某煤矿井下采区变电所供电系统设计
煤矿采区变电所的设计
煤矿采区变电所的设计摘要采区供电是否安全可靠和经济合理,将直接关系到人身安全和矿井生产。
在开拓系统、采煤方法及采区生产机械确定之后,需要进行采区供电计算。
其主要内容包括:负荷计算、选择动力变压器或移动式变电站的容量、型号并确定台数、供电系统的拟定、电缆线路的计算、开关设备的选择,以及整定保护的计算。
对于上述涉及的计算内容必须满足以下两个方面提出的要求:一、要保证供电的安全和经济合理;二、要保证供电的质量和可靠性。
该文结合平煤集团八矿的实际情况,主要介绍了某采区变电所的设备选择与计算,中央变电所的计算,并且对该变电所运行的经济情况进行了概算。
在实际运行中表明:该变电所的故障率大大减少,并且取得较好的经济效益。
该文对煤矿井下各类变电所的设计、井下供电系统结构的了解都有一定的参考意义。
关键词:变电所,防爆型,矿用变压器,采区供电,保护装置第1章绪论1.1 平煤八矿的自然条件1.交通位置八矿位于平顶山市东11Km,东距京广铁路孟庙车58Km,孟宝支线斜穿井田,许南公路南北贯穿井田中部,交通方便。
2.地形及地貌特征采区南部地表地势平缓,为村庄和田地,属第四系地层覆盖。
北部为山坡地,出露地层为下三迭石千峰组,采区地面标高总体在+84m~+230m间3.气象与地震本区属于大陆半干燥湿度不足带,年降雨量平均742.6mm最大降水量1323.6mm(1934年),年最小降水量373.9mm最大蒸发量2825mm(1959年),最小蒸发量1490.5mm (1964年),平均绝对湿度13.5%平均相对湿度67%,冰冻期一般为11至次年3月,最大冻土深14cm(1977.1.30)冬、春季以偏北风为主、夏季以偏南风为主,最大风速24/s,平均风速28/s.本区为6度地震烈度区4.瓦斯、煤尘、自然及地温瓦斯:依据渝煤科研[1989]124号文《关于平顶山市八矿出煤层及突出矿井坚定意见》,确定为瓦斯高突矿井煤尘:本矿井各煤层均有煤尘爆炸危险自然:本矿各煤层均有发火倾向,发火期5—6个月地漏:八矿为地漏异常矿井,地下水活动东强南弱,处于矿区排泄区下部,因而造成相对高温的采区水区5.地表水湛河自东流经井田南部,河宽50m,流量0.8~7.8m³/s沙河为井田东南部边界,河宽150~25m,流量0.8~521 m³/s。
煤矿井下采区供电系统设计分析
1 工程 概况
某煤 矿 一采 区矿 井为倾 斜走 向,双翼 开采 ,年 生 产 能力 约6 万 吨 ,布 置有 两炮 采工 作面 1 0 1 0 6 0、 10 2 6 0 以及 两 掘进 工作 面 。采 区煤 实体容 量 1 3 t .5/ m,煤 层厚度 为2 左右 。 m 采 取 供 电 设计 规 范要 求 为 一 类 负 荷 , 供 电 电 力负 荷主 要有 4 台刮板 输送 机 ,2 副污 水泵 ,1 乳 副 化 泵 ,5 台照 明信 号综保 ,4 台胶 带输 送机 ,4 台局 扇 ,1 绞车 ,2 辆 台胶 带输 送机 ,2 台刮板 输送 机 。 所有设备 电压均 为6 0 ,总负荷为9 7W 6V 2k。
K= . 。 由以上数据 ,不难进行 负荷 计算 为: 0 8
∑ P 力 07 WX K / = 07 V ∑ P 扇 动 8 k C0 8 k A; r S 局
= 2k 1 0 W× K/ o ① = 2 k A  ̄c s 10 V
再 由 以上 负荷计 算可 知 ,要求 选取 的动 力变 压 器 容 量 在8 7 V 以上 ,风 机变 压 器 容 量 不 能低 于 0 kA
局 扇风机 需严 格依据 《 煤矿 安全 规程 》 的相 关规 定
进 行 “ 专 ”供 电设 计 ,所 谓 “ 专 ” ,就 是指专 三 三
用 线路 、专用 开关 、专用变 压器 ,遵 守采 、掘分 开 的原则 ,全部 电缆敷 设都要 在皮 带巷 内进行 。采 区
设 备如溜 子 电机 、皮 带 电机 、液压 泵 电机等 都选择 6 0 作 为其 电压等 级 。 6V
煤矿 井下采 区供 电系统设 计分析
刘 明 东
( 山西 太原 市 西 山煤 电安 全培 训 中心 , 西 太原 0 0 5 山 3 0 3)
某煤矿井下采区变电所供电系统设计
煤矿采区供电设计所需原始资料煤矿采区供电设计所需原始资料在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。
(1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。
(2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。
(3)采煤方法,煤、矸、材料的运输方式,通风方式。
(4)采区机械设备的布置,各用电设备的详细技术特征。
(5)电源情况。
了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。
(6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。
此外,在做井下采区供电设计时还需要准备下述资料:《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。
煤矿采区供电设计供电系统的拟定拟定采区供电系统,就是确定变电所内高、低压开关和输电线路及控制开关的数量。
在拟定供电系统时,应考虑以下原则:(1)在保证供电安全可靠的前提下,力求所用的开关、起动器和电缆等设备最少;(2) 原则上一台起动器只控制一台低压设备;一台高压配电箱只控制一个变压器。
当高压配电箱或低压起动器三台及以上时,应设置进线开关;采区为双电源供电时,应设置两台进线高压配电箱。
