统计学基本知识介绍讲解学习
统计学基础与应用
![统计学基础与应用](https://img.taocdn.com/s3/m/0fed7efdab00b52acfc789eb172ded630b1c980c.png)
统计学基础与应用统计学是一门研究如何收集、处理、分析和解释数据的学科。
它可以帮助我们了解数据的本质和特性,更好地理解社会现象和自然现象,从而进行科学决策和有效管理。
在本文中,我们将介绍统计学的基础知识和应用案例,希望对读者有所启发和启示。
一、统计学的基础知识1.总体和样本统计学研究的对象是总体和样本。
总体是指我们要研究的群体或现象的所有个体或实例的集合,例如全国人口、某公司员工等。
样本是从总体中抽取的一部分个体或实例的集合,通常是为了在总体中推断某些性质或特征,例如从某个城市抽取500个居民进行调查。
2.变量和数据类型统计学研究的对象是变量,变量是指我们要研究的总体或样本中具有不同取值的特征,例如身高、体重、收入等。
根据变量的性质和取值方式,我们可以将数据类型分为以下几种:分类数据、顺序数据、数值数据。
分类数据是指没有大小排序和大小关系的变量,例如性别、民族等;顺序数据是指有大小排序但没有确定大小间隔的变量,例如衣服的尺寸、鞋码等;数值数据是指有大小排序和确定大小间隔的变量,例如身高、体重、收入等。
3.统计量和参数统计学研究的目标是从样本中推断总体的性质和特征。
为此,我们需要用统计量来描述样本的特征和性质。
统计量是指样本中的某一个数值,例如样本均值、样本标准差等。
参数是指总体中的某一个数值,例如总体均值、总体标准差等。
统计学通过样本统计量和总体参数之间的比较和推断来揭示总体性质和特征。
二、统计学的应用案例1.医学研究统计学在医学研究中广泛应用。
例如,在药物开发过程中,需要进行药效试验,以确定药物的有效性和安全性。
在这些试验中,统计学可以帮助研究人员设计试验方案、分析试验数据、推断药物效果和副作用的大小以及确定药物的最佳用量。
2.商业决策统计学在商业决策中也扮演着重要的角色。
例如,在市场营销中,统计学可以帮助企业分析消费者需求和市场趋势,从而更好地定位产品和服务;在金融领域,统计学可以帮助银行和保险公司评估风险和利润,精准定价和防范欺诈。
统计基础必学知识点
![统计基础必学知识点](https://img.taocdn.com/s3/m/59a5d035178884868762caaedd3383c4ba4cb458.png)
统计基础必学知识点1. 数据的分类:数据可以分为定性数据和定量数据。
定性数据是描述性的,如性别、颜色等;定量数据是可量化的,如年龄、身高等。
2. 数据的度量尺度:数据的度量尺度分为四种类型,分别是名义尺度、顺序尺度、间隔尺度和比例尺度。
名义尺度是无序的分类数据,顺序尺度是具有次序关系的数据,间隔尺度是具有固定间隔的数据,比例尺度是具有固定比例关系的数据。
3. 频数与频率:频数是指某个数值出现的次数,频率是指某个数值出现的次数与总数的比值。
4. 数据的中心趋势度量:数据的中心趋势度量包括平均数、中位数和众数。
平均数是一组数据的总和除以数据个数,中位数是将数据按照大小排列后的中间值,众数是一组数据中出现次数最多的数值。
5. 数据的离散程度度量:数据的离散程度度量包括范围、方差和标准差。
范围是一组数据的最大值与最小值之差,方差是数据与其均值之差的平方和的平均值,标准差是方差的平方根。
6. 直方图和箱线图:直方图是将数据按照一定的区间划分,并统计每个区间内数据的频数或频率,在坐标系上绘制柱状图。
箱线图是通过四分位数和异常值来描绘一组数据的分布情况。
7. 相关系数:相关系数是用来描述两组数据之间的相关性强度和方向的指标。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 概率与统计分布:概率是事件发生的可能性,统计分布是对数据的概率分布进行描述的函数。
常见的统计分布包括正态分布、泊松分布、二项分布等。
9. 抽样与统计推断:抽样是从总体中选取一部分样本进行研究,统计推断是通过样本数据对总体进行推断。
常用的统计推断方法包括点估计和区间估计。
10. 假设检验:假设检验是对统计推断的一种方法,通过构建假设、选择显著性水平和计算检验统计量,判断样本数据是否能够拒绝原假设。
常见的假设检验方法有单样本t检验、双样本t检验、方差分析等。
统计学知识点全归纳__全面准确
![统计学知识点全归纳__全面准确](https://img.taocdn.com/s3/m/e950a7ae0875f46527d3240c844769eae109a359.png)
统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。
统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。
下面将全面准确地归纳统计学的基本知识点。
