和路程的问题。
通常可以建立如下的分式方程:速度=路程/时间。
四、分式方程的实际应用1.定理的运用在实际应用中,可以通过定理的运用将问题转化为分式方程,并求解。
2.误差的计算在实际测量中,经常需要进行误差的计算。
可以通过分式方程的运算将实际测量值与真实值进行对比。
3.比例的计算在实际应用中,经常涉及到比例的计算。
可以通过分式方程进行比例的计算。
分式及分式方程知识点总结
分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。
分式可以表示为 a/b,其中 a 是分子,b 是分母。
分式可以是一个整数、一个小数、或者是两个整数的比值。
分式可以用于表示实际问题中的比例、率、百分比等。
在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。
在处理分式时,有几个关键概念和知识点需要了解。
一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。
可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。
二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。
三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。
解分式方程的关键是找到合适的方法将方程转化为整式方程。
1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。
3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。
需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。
四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。
2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。
分式与分式方程知识点
分式与分式方程知识点分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。
在分数中,分子表示被分割的数量,分母表示将整体划分的份数。
掌握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中起到至关重要的作用。
1. 分式的基本运算在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相除四种基本运算法则。
首先,当分式的分母相同的时候,可以直接将分子相加或相减。
例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。
其次,当分式的分母不同但可以化为相同分母的时候,可以通过找到最小公倍数,将分数化为相同的分母之后再进行运算。
例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。
另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。
例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。
2. 分式方程的解分式方程是由分式构成的方程,它的未知数通常出现在分数的分子或分母中。
解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。
解分式方程的基本步骤如下:(1) 消去分母。
通过将方程两边同乘以分母的最小公倍数,可以将方程中的分母消除,形成原方程的等效方程。
例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以2x(x+1),得到 2(x+1) + 2x = x(x+1)。
(2) 解一元方程。
将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。
对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。
(3) 验证解的可行性。
将得到的解代入原方程进行验证,确保解的可行性。
对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +1/3 = 1/2,等式成立。
因此, x = 2 是原方程的解。
人教版九年级数学下 第7讲 分式方程 中考知识点梳理
第7讲分式方程
一、知识清单梳理
知识点一:分式方程及其解法
关键点拨及对应举例
1.定义
分母中ቤተ መጻሕፍቲ ባይዱ有未知数的方程叫做分式方程.
例:在下列方程中,① ;② ;③ ,其中是分式方程的是③.
2.解分式方程
基本思路:分式方程整式方程
例:将方程 转化为整式方程可得:1-2=2(x-1).
解法步骤:
(1)去分母,将分式方程化为整式方程;
(2)解所得的整式方程;
(3)检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.
3.增根
使分式方程中的分母为0的根即为增根.
例:若分式方程 有增根,则增根为1.
知识点二:分式方程的应用
4.列分式方程解应用题的一般步骤
(1)审题;(2)设未知数;(3)列分式方程;(4)解分式方程;(5)检验:(6)作答.
分式与分式方程知识点
分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
分式与分式方程知识点总结
分式与分式方程专题一、分式基本知识1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
(1)分式与整式最本质的区别:分式的分母必须含有字母,即未知数;分子可含字母可不含字母。
(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
(3)分式的值为零的条件:分子为零且分母不为零。
2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) (1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3、分式的通分和约分:关键先是分解因式(1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
(2)最简分式:分子与分母没有公因式的分式(3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
(4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分C B C A B A ⋅⋅=CB CA B A ÷÷=鑫鹏学校母中的部分项的符号。