(3)当采区变电所的动力变压器多于一台时,应合理分配变压器的负荷,原则上一台变压器负担一个工作面的用电设备;且变压器最好不并联运行;(4)由工作面配电点到各用电设备宜采用辐射式供电,上山及顺槽的输送机宜采用干线式供电;供电线路应走最短的路线,但应注意回采工作面(机采除外)、轨道上下山等处不应敷设电缆,溜放煤、矸、材料的溜道中严禁敷设电缆,并尽量避免回头供电;(5)大容量设备的起动器应靠近配电点的进线端,以减小起动器间电缆的截面;(6)低瓦斯矿井掘进工作面的局部通风机,可采用装有选择性漏电保护装置的供电线路供电,或采用掘进与采煤工作面分开供电;(7)瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机都应实行三专(专用变压器、专用开关、专用线路)供电;(8)局部通风机与掘进工作面的电气设备,必须装有风电闭锁装置。
煤矿井下采区供电系统设计
煤矿井下采区供电系统设计一、供电线路设计1.煤矿井下采区供电线路应采用三相四线制,线路电压为380/660V,频率为50Hz。
2.采用0.4/0.69kV双皮带电缆供电,采用Y型接线方式,配电箱与电缆的连接采用专用接头,保证安全可靠。
3.供电线路应采用集中供电和分散供电相结合的方式,根据井下设备的不同需求进行合理配电。
二、配电装置设计1.采用箱式变电站作为供电系统主要配电装置,箱式变电站应具备防尘、防水、防爆等功能,能够在恶劣的井下环境中正常工作。
2.配电装置应根据井下采区的实际情况进行合理布置,确保供电系统的可靠性和安全性。
3.配电装置应具备过载、短路、漏电等保护功能,并及时报警或切断电源,确保井下设备和人员的安全。
三、电缆敷设设计1.电缆应采用阻燃、耐磨损的特殊材料,具备良好的绝缘性能和机械性能,能够在井下恶劣环境中长期稳定运行。
2.电缆敷设应避免与锚杆、滚筒等设备相接触,避免外力磨损和机械损坏。
3.电缆敷设应采用固定夹具或线槽等形式固定,确保电缆的安全可靠运行。
四、绝缘电缆保护设计1.在采区内应设置绝缘保护装置,控制电缆的绝缘电阻,确保电缆与井壁不发生电击事故。
2.绝缘保护装置应具有自动断电功能,在电缆故障发生时能够及时切断电源,避免事故扩大发生。
3.绝缘电缆保护装置应定期检查和维护,确保其正常工作。
以上是一份关于煤矿井下采区供电系统设计的基本内容,为确保井下电气设备的安全运行,设计应遵循相关的国家标准和规范,并定期进行检查和维护。
同时,设计人员还需要根据煤矿井下采区的具体情况,合理安排供电线路、配电装置和电缆敷设等。
只有确保供电系统的可靠性和安全性,才能保障煤矿井下电气设备的正常运行。
煤矿采区变电所供电设计
煤矿采区变电所供电设计一、总体设计思路1.稳定性原则:供电系统应具有良好的稳定性,能够保证煤矿采区内各设备的正常运转。
2.可靠性原则:供电系统应具有高可靠性,能够保证变电所供电中断的概率极低,并能够有效应对各种突发状况。
3.安全性原则:供电系统应符合相关的安全标准和规范,确保供电系统的安全运行,并能够防范电气火灾和其他事故的发生。
4.经济性原则:供电系统设计应兼顾经济性,尽量减少投资成本同时保证供电质量。
5.环保性原则:供电系统设计应符合环保要求,减少对环境的污染。
二、供电系统设计内容1.负荷计算:通过对矿区设备的负荷需求进行计算,确定变电所的负荷容量,以保证变电所能够稳定供电。
2.供电方案设计:根据矿区的用电需求和供电条件,设计供电方案,包括输电线路的布置、变电所的布置和容量、开关设备的选择等。
3.供电线路设计:根据输电距离、负荷容量和供电质量要求,确定供电线路的截面、种类、走向和敷设方式,并进行线路杆塔的选型和布置。
4.变电所设计:确定变电所的布置和容量,包括主变压器的容量选择、高压开关设备的选型和布置、配电装置和保护装置的选型等。
5.供电系统配套设施设计:包括照明系统、接地系统、防雷系统、电力监测系统、安全设备等。
6.供电系统保护设计:设计合理的过电流保护、过电压保护、短路保护等措施,确保供电系统的安全性和可靠性。
7.供电系统运维设计:设计供电系统的运维管理办法,包括设备维护、故障排除、检修计划制定等。
三、供电系统设计要点1.考虑煤矿采区的特殊环境要求,对供电设备进行防爆设计,并选用合适的防爆型号设备。
2.根据供电线路的长度和负荷情况,选择合适的输电电压等级,以减少线路损耗和投资成本。
3.合理设计变电所的布置,使其满足矿区用电的需求,并兼顾安全、经济和运维的要求。
4.选用可靠性高的开关设备和保护装置,提高供电系统的可靠性和安全性。
5.提前考虑供电系统的扩容需求,合理规划变电所的容量和配电装置的备用容量。
煤矿井下供电设计
煤矿井下供电设计目录第一节井下采区供电设计 (2)第二节拟定采区供电系统 (6)第三节确定采区变电所和工作面配电点的位置 (8)第四节计算与选择采区变电所动力变压器 (11)第五节选择采区低压动力电缆 (14)第六节选择采区配电装置 (45)第七节整定采区低压电网过流保护装置 (47)第八节制订采区保护接地措施 (56)第九节制订采区漏电保护措施 (57)第十节制订采区变电所防火措施 (57)第十一节绘制采区供电系统图 (58)第十二节绘制采区设备布置图 (58)第十三节绘制采区变电所设备布置图 (58)第一节井下采区供电设计一、原始资料1、采区井巷布置平面图如图一所示,煤层是东西走向,向南倾斜,倾角12o;采区的开拓是中间上山,采区内分三个区段,区段长170米,工作面长150米,采区一翼走向长400米;煤层厚度1.3米,煤质中硬,煤层的顶、底板较平稳;上山周围环境温度为+20oC,运输平巷及工作面温度为+25oC。
本矿属有煤和瓦斯突出煤层。
2、采煤方法:走向长壁,区内后退式采煤法,两翼同时开采,掘进超前,回采工作面采用BMD-100型单滚筒采煤机组,两班出煤,一班整修及放顶。
3、煤的运输:工作面采用SGB-630/60型刮板运输机;区段平巷采用SGW-40T型刮板运输机;采区上山采用SPJ-800型吊挂披带运输机;采区轨道上山采用55千瓦单筒绞车作材料运输。
