长沙理工大学材料力学练习册答案详解

合集下载

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细在学习《材料力学》这门课程时,课后习题是巩固知识、检验理解程度的重要环节。

一份详细准确的课后习题答案不仅能够帮助我们确认自己的解题思路是否正确,还能进一步加深对知识点的理解和掌握。

材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它对于工程领域的学生来说至关重要,无论是机械工程、土木工程还是航空航天工程等,都离不开材料力学的知识支撑。

对于课后习题的解答,我们首先要明确每个问题所涉及的核心概念和原理。

比如,在研究杆件的拉伸和压缩问题时,需要清楚胡克定律的应用条件和计算公式。

胡克定律指出,在弹性限度内,杆件的伸长或缩短量与所受的拉力或压力成正比。

以一道常见的拉伸习题为例:一根直径为 20mm 的圆杆,受到100kN 的拉力,材料的弹性模量为 200GPa,求杆的伸长量。

解题思路如下:首先,根据圆杆的直径计算出横截面积 A =π×(d/2)^2 ,其中 d 为直径。

然后,根据胡克定律ΔL = FL/EA ,其中F 为拉力,L 为杆长,E 为弹性模量,A 为横截面积,代入已知数据进行计算。

在计算过程中,要注意单位的统一。

拉力的单位通常为牛顿(N),长度的单位要与弹性模量的单位相匹配,面积的单位要为平方米(m²)。

再来看一个关于梁的弯曲问题。

梁在受到横向载荷作用时,会产生弯曲变形。

在解答这类习题时,需要运用到弯矩方程、挠曲线方程等知识。

例如:一简支梁,跨度为 L,承受均布载荷 q,求梁的最大弯矩和最大挠度。

解题时,首先要根据梁的支座情况列出弯矩方程。

然后,通过积分求出挠曲线方程,再根据边界条件确定积分常数。

最后,求出最大弯矩和最大挠度的位置及数值。

在求解过程中,要理解弯矩和挠度的物理意义,以及它们与载荷、梁的几何形状和材料性质之间的关系。

对于扭转问题,要掌握扭矩的计算、切应力的分布规律以及扭转角的计算方法。

比如,一根轴受到扭矩 T 的作用,已知轴的直径和材料的剪切模量,求轴表面的最大切应力和扭转角。

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细

N(x) F F x a
x (a,0]
轴力图如图所示。
[习题 2-2] 试求图示等直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作轴
力图。若横截面面积 A 400mm2 ,试
求各横截面上的应力。
解:(1)求指定截面上的轴力
N11 20kN N 22 10 20 10(kN )
10000 100
0
100 100.0 0.0
10000 100
30
100 75.0 43.3
10000 100
45
100 50.0 50.0
10000 100
60
100 25.0 43.3
10000 100
90
100
0.0
0.0
[习题 2-7] 一根等直杆受力如图所 示。已知杆的横截面面积 A 和材料 的弹性模量 E。试作轴力图,并求杆 端点 D 的位移。 解:(1)作轴力图
N33 F 2F 2F F
轴力图如图所示。
1
(c)
解:(1)求指定截面上的轴力
N11 2F N22 F 2F F
(2)作轴力图
N33 2F F 2F 3F
轴力图如图所示。
(d)
解:(1)求指定截面上的轴力
N11 F
N 22
2F
qa
F
2F
F a
a
F
2F
(2)作轴力图
中间段的轴力方程为:
解:墩身底面的轴力为:
N (F G) F Alg
1000 (3 2 3.14 12 ) 10 2.35 9.8 3104.942(kN )
1000 (3 2 3.14 12 ) 10 2.35 9.8

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案欢迎大家来到大学网,小编搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。

1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的1种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。

《材料力学》练习册答案

《材料力学》练习册答案

《材料力学》练习册答案习题一一、填空题1.对于长度远大于横向尺寸的构件称为(杆件)。

2.强度是指构件(抵抗破坏)的能力。

3.刚度是指构件(抵抗变形)的能力。

二、简答题1.试叙述材料力学中,对可变形固体所作的几个基本假设。

答:(1)均匀连续假设:组成物体的物质充满整个物体豪无空隙,且物体各点处力学性质相同(2)各向同性假设:即认为材料沿不同的方向具有相同的力学性质。

(3)小变形假设:由于大多数工程构件变形微小,所以杆件受力变形后平衡时,可略去力作用点位置及有关尺寸的微小改变,而来用原始尺寸静力平衡方程求反力和内力。

2.杆件的基本变形形式有哪几种?答:1)轴向拉伸与压缩;2)剪切;3)扭转;4)弯曲3.试说明材料力学中所说“内力”的含义。

答:材料力学中所说的内力是杆件在外力作用下所引起的“附加内力”。

4.什么是弹性变形?什么是塑性变形?答:杆件在外力作用下产生变形,当撤掉引起变形的因素后,如果杆件的变形完全消失而恢复到原来状态,这种变形称为是完全弹性的即弹性变形。