5、分式的运算:(1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
(2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(3)分式乘方法则:分式乘方要把分子、分母分别乘方。
(4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算(5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
专题09分式及分式方程【知识点清单】-2022年中考数学一轮复习精讲热考题型(全国通用)
专题09 分式及分式方程【知识要点】 知识点一:分式的基础概念:如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
【判断分式的注意事项】 1)条件:①形如BA的式子; ②A ,B 为整式;③分母B 中含有字母,三者缺一不可。
2)判断一个式子是不是分式,需看它是否符合分式的条件,若分子和分母含有相同字母,不能把原式化简后再判断,例如:aa4就是分式。
与分式A有关的条件:知识点二:分式的形式(基础)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:A B=A•C B•C,A B=A÷C B÷C,其中A 、B 、C 是整式,C ≠0。
【注意】在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
【拓展】分式符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:AB =−A−B =−−A B=−A −B约分的定义:把一个分式的分子与分母的公因式约去,叫分式的约分。
最简公式的定义:分子与分母没有公因式的分式,叫做最简分式。
分式约分步骤:1)提分子和分母公因式(关键);2)约去公因式;3)观察结果,是否是最简分式或整式。
例:x 2−9x 2+6x+9=________________【注意】1)约分前后分式的值相等.2)约分是对分子、分母同时进行的,即分子的整体和分母的整体都除以同一个因式,约分要彻底,使分子、分母没有公因式。
通分的定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母的定义:各分母所有因式的最高次幂的积。
确定分式的最简公分母的方法:1)因式分解:当分母是多项式时,先因式分解;.2)找系数:各分式分母系数的最小公倍数;3)找字母:各分母中所有单个字母因式或多项式字母因式;4)找指数:各分母所有多项式因式的最高次幂。
分式和分式方程知识点总结大全
分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。
基本概念:1.分子和分母:分数中的a称为分子,b称为分母。
2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。
3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。
4.相等分式:两个分子和分母比值相等的分式称为相等分式。
例如,2/3和4/6是相等的分式。
分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。
运算结果的分母保持不变,并将分子相加或相减。
2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。
结果要简化。
3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。
结果要简化。
分式方程:分式方程是指含有分式的方程。
解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。
2.化简方程:将方程中的分式进行化简,得到方程的最简形式。
3.解方程:根据方程的形式,进行求解。
常见的方法包括合并同类项、配方、移项等等。
常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。
例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。
例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。
例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。
例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。
在几何学中,分式用于解决一些面积、体积等问题。
在经济学中,分式用于解决利润、成本等相关问题。
专题06分式及分式方程-2024年中考数学考点总动员系列
分式及其方程是中考数学重要的考点之一、理解掌握这一知识点,对提高中考数学成绩非常重要。
本文将从分式的定义、性质、运算以及分式方程四个方面进行讲解和总结,帮助同学们更好地理解和掌握这一知识点。
一、分式的定义分式是由分子与分母用分数线隔开的数,通常记作a/b,其中a为分子,b为分母。
分子和分母都可以是整数、分数或者代数式。
分式也可以称为有理式。
例如,1/2、3/4、5/(x+1)等都是分式。
二、分式的性质2.分式的相等性:两个分式相等,当且仅当它们的值相等。
即,如果a/b=c/d,那么a*d=b*c。
3.真分式和假分式:当分子的绝对值小于分母的绝对值时,分式称为真分式;当分子的绝对值大于或等于分母的绝对值时,分式称为假分式。
三、分式的运算1.分式的加法和减法:对于两个分式a/b和c/d,可以先通分,然后按整式的加减法规则进行运算,最后将结果化简为最简分式。
例如,(2/3)+(1/4)=[(2*4)/(3*4)]+[(1*3)/(4*3)]=(8/12)+(3/12)=(8+3)/12=11/122.分式的乘法:对于两个分式a/b和c/d,将它们的分子相乘得到新的分子,分母相乘得到新的分母,然后将结果化简为最简分式。
例如,(2/3)*(3/4)=(2*3)/(3*4)=6/12=1/23.分式的除法:对于两个分式a/b和c/d,将它们的分子相乘得到新的分子,分母相乘得到新的分母的倒数,然后将结果化简为最简分式。
例如,(2/3)/(3/4)=(2/3)*(4/3)=8/9四、分式方程分式方程是含有未知数的分式的等式。
解分式方程就是要找出使得该分式方程成立的未知数的值。
解分式方程的基本步骤如下:1.按分式方程的形式,把分式方程的分子、分母用一个符号表示出来,得到一个关于该符号的方程。
2.通过移项和化简,将方程转化为一个整式方程。
3.对整式方程进行求解,得到方程的解。
4.将整式的解带入原分式方程,验证是否为方程的解。
备战2023年中考数学一轮复习考点05 分式与分式方程