4、掘进煤平巷时,用电钻打眼,ZMZ2-17铲斗式装岩机装煤,开切眼掘进,加设调度绞车。
人工装煤。
5、工作面采用金属支架和绞接顶梁(梁长1.2米)回柱。
6、采区内各用电设备的台数及其技术数据见表1。
它们的分布位置见图一。
二、任务1、确定采区变电所和工作面配电点的位置;2、拟定采区供电系统;3、计算与选择采区变电所动力变压器(型号、容量、台数);4、选择采区低压动力电缆(型号、长度、芯数、截面);5、选择采区配电装置;6、整定采区低压电网过流保护装置;7、制订采区保护接地措施;8、制订采区漏电保护措施;9、制订采区变电所防火措施;10、绘制采区供电系统图;11、绘制采区设备布置图;12、绘制采区变电所设备布置图。
矿山机电《井下变电所供电设计》
矿山机电《井下变电所供电设计》摘要随着生产规模的扩大和新煤层的勘探,为了满足生产发展的需要,根据新采区的实际情况,对其所需设备及供电线路等进行设计,本设计阐述了采区供电系统中各用电设备的选型及其计算过程,如变压器、电缆、开关的选择等,并对其进行整定和校验,设计中比较详细地叙述了矿用电缆及电气设备的选定原则以及井下各种保护装置的选择和整定。
前言我国的煤炭事业发展较为迅速,也是一个煤业大国。
这样就要求对煤矿企业要有一个完整、且合理的供电系统。
好的供电系统,对于企业来说,可以更好的利用电力资源和合理的分配,促进安全生产和降低生产成本等等。
煤矿井下供电尤其重要。
因为它涉及到煤矿企业的生产、安全及效率。
由于井下环境的特殊性,这样就供电系统提出更高的要求。
所有的设计方案都要以《煤矿安全规程》、《煤矿井下供电设计规范》、《煤矿电工手册》等为准则。
本说明书是根据十矿的实际情况、地理条件而制订的。
十矿属于高瓦斯矿井,所以在设计的同时,除了满足对供电的基本要求外,还应当注意电气设备的选择,(采用煤矿专用设备)电气保护装置等等。
总之,所有的供电系统都是为了井下安全生产所服务为目的。
设计一套完整、完善的井下供电系统,对煤矿安全生产是必不可缺少的概况矿井基本概况一、交通位置平煤十矿位于河南省平顶山市东部,距平顶山市区中心约5km,东与十二矿为邻,西与一矿相邻。
十矿工业广场有矿区专用铁路与国铁京广线、焦支线相连接,矿区专用铁路线与孟宝线平顶山东站相接。
二、地形地势井田的东南部为开阔的冲积~洪积平原,西北部为砂岩组成的高山,山脊平缓,山坡陡峭,约为30°,向南逐步过渡到平原。
地势是西北高,东南低。
西北部有平顶山,北部为马棚山,山的相对标高为+360m~+460m,平原一般+80~+100m。
三、地震1、气象根据平顶山历年的气象资料,本区属大陆性半干燥湿度不足带,年平均降雨量794.6mm,年最大降雨量为1323.6mm,雨季一般集中在7~9月份。
矿井采区变电所设计
矿井采区变电所设计
在矿井采区变电所的设计中,需要考虑以下几个方面的因素:
1.供电容量:根据矿井的采掘规模和电力需求,设计足够的供电容量,确保能够满足矿井正常生产所需的电能。
需要考虑采区的用电负荷、主要
设备的电力需求等因素。
2.设备选择:选择符合矿井特点和需求的变电设备,如变压器、开关
设备等。
需要考虑设备的可靠性、适用性和安全性,以确保设备的正常运
行和保护采区供电系统免受损害。
3.布置和接线:根据矿井采区的实际情况,合理布置变电设备和设施。
需要考虑变电所的空间布局、设备的相对位置和安全间距,以及设备的接
线方式和路径。
布置要能够方便设备的操作、维护和检修。
4.防护和环境安全:矿井采区变电所需要具备一定的防护措施,以防
止火灾、爆炸等事故的发生。
需要考虑防火、防爆、防水等特殊要求,并
确保变电所的环境安全和人员的安全。
5.停电和备用供电:为了应对短暂的停电情况和设备故障,需要设置
备用供电设备或备用电源,以确保供电的连续性和稳定性。
需要考虑备用
供电设备的容量和可靠性,以及切换方式和时间。
6.环境影响评价:为了确保矿井采区变电所的建设和运行不对环境造
成污染和破坏,需要进行环境影响评价。
需要考虑变电所建设对周围环境
的影响,如噪音、振动、电磁辐射等,并采取相应的措施进行管理和治理。
总之,矿井采区变电所设计是一个复杂而关键的任务,需要综合考虑矿井采区的电力需求、设备选择、布置和环境安全等要素,以提供安全、稳定和可靠的供电方案,支持矿井的正常生产运行。
煤矿35KV地面变电所供电系统设计
李庄煤矿35KV地面变电所供电系统设计摘要该地域变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情形,选择所址,利用用户数据进行负荷计算,肯定用户无功功率补偿装置。
同时进行各类变压器的选择,从而肯定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。
选择变电站高低压电气设备,为变电站平面及剖面图提供依据。
本变电所的初步设计包括了整体方案的肯定、负荷分析、短路电流的计算、高低压配电系统设计与系统接线方案选择、继电保护的选择与整定、防雷与接地保护等内容。
随着电力技术高新化、复杂化的迅速进展,电力系统在从发电到供电的所有领域中,通过新技术的利用,都在不断的发生转变。
变电所作为电力系统中一个关键的环节也一样在新技术领域取得了充分的进展。