1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。
抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。
2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。
-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。
3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。
-随机变量:随机变量是随机试验结果的数值表示。
可以分为离散随机变量和连续随机变量。
4.概率分布-离散分布:包括二项分布、泊松分布等。
二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。
-连续分布:包括正态分布、指数分布等。
正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。
-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。
5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。
-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。
-假设检验:用来检验一个关于总体参数的假设是否成立。
根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。
6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。
可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。
-回归分析:用来研究一个或多个自变量与因变量之间的关系。
统计初步知识点总结
![统计初步知识点总结](https://img.taocdn.com/s3/m/f37a425ea31614791711cc7931b765ce05087ac1.png)
统计初步知识点总结一、统计学的基本概念1. 统计学的定义统计学是一门研究数据收集、处理、分析、解释和推断的学科。
它通过收集大量的数据,并利用数理统计方法对数据进行分析,从而得出有关总体特征的结论。
2. 统计学的发展与应用统计学起源于古代的人口普查和财产统计,随着科学技术的进步,统计学逐渐发展成为一门独立的学科。
它在经济学、医学、社会学、政治学等领域都有着广泛的应用,成为这些领域中不可或缺的工具。
3. 统计学的基本概念(1) 总体和样本:总体是指研究对象的全体,样本是从总体中抽取出来的一部分。
通过对样本的研究,可以对总体做出推断。
(2) 参数和统计量:参数是总体特征的数值度量,统计量是样本特征的数值度量。
通过统计量对参数进行估计。
(3) 变量和数据:变量是统计研究的对象,数据是对变量进行观测和测量的结果。
(4) 随机变量和概率分布:随机变量是随机现象的数学模型,概率分布描述了随机变量的取值规律。
二、统计方法1. 数据的收集数据的收集是统计学研究的基础,它包括实地调查、实验观察、问卷调查、文献资料收集等方式。
合理、科学的数据收集是统计研究的前提和基础,对于数据的真实性和可靠性至关重要。
2. 数据的描述数据的描述包括数据的整理、汇总和展示,通过频数分布表、统计图表等方式对数据进行直观展示,从而揭示数据的分布特征和规律。
3. 统计推断统计推断是利用样本数据对总体特征进行推断的过程,包括参数估计和假设检验两个方面。
(1) 参数估计:通过样本数据对总体参数进行估计,得到对总体的估计值和置信区间估计。
(2) 假设检验:根据样本数据对总体参数提出假设,并通过统计方法对假设进行检验,判断原假设是否成立。
4. 相关性分析和回归分析相关性分析是研究变量之间相关关系的方法,通过相关系数来度量两个变量之间的相关程度。
而回归分析则是研究变量之间的因果关系,并用回归方程来描述变量之间的函数关系。
5. 方差分析和协方差分析方差分析是比较多组样本均值之间差异的一种统计方法,协方差分析则是研究两个或多个变量之间的协方差关系。
统计学知识点(完整)
![统计学知识点(完整)](https://img.taocdn.com/s3/m/59d7247d9ec3d5bbfc0a748b.png)