考点05 分式与分式方程分式与分式方程考点主要包括分式的概念、分式的运算、分式方程的概念与解法以及分式方程的应用。
在江苏省各地级市的中考中,分式的概念、分式有意义的条件、分式方程的概念等以选择和填空为主要考查形式,分式的运算主要以化简求值为考查形式,分式方程的解法主要以解方程的形式考查,有时也会以选择或填空的形式考查增根问题,分式方程的应用主要以应用题的形式考查。
整体难度不大。
一、分式的概念与性质;二、分式的运算与化简求值;三、分式方程的概念与解分式方程;四、分式方程的应用。
考向一:分式的概念与性质1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式. (2)分式AB中,A 叫做分子,B 叫做分母. 【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式.1.下列各式中,分式的个数是( )()()22213211123143x m n x x a ab b x y x y x m x m a b π+-+-+-+++-,,,,,,,A .8B .7C .6D .52.若要使式子1213x x x x ++÷-+有意义,则x 的取值范围是( ) A .1x ≠且3x ≠- B .1x ≠且2x ≠- C .1x ≠且1x ≠-D .1x ≠且2x ≠-且3x ≠-3.已知若分式2231x x x --+的值为0,则x 的值( )A .3B .3或1-C .1-D .3-或14.已知:3:2x y =,则下列各式中不正确的是( ) A .52x y y += B .12x y y -= C .35x x y =+ D .13x y x =- 5.把分式222x x y+中的x 和y 都扩大2倍,分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍考向二:分式的运算与化简求值 1.约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 2.最简分式分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 3.通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.4.最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 5.分式的运算(1)分式的加减 ①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=. ②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减. 用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=. (2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅. (3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅. (4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.1.化简2422x x x+--的结果是( ) A .2x + B .2x C .12x - D .22x2.计算12aa --的结果是( ) A .12a a -- B .2a a -- C .12a - D .22a - 3.(2022·山东济南·模拟)若111x y z-=,则z 等于( )A . x y -B .-y xxyC .xyx y- D .xy yx4.若43b a =,则a b a +( )A .73B .37C .14D .435.若2a b =,则a a b+的值是( ) A .12B .23C .32D .3考向三:分式方程的概念与解分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据. 2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程; ③解整式方程; ④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解. 3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根. 注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.1.(2022·贵州贵阳·二模)下列关于x 的方程,是分式方程的是( ) A .325x x -=B .11523x y -=C .32xx xπ=+ D .1212x x=-+ 2.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组12326x ax a x a -+⎧+≤⎪⎨⎪->⎩无解,又使得关于y 的分式方程5122a y y y --=--的解不小于1,则满足条件的所有整数a 的和为( ) A .4- B .3-C .2-D .5-3.方程210123x x +=+-的解为( )A .73x =B .=1x -C .52x =D .1x =4.(2022·江苏·连云港市新海初级中学三模)解分式方程:21 322x x x-+=-- 5.解分式方程:()()31121-=-+-xx x x考向四:分式方程的应用 分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等. 每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤: ①设未知数; ②找等量关系; ③列分式方程; ④解分式方程;⑤检验(一验分式方程,二验实际问题);1.(2022·浙江嘉兴·一模)某文具店分别用400元和600元两次购进同一款笔记本,两次进价相同,而且第二次数量比第一次多50本.若设该文具店第一次购进x 本,根据题意,列方程正确的是( ) A .40060050x x =- B .40060050x x=- C .40060050x x =+ D .40060050x x=+ 2.(2022·广东·佛山市华英学校三模)A ,B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两种汽车每小时各走多少千米.设大汽车的速度为km/h x ,则下面所列方程正确的是( ) A .8080403x x -= B .80802.43x x -= C .80802233x x -=+ D .80802233x x +=- 3.《四元玉鉴》是我国古代数学重要著作之一,为元代数学家朱世杰所著.该著作记载了“买椽多少”问题.