而撤掉引起变形的因素后,如果杆件的变形没有完全恢复而保留了一部分,被保留的这部分变形称为弹性变形又叫永久变形。

三、判断题1.材料单元体是无限微小的长方体(X )习题二一、填空题1.通过一点的所有截面上(应力情况的总和),称为该点的应力状态。

45的条纹,条纹是材料沿(最2.材料屈服时,在试件表面上可看到与轴线大致成ο大剪应力面)发生滑移而产生的,通常称为滑移线。

3.低碳钢的静拉伸试验中,相同尺寸的不同试件“颈缩”的部位不同,是因为(不同试件的薄弱部位不同)4.对于没有明显屈服阶段的塑性材料,通常规定以产生塑性应变(εs=0.2% 时的应用定为名义屈服极限,用δρ2表示)5.拉,压杆的横截面上的内力只有(轴力)。

6.工程中,如不作特殊申明,延伸率δ是指(L=10 d)标准试件的延伸率二、简答题1.试叙述低碳钢的静拉伸试验分几个阶段?各处于什么样的变形阶段。

《材料力学》习题册附答案

《材料力学》习题册附答案

F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4) 应力是内力分布集度。

(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6) 若物体产生位移,则必定同时产生变形。

(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。

(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。

(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。

3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。

(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。

变形。

(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。

(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学练习册答案

材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。

在考虑杆本身自重时,11-和22-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。

试作轴力图并求杆的总伸长及杆下端横截面上的正应力。

GPa E 200=钢。

解:轴力图如图。

杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。

试求荷载P 及在P 作用下杆内的最大正应力。

(GPa E 80=铜,GPa E 200=钢)。

解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。

长沙理工大学材料力学练习册答案详解

长沙理工大学材料力学练习册答案详解
(A)平面弯曲;(B)斜弯曲;(C)弯扭组合;(D)拉弯组合。
6、一正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M,扭矩为T,截面上A点具有最大弯曲正应力 及最大扭转切应力 ,其弯曲截面系数为W。关于A点的强度条件现有下列四种答案,正确答案是(C)。
(A) ;(B) ;
(C) ;(D) 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。
解答:
11、图示拉杆,F、b、h以及材料的弹性常数E、v均为已知。试求线段AB的正应变和转角。
解答:
12、求图示梁1—1截面B点与水平方向成 角方向的线应变 。已知F=10kN,l=4m,h=2b=200mm,E=1×104MPa,v=0.25。
解答:
从 、 图知,由于B点在中性轴上,故为纯剪应力状态,对于纯剪应力状态,有:
(2)标出危险点的位置(可在题图上标明);(3)给出危险点的应力状态。
解答:
(1)危险截面在最左端面,在其截面上有
由于轴是塑性材料。故按第三强度理论进行强度校核
安全
(2)
(3)
7、图示水平放置的圆截面直角钢折杆,直径d=100mm,l=2m,q=1kN/m, 。校核该杆的强度。
解答:
在危险截面A上有
7、广义胡克定律适用范围,有下列四种答案,正确答案是(C)。

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学全部习题解答讲解

材料力学全部习题解答讲解

1 2 R2
3
2
(b)
yc =
ydA
A
=
A
b 0
y ayndy b ayndy
=
n n

1 2
b
0
26
Iz =
y2dA
A
Iy =
z2dA
A
解: 边长为a的正方截面可视为由图示截面和一个半 径为R的圆截面组成,则
Iz
=I(za)
I(zR)=
a4 12