基本统计方法第一章概论1•总体(Population ):根据研究目的确定的同质对象的全体(集合) ;样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2.参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3.统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章计量资料统计描述1.集中趋势:均数(算术、几何)、中位数、众数2.离散趋势:极差、四分位间距( QR=P75-P25)、标准差(或方差)、变异系数(CV)3.正态分布特征:①X轴上方关于X= 对称的钟形曲线;②X= 时,f(X)取得最大值;③ 有两个参数,位置参数和形态参数;④曲线下面积为1,区间土的面积为68.27% ,区间±1.96 的面积为95.00%,区间±2.58 的面积为99.00%。
4.医学参考值范围的制定方法:正态近似法:X U /2 S ;百分位数法:P2.5-P 97.5。
第三章总体均数估计和假设检验1.抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2.均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:八n。
反映样本均数间的离散程度,说明抽样误差的大小。
3.降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。
4.t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度,越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当逼近a ,S X逼近X, t分布逼近u分布,故标准正态分布是t分布的特例。
5.置信区间(Con fide nee In terval , CI ):按预先给定的概率(1-)确定的包含总体参数的一个范围,计算公式:X t /2, S X或X U /2, S X。
统计学基础知识概述
![统计学基础知识概述](https://img.taocdn.com/s3/m/a079fc4e6d85ec3a87c24028915f804d2b1687dd.png)
统计学基础知识概述统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都有着广泛的应用,从经济学到医学,从环境科学到社会学,统计学都起着至关重要的作用。
本文将对统计学的基础知识进行概述,以帮助读者对这门学科有更清晰的认识。
一、统计学的定义与目标统计学是一门通过收集数据、进行数据分析,从中发现规律、做出推断并做出决策的学科。
其主要目标是通过搜集和整理数据来描述现象、解释现象,并用数据来支持我们的论断和决策。
二、数据类型与测量尺度在统计学中,数据可以分为两种基本类型:定性数据和定量数据。
定性数据是描述性的,无法以数字或数量的方式直接表示。
它通常是基于类别或属性的描述,如性别、种类、态度等。
而定量数据是以数字或数量的形式表示的,可以进行计算和比较,例如年龄、体重等。
定性数据又可以进一步分为名义数据和序数数据。
名义数据是分类的,没有任何顺序或等级的关系,如性别、国籍等。
而序数数据则呈现出一定的顺序或等级关系,如星级评分、教育程度等。
定量数据可以分为连续数据和离散数据。
连续数据是可以在一定范围内取无限个值的变量,如身高、温度等。
而离散数据则只能取特定的值,例如家庭人数、书籍数量等。
三、统计学中的描述性统计描述性统计是对数据进行整理、汇总和呈现的过程。
通过描述性统计,我们可以了解数据的分布、中心趋势和离散程度。
常见的描述性统计量包括均值、中位数、众数和标准差等。
在描述数据分布时,我们可以使用直方图、箱线图等图表来展示数据的特征。
直方图可以反映数据的频率分布情况,而箱线图则可以展示数据的中位数、四分位数和异常值。
四、统计学中的推断统计推断统计是通过利用样本数据对总体进行推断的过程。
它包括参数估计和假设检验。
参数估计是通过样本数据来估计总体参数的数值,如计算总体均值的置信区间。
假设检验则是通过样本数据来判断总体参数的差异是否显著,如判断两个总体均值是否相等。
在进行参数估计和假设检验时,我们需要选择适当的统计方法。
统计学理论基础知识(史上最全最完整)
![统计学理论基础知识(史上最全最完整)](https://img.taocdn.com/s3/m/c4030ec9e43a580216fc700abb68a98271feac36.png)
统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。
它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。
基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。
- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。
- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。
- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。