“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x 株,则符合题意的方程是( ) A .62103=xB .621031=-x C .()621031x x-=D .()6210311x x -=- 4.(2022·宁夏·银川北塔中学三模)某零售商店第一次用1000元购进一批雪绒绒挂件若干个,第二次用1800购进冰墩墩挂件是购进雪绒绒挂件数量的32,而冰墩墩挂件的进货单价比雪绒绒挂件的进货单价多1元.(1)求该商店购进的雪绒绒和冰墩墩数量各多少个?(2)该商店两种挂件的零售价都是10元/个,雪绒绒挂件中有10个因为损坏不能售出,其余都已售出,则冰墩墩挂件要至少售出多少个,才能使这两次的总利润不低于2020元?5.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用2400元购买甲种商品的件数恰好与用2000元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么最多可购买多少件甲种商品?1.(2022·云南·昆明八中模拟)要使12022x +有意义,则x 的取值范围为( )A .0x ≠B .2022x >-C .2022x ≠D .2022x ≠-2.(2022·浙江温州·一模)若分式23x x --的值为0,则x 的值为( ) A .3-B .2-C .0D .23.(2022·河北保定·一模)不改变分式的值,将分式0.020.50.004x yx y++中的分子、分母的系数化为整数,其结果为( ) A .2050010004x yx y++B .205001004x yx y++C .25010004x yx y++D .254x yx y++ 4.(2022·山东师范大学第二附属中学模拟)下列运算正确的是( ) A .y yx y x y=---- B .2233x y x y +=+ C .m n m n a b a b--=- D .221y x x y x y-=--+5.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-6.(2022·河北唐山·一模)计算111x x x++÷()的结果是( )A .1x +B .1C .21x x+()D .11x + 7.(2022·山东济宁·三模)计算221111a a a ⎛⎫÷+ ⎪--⎝⎭的结果是( ) A .1a a + B .11a - C .1a a - D .11a + 8.(2022·重庆·模拟)若关于x 的不等式组()03432x mx x -⎧<⎪⎨⎪->-⎩的解集为1x <,且关于x 的分式方程2311x mx x ++=--有非负整数解,则符合条件的m 的所有值的和是( ) A .6B .8C .11D .149.(2022·福建省福州屏东中学模拟)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数,设第一次分钱的人数为x 人,则可列方程( ) A .10406x x =- B .40106x x =- C .10406x x =+ D .1040x =()6x +10.(2022·重庆铜梁·一模)关于x 的不等式组22143x m x m >-⎧⎨-+≥-⎩有解,且使关于x 的分式方程1222m xx x--=--有非负整数解的所有m 的值的和是( ) A .-1B .2C .-6D .011.(2022·江苏·射阳县第四中学二模)若分式||11x x -+的值为0,则x 的值为____. 12.(2022·四川·成都西川中学三模)分式方程224111x x -=+-的解为 ___________. 13.(2022·山东济宁·三模)分式方程112112m x x=+--的解是正数,则m 的取值范围为___________ 14.(2022·贵州遵义·模拟)已知a 为24a ≤≤范围的整数,则22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭的值是______.15.(2022·广西·南宁市三美学校三模)若关于x 的分式方程33122x m x x +=+--有增根,则m =_____. 16.已知关于x 的方程21+-x ax =1的解是正数,则a 的取值范围是____.17.计算:2222111--++a a a . 18.(2022·浙江湖州·一模)化简:24a b a ba b a b-++++ 19.(2022·四川·泸州市第二十八初级中学校一模)化简:221111x x x x -⎛⎫+- ⎪-+⎝⎭20.(2022·宁夏·银川北塔中学一模)先化简,再求代数式121a a a a a --⎛⎫÷- ⎪⎝⎭的值,其中212a -⎛⎫=- ⎪⎝⎭. 21.(2022·宁夏·银川外国语实验学校一模)化简求值:221241442x x x x x x x -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,然后从x <x 的值代入求值22.(2022·甘肃·平凉市第七中学二模)先化简,再求值:231142x x x -⎛⎫÷- ⎪--⎝⎭,其中1x =. 23.(2022·浙江丽水·一模)解方程:13233x x-=--. 24.(2022·安徽·合肥市第四十五中学三模)求x 的方程323x x=-的解. 25.(2022·陕西·交大附中分校三模)解方程:13122xx x-=--. 26.(2022·陕西师大附中模拟)解方程:3122x x x -=-+ 27.(2022·重庆八中模拟)小明的爸爸出差回家后,小明发现爸爸的通信大数据行程卡上显示1天内爸爸去过A 、B 、C 三地.已知A 到B 的路程为160公里,比B 到C 的路程少200公里,小明爸爸驾车从A 到B 的平均车速和B 到C 的平均车速比为8:9,从A 到B 的时间比从B 到C 的时间少2小时. (1)求A 到B 的平均车速;(2)从B 到C 时,若小明的爸爸至少要提前40分钟到达,则平均车速应满足什么条件?28.(2022·宁夏·景博中学二模)某校为了鼓励学生增加书籍阅读量,计划从书店购进A ,B 两种图书各若干本免费赠阅.每本A 图书的价格比每本B 图书的价格多10元,若在书店购买时每1本A 图书和1本B 图书可以组成一个套装,每个套装购买时可以享受八折优惠.(1)若学校购买每个套装的费用不超过120元,那么B 图书的最高售价不能超过多少元?(2)若用1040元购买的套装中B 图书的数量与用600元单独购买B 图书的数量相同,那么B 图书的售价是多少?29.(2022·湖南·长沙市华益中学三模)“双减”政策受到各地教育部门的积极响应,某校为增加学生的课外活动时间,现决定增购两种体育器材:跳绳和毽子.已知跳绳的单价比毽子的单价多3元,用800元购买的跳绳数量和用500元购买的键子数量相同. (1)求跳绳和毽子的单价分别是多少元?