关键词:变电站、负荷、输电系统、补偿装置、负荷分析35 KV substation ground coalpower supply system design of li zhuangABSTRACTThe substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life.The region of 110-voltage effect many fields and should consider many problems. Analyse change to give or get an electric shock a mission for carrying and customers carries etc. circumstance, choose the address, make good use of customer data proceed then carry calculation, ascertain the correct equipment of the customer. At the same time following the choice of every kind of transformer, then make sure the line method of the transformer substation, then calculate theshort-circuit electric current, choosing to send together with the electric wire method and the style of the wire, then proceeding the calculation of short-circuit electric current. This first step of design included: ascertain the total project 、load analysis、the calculation of the short-circuit electric current 、the design of an electric shock the system design to connect with system and the choice of line project、the choice and the settle of the protective facility 、the contents to defend the thunder and protection of connect the earth. Along with the high and quick development of electric power technique, electric power system then can change from the generate of the electricity to the supply the power. ordsKEY WORDS:substation ,load ,transmission system , correction equipment.load analysis目录摘要 (1)ABSTRACT (2)目录 (I)第一章概述 (1)电源 (1)大体地质气象资料 (1)第二章负荷计算及变压器选择 (1)负荷分析 (1)2.1.1负荷分类 (1)负荷曲线 (1)矿井用电负荷计算 (2)2.3.1设备容量肯定 (2)2.3.2需用系数的含义 (3)2.3.3本系统的负荷计算 (3)2.3.4原始资料 (5)2.4.1计算负荷: (9)2.4.2全矿负荷统计 (13)无功功率的补偿 (13)主变压器的选择 (15)2.6.1主变压器容量的肯定 (15)2.6.2主变压器台数的肯定 (15)全矿总负荷的计算 (16)2.7.1变压器损耗计算 (16)2.7.2全矿总负荷 (16)第三章电气主接线的设计 (17)电气主接线的概述 (17)电气主接线的设计原则和要求 (17)3.2.1电气主接线的设计原则 (17)3.2.2电气主接线设计的大体要求 (18)电气主接线方案的比较 (19)第四章短路电流的计算 (22)短路电流计算的一般概述 (22)4.1.1短路的原因 (22)4.1.2短路的危害 (22)4.1.3短路的类型 (23)短路电流计算 (23)第五章电气设备的选择与校验 (29)高压电器设备选择的一般原则 (29)5.1.1按正常工作条件选择高压电气设备 (30)5.1.2按短路条件校验 (31)电气设备的选择和校验 (32)5.2.1高压断路器的选择和校验 (32)5.2.2低压隔离开关的选择和校验 (33)5.2.3电流互感器的选择及校验 (34)5.2.4母线 (35)5.2.5高压开关柜的选择 (37)第六章导线的选择与敷设 (39)导线选择的条件 (39)电缆型号的含义 (39)导线截面的选择 (40)电缆的选择与计算 (41)第七章主变压器的继电保护 (44)继电保护的任务和大体要求 (44)保护的装设原则 (45)7.2.1电力变压器应装设的保护装置 (45)7.2.2保护形式 (45)7.2.3变电所的室内外布置 (50)第二部份采区变电所 (52)第一章采区变电所的负荷统计 (52)第二章变压器的选择 (54)变压器的选择 (54)第三章采区电缆的选择 (57)电缆型号的肯定 (57)3.1.1电缆选择的大体原则 (57)3.1.2型号的肯定 (57)电缆截面的选择 (57)3.2.1采区变电所6kv电源,电缆的选择 (57)3.2.2按长时允许电缆流校验电缆截面: (58)3.2.3按电压损失校验。
煤矿井下变电所供电设计
煤矿井下变电所供电设计一、设计目标1.安全稳定供电:确保井下变电所能够正常运行,为煤矿生产提供稳定可靠的电力供应。
2.灵活可靠运行:针对井下变电所的实际情况,设计电力设备和配电系统具有一定的灵活性和自动化程度,能够适应各种工况的需求,并能在电气故障发生时自动切换。
3.节能环保:在供电设计中考虑节能环保的因素,采用高效节能的设备,并合理利用井下的可再生能源,减少对外界能源的依赖。
二、电源系统的设计1.主变电所:选择合适的主变电所容量和型号,根据井下的总负载来确定供电能力。
主变电所应当具备双供电回路,确保备用供电的可靠性。
2.备用电源:选择可靠的备用电源,如发电机组、蓄电池等,以应对主电源故障或停电的情况。