描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。
- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。
- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。
推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。
- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。
相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。
- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。
统计学软件- 常用统计软件:如SPSS、R、Excel等。
- 数据可视化工具:如Tableau、Power BI等。
这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。
它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。
统计基础知识 精品课程
![统计基础知识 精品课程](https://img.taocdn.com/s3/m/49ddcd97b04e852458fb770bf78a6529647d3502.png)
统计基础知识精品课程摘要:一、统计学概述1.统计学的定义2.统计学的研究对象3.统计学的应用领域二、统计数据的收集与整理1.统计数据的来源2.统计数据的收集方法3.统计数据的整理三、统计数据的描述1.数据的图表展示2.数据的数字描述3.数据的分布特征四、统计推断1.参数估计2.假设检验3.回归分析五、统计学在实际应用中的案例1.金融领域2.医疗领域3.市场营销正文:一、统计学概述统计学是一门研究如何收集、整理、分析、解释以及展示数据的方法论学科。
统计学的研究对象包括各种数据,例如数值型数据、分类数据、顺序数据等。
统计学的应用领域广泛,包括自然科学、社会科学和商业等领域。
二、统计数据的收集与整理统计数据的来源多样,包括问卷调查、实验数据、政府发布的数据等。
收集数据的方法有抽样调查、全面调查等。
在收集到数据后,需要进行整理,包括数据清洗、数据转换、数据汇总等步骤,以便进一步分析。
三、统计数据的描述数据的描述包括数据的图表展示和数据的数字描述。
图表展示包括条形图、折线图、饼图等。
数据的数字描述包括平均数、中位数、众数、方差等。
此外,还需要了解数据的分布特征,如正态分布、偏度、峰度等。
四、统计推断统计推断是通过样本数据对总体参数进行估计和推断的过程。
参数估计是利用样本数据估计总体参数,例如均值、方差等。
假设检验是利用样本数据判断关于总体的某个假设是否成立。
回归分析是研究两个或多个变量之间关系的方法。
五、统计学在实际应用中的案例统计学在实际应用中具有广泛的应用价值。
例如,在金融领域,可以通过统计分析预测股票价格走势;在医疗领域,可以通过统计分析研究某种疾病的发病率、死亡率等;在市场营销中,可以通过统计分析了解消费者需求、市场占有率等。
统计学基础知识点总结
![统计学基础知识点总结](https://img.taocdn.com/s3/m/4c4e699148649b6648d7c1c708a1284ac950055c.png)
统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计学 入门 pdf
![统计学 入门 pdf](https://img.taocdn.com/s3/m/8684dc6bae45b307e87101f69e3143323868f566.png)
统计学入门
统计学是一门研究数据收集、整理、分析和推断的学科,其目的是通过科学的方法和工具,从数据中提取有用的信息,并对其做出准确的推断和预测。
以下是统计学入门需要了解的一些基本概念和知识点:
1.数据类型:了解数据的分类和特征,如定量数据和定性数据、离散数据和连续数据等。
2.描述性统计:这是统计学的基础,主要包括数据的集中趋势、离散趋势、形态等方面的描述。
需要掌握平均数、中位数、众数、方差、标准差等指标的计算方法和意义。
3.概率和概率分布:概率是描述事件发生可能性的数值,而概率分布则描述了随机变量的取值概率。
常见的概率分布有二项分布、泊松分布、正态分布等。
4.参数估计:通过样本数据来估计总体参数的方法,如均值、方差等。
需要掌握各种估计方法,如点估计和区间估计。
5.假设检验:这是统计推断的重要方法,主要用于判断一个假设是否成立。
需要了解假设检验的基本原理、方法和步骤。
6.方差分析:通过分析不同组数据的方差来比较不同因素对结果的影响,主要用于实验设计和数据分析。