(2)学校计划购买跳绳和毽子两种器材共600个,且要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于452根,请问有几种购买方案并指哪种方案学校花钱最少.30.(2022·广东·绿翠现代实验学校二模)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,用8000元购进的猪肉粽和用6000元购进的豆沙粽的盒数相同. (1)求猪肉粽和豆沙粽每盒的进价;(2)某商家准备用不超过4000元购进猪肉粽和豆沙粽共120盒,那么该商家最多可以购进多少盒猪肉粽?1.(2022·江苏无锡·中考真题)方程213x x=-的解是( ). A .3x =-B .=1x -C .3x =D .1x =2.(2022·江苏淮安·中考真题)方程3102x -=-的解是______. 3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 4.(2022·江苏盐城·中考真题)分式方程1121x x +=-的解为__________. 5.(2022·江苏苏州·中考真题)化简2222x x x x ---的结果是______.6.(2021·江苏淮安·中考真题)先化简,再求值:(11a -+1)÷21aa -,其中a =﹣4. 7.(2022·江苏苏州·中考真题)解方程:311x x x+=+. 8.(2022·江苏连云港·中考真题)化简:221311x x x x -+--. 9.(2022·江苏宿迁·中考真题)解方程:21122x x x =+--. 10.(2022·江苏扬州·中考真题)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?1.(2022·江苏无锡·一模)若关于x 的方程12022m xx x+-=--有增根,则m 的值为( ) A .-5B .0C .1D .22.(2022·江苏南京·二模)下列代数式的值总不为0的是( ) A .2x +B .22x -C .12x + D .()22x +3.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x >-D .2x ≥-4.(2022·江苏南通·二模)要比较21a M a =+与12a N +=的大小(a 是正数),知道M N -的正负就可以判断,则M 与N 的大小关系是( ) A .M N ≤B .M N <C .M N ≥D .M N >5.(2022·江苏无锡·二模)分式方程312x x=-的解是______. 6.(2022·江苏泰州·二模)如果2260a a --=,那么代数式24()2a a a a -⋅+的值为______.7.(2022·江苏·淮安市淮安区教师发展中心学科研训处模拟)先化简,再求值:2241-a a a -⎛⎫÷⎪⎝⎭,其中=-4a .8.(2022·江苏·射阳县第四中学一模)化简求值:3691x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中x 为非负整数,且235x -<.9.(2022·江苏扬州·三模)先化简,再求值:2344111a a a a a -+⎛⎫--÷ ⎪--⎝⎭,其中a 是4的平方根10.(2022·江苏·南京市花园中学模拟)分式化简:2273423933a a a a a a a ⎛⎫+-++-÷ ⎪-+-⎝⎭. 11.(2022·江苏连云港·二模)解方程:36122x x x +=--. 12.(2022·江苏·连云港市新海实验中学二模)解方程:11322xx x-+=-- 13.(2022·江苏宿迁·二模)解方程:2211x x x -=--. 14.(2022·江苏苏州·一模)解分式方程:222111x x x -=+-. 15.(2022·江苏宿迁·二模)学校趣味运动会组织跳绳项目,购买跳绳经费最多95元.某商店有A ,B ,C 三个型号的跳绳,跳绳价格如下表所示,已知B 型长度是A 型两倍,C 型长度是A 型三倍(同个型号跳绳长度一样),用80米绳子制作A 型的数量比120米绳子制作B 型的数量还多5根.(1)求三种型号跳绳的长度.(2)若购买三种跳绳经费刚好用完,其中A型和B型跳绳条数一样多,且所有跳绳总长度为120米,求购买A型跳绳的数量.16.(2022·江苏·测试学校五一模)鹿鸣路初级中学为了开展学生阅读活动,计划从书店购进若干本A、B 两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1250元购进的A类图书与用1000元购进的B类图书册数相同,求每本A类图书和每本B类图书的价格各为多少元?17.(2022·江苏·盐城市初级中学一模)某商品经销店欲购进A、B两种纪念品,用360元购进的A种纪念品与用450元购进的B种纪念品的数量相同,每件B种纪念品的进价比每件A种纪念品的进价多10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价50元,B种纪念品每件售价65元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于2400元,求A种纪念品最多购进多少件?18.(2022·江苏·射阳县第四中学二模)冰墩墩(BingDwenDwen)是2022年北京冬季奥运会的吉祥物.小聪在某网店分别用30000元购买A,B两款冰墩墩玩偶进行销售,购得A款冰墩墩玩偶数量比B款冰墩墩玩偶少500个.给出如下两个信息:①A款冰墩墩玩偶的进货价比B款冰墩墩玩偶的进货价多13;②A、B两款冰墩墩玩偶的进货价之比为4∶3;A、B两款冰墩墩玩偶的进货价?你选择的条件是______(填序号),并根据你选择的条件给出求解过程.1.下列各式中,分式的个数是( )()()22213211123143x m n x x a ab b x y x y x m x m a b π+-+-+-+++-,,,,,,,A .8B .7C .6D .5【答案】D【分析】根据分式的定义判断即可.【详解】1x 是分式,3x -不是分式,+m n m 是分式,2321x x -+是分式,()14x y +不是分式,13x π+不是分式,()1x y m +是分式,222a ab b a b-+-是分式. 综上可知分式的个数是5个. 故选D . 2.若要使式子1213x x x x ++÷-+有意义,则x 的取值范围是( ) A .1x ≠且3x ≠- B .1x ≠且2x ≠- C .1x ≠且1x ≠- D .1x ≠且2x ≠-且3x ≠-【答案】D【分析】根据分式有意义的条件,列出不等式,即可求解. 【详解】解:∵1213x x x x ++÷-+有意义, ∴10x -≠且20x +≠且30x +≠∴1x ≠且2x ≠-且3x ≠- 故选D3.已知若分式2231x x x --+的值为0,则x 的值( )A .3B .3或1-C .1-D .3-或1【答案】A【分析】直接根据分式的值为零的条件列方程组求解即可.