2R 4
0

FN A
10103 N 1000 106 m2
10MPa
由于斜截面的方位角 450
得该截面上的正应力和切应力分别为
45
0 cos2 10106 cos2 450 pa 5MPa
0 sin 2 1 10106 sin 900 pa 5MPa
2
18
解:1.求预紧力 由公式l FNl 和叠加原理,故有
EA
l

l1

l2

l3

Fl1 EA1

Fl2 EA2

Fl3 EA3

4F
E

l1 d12

l2 d22

l3 d32

由此得 F
El
18.65kN
4

l1
d
2 1

l2
d
2 2

l3
根据式
tan 2 2I y0z0
I z0 I y0
解得主形心轴 y 的方位角为 a =
3.计算主形心惯性矩

《材料力学》第二章课后习题及参考答案

《材料力学》第二章课后习题及参考答案
简答题2答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案

材料力学习题的答案解析

材料力学习题的答案解析

第二章轴向拉伸与压缩2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。

F1=18kN (b)F3=25kN 3力。

解:2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应1 .轴力M1I2- , --------------------------------------------------------- 4kN* -------------- —------------------------------------- r .------------- *—1 2201 F2=3kNF4=10kN2 31518F N F14kN2.应力F N141031 1MPa175MPaA1 1204F N141032 2MPa350A2 22010 4由截面法可求得,杆各横截面上的轴力为2-3 图示桅杆起重机,起重杆 AB 的横截面是外径为 20mm 、 径为18 mm 的圆环,钢丝绳 BC 的横截面面积为 BC 横截面上的应力。

AB 和钢丝绳 o 10mm 2。

试求起重杆解:1 .轴力 取节点 F x 0 :B 为研究对象,受力如图所示, F NBC F NAB cos30 F cos 45 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为 E 1100 GPa 和 E 2210 GPa 。

若杆的总伸长为A l 0.126mm ,试求载荷F 和杆横截面上的应力。

2铜1钢/ /F140 . -400600解:1•横截面上的应力由题意有I 1Fh FI 2 l 2E 1AE 2A由此得到杆横截面上的应力为l h I 2 E 1 E 2 h E 1l 2E 20.126 600 400 100 103 210 103 MPa 15.9MPaF y 0 : 由此解得: 2 .应力 起重杆横截面上的应力为F NABABF NAB sin 30 F sin 45 F NAB 2.83kN , 2.83 103 A AB ____ 2。

材力习题册(第六版)参考答案(1-3章)

材力习题册(第六版)参考答案(1-3章)

D
)
2.轴向拉伸细长杆件如图 2 所示,其中 1-1 面靠近集中力作用的左端面,则正确的说法 A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C.1-1 面上应力非均匀分布, 2-2 面上应力均匀分布 D.1-1 面上应力均匀分布, 2-2 面上应力非均匀分布
(图 B 端 D 任意点 A ) B 都是横截面 D 都是 45 斜截面
0 0
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 (
15. 设轴向拉伸杆横截面上的正应力为 σ ,则 45 斜截面上的正应力和剪应力 ( D )。 B 均为 σ D 均为 σ /2 C δ 和ψ D σ s、 δ 和 ψ
17. 由拉压变形公式 l A C A C
F l FN l 即 E N 可知,弹性模量 ( A )。 A l EA
B 与载荷成正比 D 与横截面面积成正比
与载荷、杆长、横截面面积无关 与杆长成正比 A )是正确的。 内力随外力增大而增大 内力随外力增大而减小 C B D
18. 在下列说法,(
B 内力与外力无关 D 内力沿杆轴不变 ) 。 σ >300MPa σ <200MPa B ) 。 B. 剪切面面积为 bh,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。 C ) ,计算挤压面积
19. 一拉伸钢杆,弹性模量 E=200GPa,比例极限为 200MPa,今测得其轴向应变 ε = 0.0015,则横截面上的正应力 ( A C σ =Eε =300MPa 200MPa<σ <300Mpa
= -2(arctan
)=2.5×
rad
2.试求图示结构 m m 和 n n 两截面的内
-2-

材料力学课后习题答案详细

材料力学课后习题答案详细

CB
CB E
6.5MPa 10 103 MPa
6.5 104
(4)计算柱的总变形
l AC AC l AC CB lCB (2.5 1500 6.5 1500) 104 1.35(mm)
[ 习 题 2-9] 一 根 直 径 d 16mm 、 长 l 3m 的 圆 截 面 杆 , 承 受 轴 向 拉 力
(2)作轴力图
N33 F 2F 2F F
轴力图如图所示。
1
(c)
解:(1)求指定截面上的轴力
N11 2F N22 F 2F F
(2)作轴力图
N33 2F F 2F 3F
轴力图如图所示。
(d)
解:(1)求指定截面上的轴力
N11 F
N 22
如以 表示斜截面与横截面的夹角,试求当 0o ,30o ,45o ,60o ,90o 时各斜截面
上的正应力和切应力,并用图表示其方
向。
解:斜截面上的正应力与切应力的公式
为:
5
0 cos 2