3.电缆线路:选择适应井下环境的电缆线路,采用阻燃、耐张力和耐磨损等特点较好的电缆,保证线路的安全可靠。
三、配电系统的设计1.配电柜:根据井下的不同区域和设备的需要,设置适当数量和容量的配电柜。
配电柜应具备过载和短路保护功能,且能自动切换电源。
2.电流互感器:在配电系统中设置电流互感器,监测电流的变化,保证供电的平衡和稳定。
3.自动切换开关:在其中一电源发生故障时,能够自动切换到备用电源,保证供电的连续性和可靠性。
四、抗干扰和防爆设计1.电磁兼容性策略:采取合理的电源和线路布置,减少电器设备之间的互相干扰,确保系统的稳定和减少电器故障的发生。
2.隔爆设计:根据矿井环境的爆炸等级,选用符合防爆要求的电气设备,确保供电系统在异常情况下不引发火灾和爆炸。
3.接地设计:合理设置接地系统,保证井下的设备与大地之间有良好的接地连接,减少因接地不良引起的电器故障和安全事故。
五、节能环保设计1.利用可再生能源:根据煤矿井下的情况,合理利用水能、风能等可再生能源,实现煤矿井下变电所自给自足,减少对外界能源的依赖。
2.能量管理系统:采用先进的能量管理系统,实时监测和分析电力消耗情况,合理调整供电负荷,实现节能减排的效果。
阳泰集团晶鑫煤业武甲煤矿井下采区供电设计说明书
前言根据学校毕业要求,我有幸来到阳泰集团晶鑫煤业武甲煤矿进行毕业实习,实习期间,通过自己的努力,收集到武甲煤矿采区供电设计所需的原始资料,并根据采区的实际情况对采区供电方面进行了设计。
本设计是以阳泰集团晶鑫煤业武甲煤矿井下采区供电为对象在遵照《煤矿安全规程》、《矿山供电》、《煤矿井下供电设计指导》、《矿井供电》规定及要求的前提下进行的,根据第一采区的实际情况,在老师和单位技术员的指导下,并深入生产现场,查阅了有关设计资料、规程、规定、规范,听取并收录了现场许多技术员的意见及经验,对采区所需设备的型号及供电线路等进行设计计算。
设计时充分考虑到技术经济的合理,安全的可靠,采用新技术、新产品,积极采取相应措施减少电能损耗,提高生产效率。
1第一章采区概况第一节煤层的埋藏特征一、煤田煤层赋存状况井田内主要含煤地层为二叠系下统山西组和石炭系上统太原组。
山西组煤层平均总厚度为5.25m,其中3号煤为稳定可采煤层,厚3.30~6.43m,太原组煤层平均总厚度为6.03m,。
其中15号煤因含硫高为稳定暂不可开采的厚煤层,厚2.71~6.08m。
采用分源预测法计算得矿井3号煤层瓦斯相对涌出量最大为35.00m3/t,矿井应属高瓦斯矿井。
二、采区煤层赋存情况首采区开采3#煤,煤层厚度为3.3米-6.43米,平均厚度为4.96米,层位稳定,属简单~较简单结构。
走向为东西,倾角6——80,为全区稳定可采的近水平厚煤层。
三、地质构造及水文地质情况井田位于沁水块坳的南部,+432水平巷道南部,地层总体受一组宽缓褶皱控制,褶皱轴向北东,倾伏角5~8°,两翼地层倾角一般为5~10°,局部为12~14°。
仅井田北部边缘发育一小型正断层,其余地段未见断层、陷落柱和滑塌构造,地质构造简单。
第二节采区范围一、采区的尺寸,面积,储量,服务年限一采区南北走向长2.16~2.89km,东西倾斜宽约1.4km,面积4.56km2,3号煤层可采储量25.54Mt,采区设计生产能力按1.2Mt/a考虑,可服务约12.8a。
煤矿采区供电设计
煤矿采区供电设计
首先,煤矿采区供电设计需要考虑的首要问题是供电线路的布置。
通常,煤矿采区供电线路通常分为主馈线、支线和末端用户线路三个部分。
主馈线是从变电所引入煤矿,通过合理的布置和规划,确保供电线路的安全性和可靠性。
支线连接主馈线和末端用户线路,负责将电能输送到各个采煤区井下设备。
末端用户线路是将电能输送到井下设备,如提升机、风机、照明设备等。
其次,煤矿采区供电设计还需要考虑电源系统的可靠性。
为确保煤矿采区供电的连续性,需要采用双电源供电系统。
一方面,主要电源由变电所供电,主馈线和支线采用环网制,以提高供电系统的可靠性,减少电能中断的可能性。
另一方面,备用电源由备用变电所提供,以保证在主电源出现故障时,能及时切换到备用电源,确保煤矿采区的供电正常。
此外,煤矿采区供电设计还需要考虑井下设备的功率需求。
不同的井下设备具有不同的功率需求,根据实际情况进行合理的负荷配分和供电容量的计算。
在计算供电容量的同时,还要考虑负荷的平衡和合理性,以提高供电系统的能源利用率。
最后,煤矿采区供电设计还需要考虑电气设备的选择和安装。
电气设备的选择需要兼顾设备的功能性、安全性和适应性,以满足井下设备的工作需求。
安装电气设备时,需要按照相关规范和标准进行施工和调试,确保设备正常运行和使用安全。
综上所述,煤矿采区供电设计是一项复杂而重要的工作,需要考虑供电线路的布置、电源系统的可靠性、井下设备的功率需求以及电气设备的
选择和安装。
通过科学合理的供电设计,可以提高煤矿的生产效率和安全性,确保煤矿的正常运转。
煤矿井下采区供电系统设计(含煤矿井下电气设备安全运行)
煤矿井下采区供电系统设计(含煤矿井下电气设备安全运行)单位:题目:鹰手营子煤矿井下采区供电系统设计(含煤矿井下电气设备安全运行)学生姓名:学号:专业、班级:目录摘要4Abstract51、技术要求及原始数据61、1机械化采区的原始资料62、采区变电所位置的确定102、1井下主(中央)变电所位置102、2中央变电所的设置102、3变压器的备用102、4 井下主(中央)变电所硐室的要求1 12、5 主(中央)变电所硐室尺寸应按设备最大数量及布置方式确定112、6走廊尺寸122、7 出口设置123、拟定采区供电系统123、1 采区变电所设计123、2 移动变电站134、采区主要设备134、1采区主要设备134、2 设备选型及主接线方式145、采区负荷的计算及变压器容量、台数确定155、1采区负荷的计算155、1、1井下电力负荷计算155、1、2 