【详解】解:由题意得223010x x x ⎧--=⎨+≠⎩①②,解①得:121,3x x =-= 解②得:1x ≠-, 即3x =,4.已知:3:2x y =,则下列各式中不正确的是( ) A .52x y y += B .12x y y -= C .35x x y =+ D .13x y x =- 【答案】D【分析】根据x :y =3:2,设x =3a ,y =2a ,代入选项分别计算判断即可. 【详解】解:∵x :y =3:2, ∴设x =3a ,y =2a , ∴52x y y +=,12x y y -=,35x x y =+,3xy x =--, ∴选项A 、B 、C 都正确,选项D 错误, 故选:D .5.把分式222x x y+中的x 和y 都扩大2倍,分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍【答案】B【分析】根据分式的基本性质,进行计算即可解答.【详解】解: ∵把222x x y+中的x 和y 都扩大2倍为:()22222284222224222x x x x x y x y x y x y===⨯⨯++++, ∴把分式222x x y+中的x 和y 都扩大2倍,分式的值扩大2倍,故选:B .考向二:分式的运算与化简求值 1.约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 3.通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.4.最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 5.分式的运算(1)分式的加减 ①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=. ②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减. 用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=. (2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅. (3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅. (4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.1.化简2422x x x+--的结果是( ) A .2x + B .2x C .12x - D .22x【答案】A【分析】根据分式的加减运算法则即可求出答案.【详解】解:2422x x x +-- =2422x x x --- =242x x -- =()()222x x x +-- =2x + 故选:A 2.计算12aa --的结果是( ) A .12a a -- B .2a a -- C .12a - D .22a - 【答案】D【分析】通分,化为同分母的分式相减即可. 【详解】解:222122222a a a a a a a a a a --+-=-==-----; 故选D .3.(2022·山东济南·模拟)若111x y z-=,则z 等于( )A . x y -B .-y xxyC .xyx y- D .xy yx【答案】D【分析】根据分式的运算,求解即可.【详解】解:由111x y z -=可得1y x xy z -=, 则xyz y x=-, 故选D 4.若43b a =,则a b a +( )A .73B .37C .14D .43【答案】A【分析】由已知可设3a t =,4b t =,代入原式,计算化简即可. 【详解】∵43b a =, ∴设3a t =,4b t =, 将3a t =,4b t =,代入a ba+中得: 7733a b t a t +==, 故选:A . 5.若2a b =,则aa b+的值是( ) A .12 B .23C .32D .3【答案】B 【分析】由2a b =可得a =2b ,代入a a b+约分化简即可. 【详解】解:∵2ab=, ∴a =2b , ∴a ab +=222233b b b b b ==+, 故选B .考向三:分式方程的概念与解分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据. 2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程; ③解整式方程; ④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解. 3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根. 注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.1.(2022·贵州贵阳·二模)下列关于x 的方程,是分式方程的是( ) A .325x x -=B .11523x y -=C .32xx xπ=+ D .1212x x=-+ 【答案】D【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断. 【详解】解:A .方程分母中不含未知数,故不是分式方程,不符合题意;B .方程分母中不含未知数,故不是分式方程,不符合题意;C .方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D .方程分母中含未知数x ,故是分式方程,符合题意.故选:D .2.(2022·重庆市第三十七中学校二模)若数a 既使得关于x 的不等式组12326x ax a x a -+⎧+≤⎪⎨⎪->⎩无解,又使得关于y 的分式方程5122a y y y --=--的解不小于1,则满足条件的所有整数a 的和为( ) A .4- B .3- C .2- D .5-【答案】C【分析】先根据关于x 的不等式组无解求出数a 的范围,再根据关于y 的分式方程的解不小于1求出数a 的范围,然后再取数a 的范围的公共部分,从而即可求解. 【详解】解:解不等式123x a x a-++≤,得56x a ≤-, 解不等式26x a ->,得26x a >+,于x 的不等式组12326x ax a x a -+⎧+≤⎪⎨⎪->⎩无解, 5626a a ∴-≤+, 4a ∴≤;又解分式方程5122a y y y --=--,得72a y +=且2y ≠, 关于y 的分式方程5122a yy y--=--的解不小于1, 712a +∴≥且722a +≠, 5a ∴≥-且3a ≠-;综上可知:53,34a a -≤<--<≤,∴满足条件的所有整数a 的和为:5421012342----+++++=-,故选:C . 3.方程210123x x +=+-的解为( ) A .73x =B .=1x -C .52x =D .1x =【答案】D【分析】直接利用解分式方程的一般步骤解分式方程即可求解. 