7.相关性和回归分析:相关性分析用于研究两个或多个变量之间的相关性,回归分析则用于预测一个因变量与一个或多个自变量之间的关系。
8.时间序列分析:用于分析随时间变化的数据序列,包括趋势分析、季节性分析等。
9.统计软件:掌握一些常用的统计软件,如Excel、SPSS、SAS等,可以更高效地进行数据处理和分析。
10.统计学基本概念:了解统计学的基本概念和术语,如总体、样本、随机
抽样等。
以上是统计学入门需要掌握的一些基本知识点,建议在学习过程中结合实际案例进行分析和应用,以加深理解和提高应用能力。
统计学基础知识点
![统计学基础知识点](https://img.taocdn.com/s3/m/32ea5c3b1611cc7931b765ce050876323012746f.png)
统计学基础知识点统计学是一门研究收集、整理、分析和解释数据的学科,它在各个领域都扮演着重要的角色。
无论是在科学研究、商业决策还是社会政策制定中,统计学都提供了有力的工具和方法来帮助我们理解和解释数据。
本文将介绍一些统计学的基础知识点,包括数据类型、数据收集和整理、描述统计和推断统计等。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是可以用数字来表示和度量的,例如身高、体重、年龄等。
定性数据则是描述性的,不能用数字来度量,例如性别、颜色、职业等。
了解数据的类型对于选择适当的统计方法非常重要。
二、数据收集和整理数据的收集是统计研究的第一步。
收集数据的方法包括观察、实验和调查等。
观察法是通过观察现象来收集数据,实验法是通过控制变量来观察因果关系,而调查法则是通过问卷调查或访谈来收集数据。
在收集到数据后,我们需要对数据进行整理和清洗。
数据整理包括数据输入、数据编码和数据录入等步骤,确保数据的准确性和一致性。
数据清洗则是处理数据中的异常值、缺失值和离群值等,以保证数据的可靠性和可用性。
三、描述统计描述统计是对数据进行总结和描述的方法。
常用的描述统计方法包括中心趋势度量和离散程度度量。
中心趋势度量包括平均数、中位数和众数等,用于描述数据的集中程度;离散程度度量包括标准差、方差和范围等,用于描述数据的分散程度。
另外,描述统计还可以通过绘制图表来展示数据的分布和关系。
常用的图表包括条形图、饼图、直方图和散点图等,它们能够直观地展示数据的特征和趋势。
四、推断统计推断统计是基于样本数据对总体进行推断的方法。
在统计推断中,我们通过对样本数据的分析来对总体参数进行估计,并对估计结果进行推断。
常用的推断统计方法包括假设检验和置信区间。
假设检验是用来检验某个假设是否成立的统计方法。
在假设检验中,我们先提出一个原假设和一个备择假设,然后利用样本数据进行假设检验,从而得出对原假设的结论。
置信区间是对总体参数的一个范围估计。
统计学知识点
![统计学知识点](https://img.taocdn.com/s3/m/a0477719abea998fcc22bcd126fff705cc175c87.png)
统计学知识点统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都扮演着重要的角色,无论是科学研究、商业决策还是政府政策制定,都需要用到统计学的知识。
本文将介绍一些基础的统计学知识点,包括数据类型、概率、统计量和假设检验等。
一、数据类型在统计学中,数据可以分为两种类型:定性数据和定量数据。
1. 定性数据定性数据是用来描述事物特征的数据,通常是以文字形式呈现的。
例如,人们对一部电影的评价可以用“好看”、“一般”和“不喜欢”等词语来描述。
2. 定量数据定量数据是用数量来表示的数据,可以进行数值计算和比较。
例如,一个班级的学生身高可以用具体的厘米数来表示。
二、概率概率是研究随机事件发生可能性的数学分支。
在统计学中,概率与实际观察到的结果之间存在着关系。
常见的概率分布包括正态分布、二项分布和泊松分布等。
1. 正态分布正态分布,也称为高斯分布,是统计学中最重要的概率分布之一。
它的特点是钟形曲线,均值、标准差决定了曲线的位置和形状。
正态分布在自然界中很常见,如身高和体重等。
2. 二项分布二项分布用于描述重复进行独立实验的结果。
每次实验只有两种可能的结果,成功或失败。
例如,抛硬币的结果就符合二项分布。
3. 泊松分布泊松分布用于描述在一个给定的时间跨度内,某事件发生的次数。
例如,某个地区一天内的交通事故数量就可以用泊松分布来描述。
三、统计量统计量是用来从样本数据推断总体特征的数值指标。
常见的统计量包括均值、方差和相关系数等。
1. 均值均值是一组数据的平均值,用于表示数据的集中趋势。
它可以通过将所有数据相加然后除以数据的个数来计算得到。
2. 方差方差是数据离均值的平方差的平均值,用于表示数据的离散程度。
方差越大,数据点越分散。
3. 相关系数相关系数用于衡量两个变量之间的线性相关程度。
它的取值范围在-1到1之间,绝对值越接近1表示两个变量的相关性越强。