0 2
sin 2
式中, 0

N A

10000 N 100mm 2
100MPa ,把
AC

N AC A

100 103 N 200 200mm2
2.5MPa 。
CB

N CB A

260 103 N 200 200mm2
6.5MPa ,
(3)计算各段柱的纵向线应变
7
AC
AC E
2.5MPa 10 103 MPa
2.5 104

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细

《材料力学》课后习题答案详细在学习《材料力学》这门课程时,课后习题是巩固知识、加深理解的重要环节。

一份详细准确的课后习题答案,不仅能够帮助我们检验自己的学习成果,还能在遇到困惑时提供清晰的思路和正确的解法。

首先,让我们来谈谈材料力学中一些常见的概念和原理。

材料力学主要研究物体在受力作用下的变形、内力以及应力等情况。

例如,拉伸和压缩是常见的受力形式。

当一根杆件受到轴向拉力时,它会沿轴向伸长,同时横截面积会减小;而受到轴向压力时,则会沿轴向缩短,横截面积可能增大。

在这个过程中,我们需要计算内力、应力和应变,以评估杆件的强度和稳定性。

以一道典型的拉伸习题为例。

假设有一根圆截面的直杆,直径为d,长度为 L,受到轴向拉力 F 的作用。

我们首先需要计算横截面上的正应力。

根据公式,正应力等于内力除以横截面积。

内力就是所受的拉力 F,横截面积为πd²/4。

所以,正应力σ = 4F /(πd²) 。

接下来,计算杆的伸长量。

根据胡克定律,伸长量ΔL = FL /(EA) ,其中 E是材料的弹性模量,A 是横截面积。

再来看一道关于弯曲的习题。

有一矩形截面的梁,宽度为 b,高度为 h,承受一个集中力 P 作用在梁的中点。

这时候,我们需要计算梁横截面上的最大正应力。

通过分析可以知道,最大正应力出现在梁的上边缘或下边缘。

根据弯曲正应力公式,最大正应力σmax = Mymax /I ,其中 M 是弯矩,ymax 是离中性轴最远的距离,I 是惯性矩。

对于矩形截面,惯性矩 I = bh³/12 。

在解答扭转习题时,也有相应的方法和公式。

例如,对于一个圆轴扭转的问题,我们要计算切应力和扭转角。

切应力的分布规律是沿半径线性分布,最大切应力在圆轴的外表面。

扭转角则可以通过公式计算得出。

在处理组合变形的习题时,情况会稍微复杂一些。

可能同时存在拉伸(压缩)、弯曲和扭转等多种变形。

这时候,需要分别计算每种变形引起的应力和应变,然后根据叠加原理进行综合分析。

材料力学习题的答案解析

材料力学习题的答案解析
(1)静力平衡方程

即 ①
(2)变形协调方程:
即:
即: ②
由①②解得: kN, kN
MPa MPa
MPa MPa
3.当 且温度再上升20℃时,仍为一次超静定问题,此时静力平衡方程仍为①式,而变形协调方程为

即: ③
由①③解得: kN, kN
∴ MPa
MPa
第五章
5-1试用截面法求图示梁中 横截面上的剪力和弯矩。
解:
由 :
可以得到:
即AC杆比AB杆危险,故
kN
kN
由 :
可求得结构的许用载荷为 kN
3-4承受轴力 作用的等截面直杆,若任一截面上的切应力不超过 ,试求此杆的最小横截面面积。
解:
由切应力强度条件

可以得到
≥ mm2 mm2
3-5试求图示等直杆AB各段内的轴力。
解:
为一次超静定问题。设支座反力分别为 和
解:
圆筒横截面上的轴力为
由胡克定律
可以得到此重物的重量为
第三章
拉压杆的强度计算
3-1图示水压机,若两根立柱材料的许用应力为 ,试校核立柱的强度。
解:
立柱横截面上的正应力为
所以立柱满足强度条件。
3-2图示油缸盖与缸体采用6个螺栓连接。已知油缸内径 ,油压 。若螺栓材料的许用应力 ,试求螺栓的内径。
解:
DB段, ,为向上凸的抛物线;
在距B端 截面处, ,M取极大值。
5-6图示起吊一根单位长度重量为q( )的等截面钢筋混凝土梁,要想在起吊中使梁内产生的最大正弯矩与最大负弯矩的绝对值相等,应将起吊点A、B放在何处(即 )?
解:
作梁的计算简图如图(b)所示,作梁的弯矩图,图(c)所示。