【详解】210123x x +=+- 解:去分母,得()()22310x x -++=,∴4610x x -++=, 解得1x =,检验:当1x =时,()()23120x x -+=-≠, ∴1x =是原分式方程的解, 故选:D4.(2022·江苏·连云港市新海初级中学三模)解分式方程:21 322xx x-+=-- 【答案】 1.5x =【分析】将分式方程去分母,化为整式方程求解,再检验即可. 【详解】解:21322xx x-+=--, 等号两边同时乘()2x -,得:23(2)(1)x x +-=--, 去括号,得:2361x x +-=-+, 移项、合并同类项,得:23x =, 系数化为1,得: 1.5x =, 经检验 1.5x =是原分式方程的解, ∴该方程的解为 1.5x =.5.解分式方程:()()31121-=-+-xx x x【答案】分式方程无解【分析】根据解分式方程的一般步骤求解即可 【详解】解:()()31121-=-+-xx x x 去分母得:()()()2123x x x x +--+=, 去括号整理得:23x +=, 移项得:1x =,检验,当1x =时,()()120x x -+=, ∴分式方程无解. 考向四:分式方程的应用 分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等. (2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);1.(2022·浙江嘉兴·一模)某文具店分别用400元和600元两次购进同一款笔记本,两次进价相同,而且第二次数量比第一次多50本.若设该文具店第一次购进x 本,根据题意,列方程正确的是( ) A .40060050x x =- B .40060050x x =- C .40060050x x =+ D .40060050x x=+ 【答案】C【分析】根据“第一次购进的单价=第二次购进的单价”可列方程.x 本,则第二次购进(x +50)本, 根据题意可列方程:40060050x x =+, 故选:C .2.(2022·广东·佛山市华英学校三模)A ,B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两种汽车每小时各走多少千米.设大汽车的速度为km/h x ,则下面所列方程正确的是( )A .8080403x x -= B .8080 2.43x x -= C .80802233x x -=+ D .80802233x x +=- 【答案】C【分析】设大汽车的速度为km/h x ,则小汽车的速度为3km/h x ,根据题意可得,同样走80千米,小汽车比大汽车少用223⎛⎫+ ⎪⎝⎭小时,据此列方程. 【详解】解:设大汽车的速度为km/h x ,则小汽车的速度为3km/h x ,。
北师大版八下数学走进中考看《分式与分式方程》考点
走进中考看《分式与分式方程》考点《分式与分式方程》一章,从知识的独立性上看,在中考有着非常重要的作用,现以中考试题为例,把《分式与分式方程》所考查的知识点剖析如下:考点一:分式的基本概念例1 下列各式中哪些是有整式?哪些是分式? ①x 1②x x 2③21-x ④31-π⑤32y x - 解析:分式除了强调含有分母外,还应注意分母中含有字母,但是π除外;同时分式看的原始状态,不能化简以后的,所以虽然x x 2=x ,但是xx 2仍为分式,所以其中分式有①②,整式 ③④⑤.点拔:解此类问题要注意三点:(1)分母中含有字母;(2)分母不能为0;(3)不能化简以后再看是点为分式.考点二:分式有意义的条件及分式为0的条件例2使分式22-x 有意义的x 的取值范围是( ) A. 2≤x ; B. 2-≤x ; C. 2x ≠; D. 2x ≠-.解析:分式有意义的条件是指分母不为0,所以选C .例3若分式11--x x 的值为0,则x 的值等于_______. 解析:因为分式值为0的条件为两个同是成立,所以01,01≠-=-x x ,所以1-=x .点拔:在分式有无意义的问题中,只与分母有关,与分子无关;在分式为0的问题中,关健在于使分子为0的值不能使分母为0应同进成立.考点三:分式的混合运算例4先化简代数式⎪⎭⎫ ⎝⎛-++222a a a ÷412-a ,然后选取一个合适..的a 值,代入求值.解:原式=)2)(2(222-+⎪⎭⎫ ⎝⎛-++a a a a a =)2(2)2(++-a a a=42+a取a =1,得 原式=5点拔:分式运算的原则就是先化简后求值,对于混合运算其规则同分数的一样,都是先算乘除后算加减,有括号的先算括号里的,在代入求值时,要注意条件中不可与分母不为0相冲突,所以. a 可取除±2外的所有数.考点四:分式方程的解法例5解分式方程:2112323x x x -=-+解析:方程两边同乘(23)(23)x x -+,得2(23)(23)(23)(23)x x x x x +--=-+化简,得412x =-解得3x =-检验:3x =-时(23)(23)0x x -+≠,3-是原分式方程的解.点拔:解分式方程的关键在于去分母变成一元一次方程,去分母时要在方程两边同乘以最简公分母,同时要注意不要漏乘没有分母的项.检验是解分式方程的必须的一步,切不可漏掉.考点五:分式方程中的增根型问题例5若关于x 的方程)2)(1(22211--+=-+-x x m x m x 有增根,求m 的值. 解析:若分式方程有增根,则增根可能是x=1或x=2,我们把x=1和x=2分别代入分式转化成的整式方程,既可求出m 的值.将分式方程去分母后得:22)1(2+=-+-m x m x 因为方程有增根,所以x 可能是x=1或x=2,把x=1代入22)1(2+=-+-m x m x 得23-=m ,把x=2代入22)1(2+=-+-m x m x 得:2-=m ,所以m 的值是23-或2-. 点拔:因为增根是把分式方程化成整式方程的时候产生的,所它具有两条性质:1)它使最简公分母为0;2)它是分式方程化成的整式方程的根.巧妙利用这两点,就可以帮助我们解决有关增根型问题.考点六:分式方程的应用例6 2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?解析:设该厂原来每天生产x 顶帐篷 据题意得:1500300120041.5x xx ⎛⎫-+= ⎪⎝⎭ 解这个方程得100x =经检验100x =是原分式方程的解答:该厂原来每天生产100顶帐篷.点拔:列分式方程解应用题时,既要检验是不是原方程的根,也要检验是否符合实际、题意,两者要兼顾,这就是解分式方程的“双重验根”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
走进中考看《分式与分式方程》考点
《分式与分式方程》一章,从知识的独立性上看,在中考有着非常重要的作用,现以中考试题为例,把《分式与分式方程》所考查的知识点剖析如下:
考点一:分式的基本概念
例1下列各式中哪些是有整式?哪些是分式?