井下各种用电设备的需要系数及平均功率因数155、1、3每个回采工作面的电力负荷155、1、4采区变电所的电力负荷165、1、5井下主变电所的电力负荷166、采区低压供电网络的计算196、1采区低压电缆的选型196、2 采区电缆长度计算196、3 采区动力电缆的截面选择206、4回风巷电缆的敷设206、5电缆在井下巷道内的悬挂217、采区接地保护措施237、1电气设备及保护237、2 电气设备保护接地248、采区漏电保护措施259、煤矿井下采区电气设备安全运行论述269、1 做好煤矿电气设备安全管理的目的和内容269、1、1 避免发生触电伤亡事故269、1、2 避免发生电网漏电故障279、1、4 避免电气设备失爆279、1、5 避免矿井监控系统失控279、2 当前尚存在的主要问题279、2、1 硬件方面279、2、2 软件方面289、2、3人员方面289、3 对策2810采区供电系统示意图38结论40致谢41参考文献42附录43摘要煤矿井下供电系统的优劣直接影响到电网的安全性、可靠性、合理性和经济性。
煤矿采区供电系统设计
02 设备可靠性
选用高可靠性、高稳定性的电气设备,降低故障 率,提高供电系统的稳定性。
03 备用电源
为确保安全可靠,应设置备用电源,以便在主电 源出现故障时能够迅速切换。
节能环保原则
优化供电系统
通过优化供电系统设计, 降低能耗,提高能源利用 效率。
应急预案
制定供电系统应急预案, 定期进行演练,确保在突 发情况下能够迅速响应。
事后分析
对故障处理过程进行记录 和分析,总结经验教训, 优化供电系统设计和管理 。
煤矿采区供电系统发展趋势
06
与展望
智能化发展
智能监控
利用物联网、大数据等技术,实时监控供电系统的运行状态,实现 故障预警和远程控制。
智能调度
供电线路设计
01
02
03
线路选型
根据采区环境条件和用电 设备特性,选择合适的电 缆型号和截面,确保线路 安全可靠运行。
线路路径
合理规划线路路径,尽量 避开危险区域,减少交叉 跨越,降低安全风险。
线路保护
根据线路长度和负载情况 ,配置相应的保护装置, 提高线路的稳定性和可靠 性。
变压器设计
变压器型号
减少环境污染
合理处理采区产生的废弃 物,降低对环境的污染, 保护生态环境。
节能设备
选用节能型电气设备,减 少电能消耗和浪费。
经济合理性原则
控制成本
01
在满足安全、可靠、节能环保的前提下,合理控制供电系统设
计的成本。
经济效益
02
提高供电系统的经济效益,降低运营成本,增加企业盈利能力
。
技术经济比较
煤矿井下供电改造方案
井下东区供电系统改造方案目前,井下东翼采区变电所电气设备安装已进入收尾阶段,即将开始下一阶段东区供电系统改造。
为确保东区供电系统改造安全、顺利完成,特制改造方案。
一、说明:根据目前及以后实际生产负荷要求,需将东翼采区变电所内东二车场2台200A馈电开关更换为400A开关。
由于我矿目前没有闲置的400A馈电开关,因此需等部分回路改造结束后拆除的开关加以利用。
增加2台200A 馈电开关(一路来自局扇三专回路,一路来自生产回路)和2台4KV A照明综保,为监测系统提供电源。
方案中电缆长度是根据通风科提供的风机摆放位置确定,改造时以实际测量长度为准。
每一掘进头一路电源,同时在风机群处增加一级馈电开关,,便于实现风电闭锁和瓦斯电闭锁。
相关单位需将电缆、开关、风机等提前入井,并按指定线路敷设、摆放、并安装到位。
机电、通风、监测、施工单位必须相互沟通和协调,确保改造顺利完成。
二、改造方案及步骤方案一:相关单位需将电缆、开关、风机等提前入井,并按指定线路敷设、摆放、安装到位。
然后按以下步骤改造:第一步、东二车场:从东翼采区变电所敷设两趟3×120mm²电缆,对顺槽和底抽巷生产电源进行改造。
生产电源改造结束且送电试运行正常后,开始进行东二车场局扇改造。
改造之前需将局扇电缆敷设到位并接好风机主扇、备扇负荷,同时接好风电闭锁,之后接火试运行。
一切正常后,拆除东临变东二车场生产电缆和局扇及电缆。
第二步、东一车场:从东翼采区变电所敷设两趟3×120mm²电缆,对顺槽和底抽巷生产电源进行改造。
生产电源改造结束且送电试运行正常后,开始进行东一车场局扇改造。
改造之前需将局扇电缆敷设到位并接好风机主扇、备扇负荷,同时接好风电闭锁,之后接火试运行。
一切正常后,拆除东临变东一车场生产电缆和局扇及电缆。
第三步、东四车场从东翼采区变电所敷设一趟3×120mm²电缆(利用东二车场回收的生产电缆),对东四车场生产电源进行改造。
(完整版)矿井供电设计
目录第一章系统概况 (2)第一节供电系统简介 (2)第二节中央变电所高压开关及负荷统计 (2)一、G-03高压开关负荷统计: (3)二、G-04高压开关负荷统计: (3)三、G-05高压开关负荷统计: (3)四、G-07高压开关负荷统计 (4)五、G-08高压开关负荷统计 (4)六、G-09高压开关负荷统计 (5)第三节中央变电所高压开关整定计算 (6)一、计算原则 (6)二、中央变电所G-01、G-06、G-11高爆开关整定: (7)三、中央变电所G-03高爆开关整定: (7)四、中央变电所G-04、G-08高爆开关整定: (8)五、中央变电所G-05、G-07高爆开关整定: (8)六、中央变电所G-09高爆开关整定: (9)七、中央变电所G-02、G-10高爆开关整定: (9)八、合上联络开关,一回路运行,另一回路备用时Ⅰ、Ⅱ段高压开关整定.9九、定值表(按实际两回路同时运行,联络断开): (10)第四节井底车场、硐室及运输整定计算 (10)一、概述 (10)二、供电系统及负荷统计 (10)三、高压系统设备的选型计算 (11)第五节660V系统电气设备选型 (13)一、对于3#变压器 (13)二、对于2#变压器 (15)第六节660V设备电缆选型 (17)一、对于3#变压器 (17)二、对于2#变压器 (18)第七节短路电流计算 (19)一、对于3#变压器 (19)二、对于2#变压器 (20)第八节低馈的整定 (21)一、对于3#变压器 (21)二、对于2#变压器 (23)三、对于1#变压器 (25)四、对于4#变压器 (26)五、对于YB-02移变 (27)六、对于YB-04移变 (28)第二章30104综采工作面供电整定计算 (31)第一节供电系统 (31)第二节工作面供电系统及负荷统计 (32)第三节高压系统设备的选型计算 (33)一、1140V设备YB-03移动变电站的选择 (33)二、660V设备YB-04移动变电站的选择 (33)三、高压电缆的选择及计算 (34)四、1140V系统电气设备电缆计算 (35)五、660V系统电器设备电缆计算 (38)第四节短路电流计算 (44)第五节整定计算 (51)第六节供电安全 (56)第三章 30106工作面联络巷供电整定计算 (57)第一节供电系统 (57)第二节工作面供电系统及负荷统计 (57)第三节设备的选型计算 (57)一、YB-02移动变电站的选择 (57)二、高压电缆的选择及计算 (58)三、低压系统电气设备电缆计算 (59)第四节短路电流计算 (62)第五节整定计算 (64)第六节供电安全 (68)第一章系统概况第一节供电系统简介我煤矿供电系统为单母线分段分列运行供电方式,一回来自西白兔110KV站35KV母线,另一回来自羿神110KV站35KV母线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤矿采区供电设计所需原始资料煤矿采区供电设计所需原始资料在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。
(1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。
(2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。
(3)采煤方法,煤、矸、材料的运输方式,通风方式。
(4)采区机械设备的布置,各用电设备的详细技术特征。
(5)电源情况。
了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。
(6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。
此外,在做井下采区供电设计时还需要准备下述资料:《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。
煤矿采区供电设计供电系统的拟定拟定采区供电系统,就是确定变电所内高、低压开关和输电线路及控制开关的数量。
在拟定供电系统时,应考虑以下原则:(1)在保证供电安全可靠的前提下,力求所用的开关、起动器和电缆等设备最少;(2) 原则上一台起动器只控制一台低压设备;一台高压配电箱只控制一个变压器。
当高压配电箱或低压起动器三台及以上时,应设置进线开关;采区为双电源供电时,应设置两台进线高压配电箱。
(3)当采区变电所的动力变压器多于一台时,应合理分配变压器的负荷,原则上一台变压器负担一个工作面的用电设备;且变压器最好不并联运行;(4)由工作面配电点到各用电设备宜采用辐射式供电,上山及顺槽的输送机宜采用干线式供电;供电线路应走最短的路线,但应注意回采工作面(机采除外)、轨道上下山等处不应敷设电缆,溜放煤、矸、材料的溜道中严禁敷设电缆,并尽量避免回头供电;(5)大容量设备的起动器应靠近配电点的进线端,以减小起动器间电缆的截面;(6)低瓦斯矿井掘进工作面的局部通风机,可采用装有选择性漏电保护装置的供电线路供电,或采用掘进与采煤工作面分开供电;(7)瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机都应实行三专(专用变压器、专用开关、专用线路)供电;(8)局部通风机与掘进工作面的电气设备,必须装有风电闭锁装置。
瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中的所有掘进工作面应装设两闭锁(风电闭锁、瓦斯电闭锁)设施。
因此,在掘进工作面的供电线路上应设一台闭锁用的磁力起动器,或专用的风电闭锁装置。
(9)局部通风机无论在工作或交接班时,都不准停风。
因此要在专用变压器与采区变电所内其他任意一台变压器之间加设联络开关。
平时断开,在试验局部通风机线路的漏电保护时,合上联络开关,以防局部通风机停电;(10)采区变电所、上山绞车房、装车站及综采工作面应设照明灯。
当供电系统有多种可行方案时应经过技术经济比较后择优选择。
煤矿采区供电设计低压电缆的选择低压电缆又分为支线和干线两种。
支线是指起动器到电动机的电缆,向单台电动机供电;干线是指分路开关到起动器的电缆,向多台电动机供电。
低压电缆的选择就是确定各低压电缆的型号、芯线数、长度和截面等。
一、低压电缆型号、芯数和长度的确定1.低压电缆型号的选择电缆的型号主要依据其电压等级、用途和敷设场所等条件来决定。
煤矿井下所选电缆的型号必须符合《煤矿安全规程》的有关规定。
矿用低压电缆的型号,一般按下列原则确定:(1)支线一律采用阻燃橡套电缆。
1140V设备及采掘工作面的660V和380V设备,必须用分相屏蔽阻燃橡套电缆;移动式和手持式电气设备,应使用专用的橡套电缆。
(2)固定敷设的干线应采用铠装或非铠装聚氯乙烯绝缘电缆;对于半固定敷设的干线电缆,为了移动方便一般选用阻燃橡套电缆,也可选用上述铠装电缆。
(3)采区低压电缆严禁采用铝芯。
(4)电缆应带有供保护接地用的足够截面的导体。
(5)照明、通信和控制用电缆,固定敷设时应采用铠装电缆、阻燃橡套电缆或矿用塑料电缆;非固定敷设时应采用阻燃橡套电缆。
矿用电缆的型号规格见表7-6~表7-7。
2.确定电缆的芯线数目(1)干线用的铠装电缆选三芯电缆,非铠装电缆选用四芯电缆。
(2)支线用电缆就地控制(控制按钮在起动器上)时,一般采用四芯电缆;远方控制和联锁控制(控制按钮在工作机械上)时,应根据控制要求增加控制芯线的根数。