长沙理工大学材料力学练习册答案(更详细)

长沙理工大学材料力学练习册答案(更详细)

第二章 杆件的内力分析
一、选择题 1.单位宽度的薄壁圆环受力如图所示,p 为径向压强,其 n-n 截面上的内力 【B pD / 2 】 2.梁的内力符号与坐标系的关系是: 【B 剪力、弯矩符号与坐标系无关】 3.梁的受载情况对于中央截面为反对称(如图) 。设
FN 有四个答案:
F qa / 2, FSC 和M C 表示梁中央截面上
26.图示矩形截面采用两种放置方式,从弯曲正应力强度观点,承载能力(b)是(a)的多 少倍?【A 2】 27.在推导弯曲正应力公式 My / I z ,由于作了“纵向纤维互不挤压”假设,从而有以下 四种答案: 【B 使正应力的计算可用单向挤压胡克定律】
长沙理工大学
土木与建筑学院
28.在 推 导 梁 平 面 弯 曲 的 正 应 力 公 式 My / I z , 下 面 哪 条 假 定 不 必 要 : 【D 材料的
9.在 A、B 两点连接绳索 ACB,绳索上悬挂重物 P,如图。点 A、B 的距离保持不变,绳索 的许用应力 [ ] 。试问:当 a 角取何值时,绳索的用料最省?有四种答案【C
45o 】
10.结构如图,载荷 F 可在横梁(刚性杆)DE 上自由移动。杆 1 和杆 2 的横截面积均为 A,
长沙理工大学
Wx、W y、Wx ,、Wy,
2.
分别为梁截面对 x、、y、

、y , 轴的抗弯截面系数) :
I yz 0

6、y 轴上、 下两部分图形面积相等, y1 轴通过 O 点, 关于 y1 轴有四种答案: 【C 不是主轴】 7、平面图形对一组相互平行轴的惯性矩中,对形心轴的惯性矩有四种答案: 【B 最小】 二、填空题 1.已知
Z C 为形心轴, Z S Z Z S 则截面对 C 轴的静矩 ZC =0, C 轴上下两侧图形对 C 轴的静矩 ZC S ZC (下)的关系是 S ZC (上)= S ZC (下) 。2

长沙理工大学理论力学习题集答案

长沙理工大学理论力学习题集答案
w.docu-track.c
F-XChange View !
Click to buy NOW
w.docu-track.c
PD om
PD om
er ww
er ww
F-XChange View !
Click to buy NOW
w.docu-track.c
F-XChange View !
Click to buy NOW
er ww
er ww
F-XChange View !
Click to buy NOW
w.docu-track.c
F-XChange View !
Click to buy NOW
w.docu-track.c
PD om
PD om
er ww
er ww
F-XChange View !
Click to buy NOW
w.docu-track.c
PD om
PD om
er ww
er ww
F-XChange View !
Click to buy NOW
w.docu-track.c
F-XChange View !
Click to buy NOW
w.docu-track.c
PD om
PD om
er ww
er ww
F-XChange View !
Click to buy NOW
w.docu-track.c
F-XChange View !
Click to buy NOW
w.docu-track.c
PD om
PD om
er ww
er ww
F-XChange View !