①1②乞③—④-弐y
x x 2 3 3
解析:分式除了强调含有分母外,还应注意分母中含有字母,但是除外;
2 2
同时分式看的原始状态,不能化简以后的,所以虽然—=x,但是-仍为分式,
x x
所以其中分式有①②,整式③④⑤.
点拔:解此类问题要注意三点:
(1)分母中含有字母;
(2)分母不能为0;
(3)不能化简以后再看是点为分式.
考点二:分式有意义的条件及分式为0的条件
例2使分式丄有意义的x的取值范围是( )
x 2
A. x 2 ;
B. x 2;
C. x 2;
D. x 2 .
解析:分式有意义的条件是指分母不为0,所以选C.
例3若分式丄」的值为0,则x的值等于______________ .
x 1
解析:因为分式值为0的条件为两个同是成立,所以x| 1 0,x 1 0,所以
x 1.
点拔:在分式有无意义的问题中,只与分母有关,与分子无关;在分式为0的问题中,关健在于使分子为0的值不能使分母为0应同进成立.
考点三:分式的混合运算
例4先化简代数式」——,然后选取一个合适的a值,代入
a 2 a 2 a 4
求值.
解源式-说 总(a 2)(a 2)
=a(a 2) 2(a 2)
取a = 1,得原式=5
点拔:分式运算的原则就是先化简后求值, 对于混合运算其规则同分数的一 样,都是先算乘除后算加减,有括号的先算括号里的,在代入求值时,要注意条 件中不可与分母不为0相冲突,所以• a 可取除2外的所有数.
考点四:分式方程的解法
解析:方程两边同乘(2x 3)(2x 3),得
2x(2x 3) (2x 3)
(2x 3)(2x 3) 化简,得4x 12
解得x 3
检验:x 3时(2x 3)(2 x 3) 0, 3是原分式方程的解.
点拔:解分式方程的关键在于去分母变成一兀一次方程, 去分母时要在方程 两边同乘以最简公分母,同时要注意不要漏乘没有分母的项. 检验是解分式方程 的必须的一步,切不可漏掉.
考点五:分式方程中的增根型问题
例5若关于x 的方程」 m 2m 2 有增根,求m 的值.
x 1 x 2 (x 1)(x 2)
解析:若分式方程有增根,则增根可能是 x=1或x=2,我们把x=1和x=2分 别代
入分式转化成的整式方程,既可求出 m 的值.
将分式方程去分母后得:x 2 m(x 1) 2m 2因为方程有增根,所以x 可能
3
是 x=1 或 x=2,把 x=1 代入 x 2 m(x 1) 2m 2 得 m
-, 2
把x=2代入x 2 m(x 1) 2m 2得:m 2所以m 的值是-或2 .
例5解分式方程: 2x 1 2x 3 2x 3
2 点拔:因为增根是把分式方程化成整式方程的时候产生的,所它具有两条性质:1)它使最简公分母为0;2)它是分式方程化成的整式方程的根•巧妙利用这两点,就可以帮助我们解决有关增根型问题.
考点六:分式方程的应用
例6 2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0 级强烈地震,灾情牵动全国人民的心,一方有难、八方支援”.某厂计划加工
1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务•求原来每天加工多少顶帐篷?
解析:设该厂原来每天生产x顶帐篷
据题意得:型°型空°4
x x 1.5x
解这个方程得x 100
经检验x 100是原分式方程的解
答:该厂原来每天生产100顶帐篷.
点拔:列分式方程解应用题时,既要检验是不是原方程的根,也要检验是否
符合实际、题意,两者要兼顾,这就是解分式方程的双重验根。