注意电缆中的接地芯线,除用作监测接地回路外,不得兼作其他用途。
(3)信号电缆芯线根数要按控制、信号、通讯系统的需要决定,并留有备用芯线。
3.确定电缆长度就地控制的支线电缆长度,一般取5m~10m。
其它电缆因吊挂敷设时会出现弯曲,所以电缆的实际长度L应按式(7-8)计算。
即L=KmLm(7-8)式中Lm——电缆敷设路径的长度,m;Km——电缆弯曲系数,橡套电缆取1.1,铠装电缆取1.05。
为了便于安装维护和便于设备移动,确定电缆长度时还应考虑以下两点:(1)移动设备的电缆,须增加机头部分活动长度3m~5m余量。
(2)当电缆有中间接头时,应在电缆两端头处各增加3m余量。
二、低压电缆主芯线截面的选择低压电缆主芯线截面必须满足以下几个条件:(1)正常工作时,电缆芯线的实际温度应不超过电缆的长时允许温度,所以应保证流过电缆的最大长时工作电流不得超过其允许持续电流。
(2)正常工作时,应保证供电网所有电动机的端电压在95%~105%的额定电压范围内,个别特别远的电动机端电压允许偏移8%~10%。
(3)距离远、功率大的电动机在重载情况下应保证能正常起动,并保证其起动器有足够的吸持电压。
(4)所选电缆截面必须满足机械强度的要求。
在按上述条件选择低压电缆主芯线的截面时,支线电缆一般按机械强度初选,按允许持续电流校验后,即可确定下来。
选择干线电缆主芯线截面时,如干线电缆不长,应先按电缆的允许持续电流初选;当干线电缆较长时,应先按正常时的允许电压损失初选;然后再按其他条件校验。
某煤矿供电系统设计计算示例之一一、供电系统的拟定1、地面主供电线路(详见供电系统图)根据《煤矿规程》第四百四十一条规定,结合某煤矿的实际情况,现拟定矿井供电线路为两条,一是由某地(1)变电站向某煤矿地面配电室输送的6KV供电线路;二是由某地(2)变电站向某煤矿地面配电室输送的6KV供电线路。
2、矿井主供电线路详见供电系统图)根据《煤矿规程》第四百四十一条规定,结合五一煤矿的实际情况,现拟定矿井供电线路为两条,第一条:采用ZLQ50mm2铠装电缆从地面10KV站向+510中央变电所供6000V电源,电缆长度为1200m。
第二条:采用ZLQ35mm2铠装电缆从地面10KV站向+350中央变电所供6000V电源,电缆长度为1700m。
第三条:采用ZLQ35mm2铠装电缆从地面10KV站向+200中央变电所供6000V电源,电缆长度为2200m;从+200中央变电所采用VUZ35mm2铠装电缆向南翼采区变电所供6000V电源,电缆长度为2300m。
3、联络电缆供电情况:+510水平中央变电所与+350水平中央变电所联络供电采用ZLQ35mm2铠装电缆,电缆长度为500m;+350水平中央变电所与+200水平中央变电所的联络供电采用ZLQ35mm2铠装电缆,电缆长度为500m。
二、各中央变电所变压器容量的计算1、+510中央变电所变压容量的计算P510=ΣPeKx÷Cosψpj其中ΣPe=P1+P2+P3,P1=130KW为2m绞车负荷;P2=75KW为1.2m人车负荷;P3=30KW为照明等其它负荷。
则ΣPe=130+75+30=255KW;Kx=0.7,Cosψpj=0.7P510=235×0.7÷0.7=235KVA>180KVA。
由于考虑到1.2m绞车是专提升人员用,故该变电所采用两台变压器分别向2m绞车和1.2m绞车供电。
即一台180KVA和一台100KVA的变压器。
因此完全能够满足生产需要。
2、目前+350水平中央变电所变压器容量的计算P350前=ΣPeKx÷Cosψpj其中ΣPe=P1+P2+P3+P4+P5,P1=250KW为D280×43×5的主排水泵负荷;P2=155KW为150D30×7排水泵的负荷;P3=130KW为压风机负荷;P4=110KW为1.6m人车负荷;P5=15×2=30KW为充电设备及照明等其它负荷;则ΣPe=250+155+130+110+30=675KW;Kx=0.85,Cosψpj=0.8P350前=675×0.85÷0.8=717.8KVA。
由于该中央变电所,目前有比较多的大容量设备,因此,选用三变压器,两台320KVA和一台200KVA的变压器。
其中一台320KVA的变压器供200D43×5的水泵250KW电动机的电;另一台320KVA的变压器供压风机130KW和1.6m人车130KW电动机的电;一台200KVA的变压器供两台150D30×7的水泵155KW电动机的电,两台水泵一台排水,一台备用。
3、南翼投产后+350中央变电所变压器的容量计算由于南翼投产后两台压风机已搬至南翼采区变电所,因此,+350中央变电所的负荷发生变化,其变化后的情况如下:P350后=ΣPeKx÷Cosψpj其中ΣPe=P1+P2+P3+P4,P1=250KW为D280×43×5的主排水泵负荷;P2=155KW为150D30×7的排水泵负荷;P3=110KW1.6m人车负荷;P4=15×2=30KW为充电设备及照明等其它负荷;则ΣPe=250+155+110+30=545KW;Kx=0.85,Cosψpj=0.8P350后=545×0.85÷0.8=579KVA。
由于该中央变电所有比较多的大容量设备,而且又有主排水设备,因此,选用两台320KVA变压器。
其中一台320KVA的变压器供200D43×5的水泵250KW电动机的电;另一台320KVA的变压器供1.6m人车110KW电动机的电和两台150D30×7的水泵155KW电动机的电;两台水泵一台排水,一台备用。
4、+200水平中央变电所变压器容量的计算P200=ΣPeKx÷Cosψpj其中ΣPe=P1+P2+P3,P1=250KW为D280×43×5的主排水泵负荷;P2=155KW为150D30×7的排水泵负荷;P3=70KW为充电设备及照明等其它负荷;则ΣPe=250+155+70=475KW;Kx=0.85,Cosψpj=0.8P200=475×0.85÷0.8=504.7KVA。