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案

材料力学习题册1-14概念答案第一章绪论一、是非判断题1.1材料力学的研究方法与理论力学的研究方法完全相同。

(×)1.2内力只作用在杆件截面的形心处。

(×)1.3杆件某截面上的内力是该截面上应力的代数和。

(×)合变1.4确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组形、横截面或任意截面的普遍情况。

(∨)1.5根据各向同性假设,可认为材料的弹性常数在各方向都相同。

(∨)1.6根据均匀性假设,可认为构件的弹性常数在各点处都相同。

(∨)1.7同一截面上正应力ζ与切应力η必相互垂直。

(∨)1.8同一截面上各点的正应力ζ必定大小相等,方向相同。

(×)1.9同一截面上各点的切应力η必相互平行。

(×)1.10应变分为正应变ε和切应变γ。

(∨)1.11应变为无量纲量。

(∨)1.12若物体各部分均无变形,则物体内各点的应变均为零。

(∨)。

(×)1.13若物体内各点的应变均为零,则物体无位移1.14平衡状态弹性体的任意部分的内力都与外力保持平衡。

(∨)1.15题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。

(∨)1.16题1.16图所示结构中,AB杆将发生弯曲与压缩的组合变形。

(×)FFAB ACBCDD题1.16图题1.15图二、填空题杆件变形1.1材料力学主要研究受力后发生的,以及由此产生应力,应变的。

线外力的合力作用线通过杆轴1.2拉伸或压缩的受力特征是,变形特征是。

1沿杆轴线伸长或缩短受一对等值,反向,作用线距离很近的力的作用1.3剪切的受力特征是,变形特征沿剪切面发生相对错动是。

外力偶作用面垂直杆轴线1.4扭转的受力特征是,变形特征任意二横截面发生绕杆轴线的相对转动是。

外力作用线垂直杆轴线,外力偶作用面通过杆轴线1.5弯曲的受力特征是,变形特梁轴线由直线变为曲线征是。

1.6组合受力与变形是指包含两种或两种以上基本变形的组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

20(MPa )20d(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B )AC AC /2,/2ττσ=; (C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的;(C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。

5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应力状态均相同;(B)三种应力状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v=+适用于( C )。

(A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级;(C)各向同性材料应力在比例极限范围内;(D)任何材料在弹性变形范围内。

______________________________________________________________________________________________________________解析:在推导公式过程中用到了虎克定律,且G 、E 、v 为材料在比例极限内的材料常数,故 适应于各向同性材料,应力在比例极限范围内9、点在三向应力状态中,若312()σνσσ=+,则关于3ε的表达式有以下四种答案,正确答案是( C )。

1σ(A )3/E σ;(B )12()νεε+;(C )0;(D )12()/E νσσ-+。

解析:10、图示单元体处于纯剪切应力状态,关于045α=方向上和线应变,现有四种答案,正确答案是( C )。

xy τ(A )等于零;(B )大于零;(C )小于零;(D )不能确定。

解析:11、图示应力状态,现有四种答案,正确答案是( B )。

xy τ(A )0z ε>;(B )0z ε=;(C )0z ε<;(D )不能确定 。

解析:12、某点的应力状态如图所示,当x σ、y σ、z σ,xy τ增大时,关于z ε值有以下四种答案,正确答案是( A )。

2(1)E G v =+2(1)E G v =+()()()()3312312312121,10v v E v v E εσσσσσσεσσσσ=-+=+⎡⎤⎣⎦∴=+-+=⎡⎤⎣⎦()33121110xy xy xy vv v E E Eεσσστττ+⎡⎤=-+=--=<⎡⎤⎣⎦⎣⎦()2312110()0z xy xy v v E E εεσσσττ⎡⎤==-+=--=⎡⎤⎣⎦⎣⎦xz σ(A )不变;(B )增大;(C )减小;(D )无法判断。

解析: 与xy τ无关13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变x ε、y ε后,所能算出的材料常数有( D )。

b(A )只有E ;(B )只有 v ;(C )只有G ;(D )E 、v 和G 均可算出。

解析:中间段为纯弯曲,A 点为单向拉伸, 则14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。

(A )变大;(B )变小;(C )不变;(D )不一定 。

解析:因纯剪应力状态: 体积改变比能二、填空题()1z z x y v E εσσσ⎡⎤=-+⎣⎦,2(1)y xX x x zv Fa yE I EG v εεσσε=-•===+()123123,0,1212(0)060r r v v V E E V V VV στσστσσσττ===---∴=++=+-=∆∴==∴∆=1、图示单元体属于 单向(拉伸 ) 应力状态。

题1图2、图示梁的A 、B 、C 、D 四点中,单向应力状态的点是 A 、B ,纯剪应力状态的点是 D ,在任何截面上应力均为零的点是 C 。

题2图三、计算题1、求图示单元体的主应力,并在单元体上标出其作用面的位置。

80MPa解答:确定1σ确定3σmax 3min 1115.4455.4412360,0,8060}{22115.44,0,55.44x y xy x yMpaMpa Mpa MpaMpa Mpaσσσσσστσσσσσ-===+∴==∴===-00002280tan 2;34.726034.7290xy x y x y ταασσσσαα⨯=-=-=-->∴=-+2、已知应力状态如图。

试求主应力及其方向角,并确定最大切应力值。

解答:确定1σ 所以090α+确定3σ3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。

解答:max3min 1102.6252.62123000100,50,2010050}{22102.62,0,52.622220tan 20.2667;7.46100507.46x y xy x yMpaMpaxyx yx y Mpa MpaMpa Mpa σσσσσστσσσσσταασσσσα-==-=+-∴====∴===-⨯=-=-=-=--+>∴=-13max 102.6252.6277.622Mpaσστ-+===max3min 60601200,200,300,604001cos 2sin 20cos120300sin120200300159.82222400sin 2cos 2sin120300cos12032.3222}2x y xy x y x y xy x y xy x yMpa Mpa Mpa Mpa σσσσσστασσσσσατασστατασσ==-=-=+-=+-=++=-•+=-=+=-=+∴==0360.56Mpa±=±确定1σ 所以090α+确定3σ4、用解析法求图示单元体ab 面上的应力(030α=),并求max τ及主应力。

a20MPa解答:5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。

解答:max min12340,40,20}44.7244.7,0,44.7x y xy x yMpa Mpa MpaMpa Mpa σσσστσσσσσ==-=+∴=±∴===-max3min6060140,0,204040cos 2sin 2cos12020sin1207.32222240sin 2cos 2sin12020cos1207.322240}22x y xyx y x y xy x y xy x y Mpa MpaMpa Mpaσσσσσστσσσσσατασστατασσ=-==-+-=+-=--+=-=+=--=-+∴===-()8.348.3123max 138.3,0,48.3128.32Mpa MpaMpa Mpa Mpa σσστσσ-=∴===-=-=0α∴确定1σ,090α+确定3σ6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a )和(b )所示。

试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。

(a)解答:7、构件上某点处的应力状态如图所示。

试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。

z解答:8、图示单元体,已知100MPa x σ=、40MPa y σ=及该点的最大主应力1120MPa σ=。

求该点的另外两个主应力2σ、3σ及最大切应力max τ。

()max 13144.72Mpaτσσ=-=()max min77.77.7123max 13}{277.7,7.7,30153.92x yMpaMpaMpa MpaMpa σσσσσσστσσ-+==∴==-=-=-=x解答:9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。

解答:10、已知受力构件某处的640010x ε-=⨯,50MPa y σ=,40MPa z σ=-,材料的E =200GPa ,v =0.3。

试求该点处的y ε、zε。

解答:()max min4020123max 13}{2120,20,101552x yMpaMpaMpa MpaMpa σσσσσσστσσ+=∴====-=()123max1312303080,40,201502,,0cos 2sin 27022sin 2cos 217.322x y xy x yx yxy x yxy Mpa Mpa Mpaa Mpa MpaMpa σσστσσσσσστσσσσσατασστατα===-∴=-====+-∴=+-=-=+=()()()()()69666140010200100.3504010831185.5101399.510x x y z x x y z y y z x z z y x v E E v Mpav Ev E εσσσσεσσεσσσεσσσ---⎡⎤∴=-+⎣⎦=++=⨯⨯⨯+⨯+-⨯=⎡⎤⎣⎦⎡⎤∴=-+=⨯⎣⎦⎡⎤=-+=-⨯⎣⎦11、图示拉杆,F、b、h以及材料的弹性常数E、v均为已知。

试求线段AB的正应变和转角。

解答:12、求图示梁1—1截面B点与水平方向成045角方向的线应变045ε。

已知F=10kN,l =4m,h=2b=200mm,E=1×104MPa,v=0.25。

/2/2解答:从sF、M图知,由于B点在中性轴上,故为纯剪应力状态,对于纯剪应力状态,有:()()245245454545454545cos cos452cos cos 4521112222122xABABv v FvE bhABAB v FbhAB ABσσσασσσσασσεσσσεεαε--∴==•===•-=--⎡⎤=-+=•=•⎣⎦∆=⨯⨯∆-====•[]123454535454545454545,0,33310100.37522240.20.11114.9610122B BSBB B BABABF FMpaA h bvv vE E EABAB v FbhAB ABσστσσσττεσστττεεαε---=====-⨯⨯====••⨯⨯⨯+⎡⎤=-=--=-•=-⨯⎣⎦∆=⨯⨯∆-====•13、空心圆轴外径D =8cm ,内径d =6cm ,两端受外力偶矩m 作用。

相关文档
最新文档