四、假设检验假设检验是统计学中用来对总体参数进行推断的方法。
统计学基础知识
![统计学基础知识](https://img.taocdn.com/s3/m/a0cffb816037ee06eff9aef8941ea76e59fa4a56.png)
统计学基础知识统计学是一门研究收集、分析、解释和展示数据的学科。
它提供了一种方法,能够更好地理解和应用各种数据。
统计学在各个领域都有重要的应用,不论是在科学研究、商业决策还是社会科学中,都离不开统计学的支持。
本文将介绍统计学的基础知识,包括统计学的定义、常见的统计术语以及常用的统计方法。
一、统计学的定义统计学是一门研究如何收集、整理、分析和解释数据以及从数据中得出结论的学科。
它包括描述性统计和推论统计两个方面。
描述性统计用来总结和描述数据的特征,如平均数、中位数、频率分布等;推论统计则用来根据样本数据推断总体的特征,如置信区间、假设检验等。
二、常见的统计术语1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分。
通过对样本进行统计分析,可以得到对总体的推断。
2. 变量:研究对象的属性或特征,可以是数量型(如身高、年龄)或质量型(如性别、颜色)。
3. 数据类型:数据可以分为定性和定量两种类型。
定性数据用来描述特征或分类,如性别、颜色;定量数据用来表示数量或程度,如身高、温度。
4. 频数和频率:频数是指数据中某个取值出现的次数,频率是指某个取值出现的频率,即频数除以总数。
5. 中心趋势:用来描述数据的集中程度,包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排序后的中间值,众数是出现次数最多的值。
6. 离散程度:用来描述数据的离散程度,包括极差、方差和标准差。
极差是最大观测值与最小观测值之差,方差是观测值与平均数之差的平方和的平均数,标准差是方差的平方根。
三、常用的统计方法1. 描述性统计:描述性统计用来总结和描述数据的特征。
常见的描述性统计方法包括计数、百分比、平均数、中位数、众数、极差、方差和标准差。
2. 概率分布:概率分布描述了随机变量的取值及其对应的概率。
常见的概率分布包括正态分布、泊松分布和二项分布等。
3. 推论统计:推论统计用来从样本数据中推断总体的特征,并进行统计推断。
统计学基础知识点总结
![统计学基础知识点总结](https://img.taocdn.com/s3/m/7518cb012a160b4e767f5acfa1c7aa00b52a9dc5.png)
统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
统计基础知识点总结
![统计基础知识点总结](https://img.taocdn.com/s3/m/b185476e580102020740be1e650e52ea5518cec3.png)
统计基础知识点总结一、统计学基本概念统计学是一门研究数据的科学,它包括描述统计和推论统计两个方面。
描述统计是对数据进行总结和描述,包括数据的中心趋势、离散程度和分布形态等内容;推论统计则是从部分观测数据推断出整体数据的性质。
1.总体与样本总体是指研究对象的全部个体或观察值的集合,样本是从总体中抽取出来的一部分个体或观察值。
通过对样本的研究,可以得出一些对总体的推断。
2.参数与统计量参数是总体的特征值,如总体均值、标准差等;统计量是样本的特征值,如样本均值、标准差等。
通过对统计量的研究,可以对参数进行估计。
3.变量与数据类型变量是研究对象中的一个特征,它可以是定量型变量(如身高、体重)或定性型变量(如性别、学历);数据类型包括定量数据和定性数据。
定量数据是可以进行数值比较的数据,定性数据是以性质或类别来表示的数据。
4.测量尺度测量尺度包括名义尺度、顺序尺度、间距尺度和比例尺度。
名义尺度是用于分类的尺度,没有顺序或大小关系;顺序尺度是用于分类,但有顺序关系;间距尺度是用于度量距离和大小关系,但没有绝对零点;比例尺度是度量距离和大小关系,并且有绝对零点。
对于不同的测量尺度,需要选择不同的统计方法进行分析。
二、数据的描述性统计描述性统计是统计学中的基础知识,它包括数据的中心趋势、离散程度和分布形态等内容。
1.中心趋势中心趋势是指数据集中的位置,包括均值、中位数和众数。
均值是所有数据值的平均数,中位数是数据值按大小排列后处于中间位置的数,众数是数据中出现次数最多的数。
2.离散程度离散程度反映了数据集合的分散程度,包括极差、方差和标准差。
极差是最大值和最小值之间的差值,方差是各数据值与均值的离差平方和的平均数,标准差是方差的平方根。
3.分布形态分布形态是指数据分布的形状,包括对称分布、偏态分布和峰态分布等。
对称分布是指数据集中的数据值分布呈现出对称形状,偏态分布是指数据集中的数据值分布不是对称的,峰态分布是指数据集中的数据值分布的尖度情况。
统计学基础知识
![统计学基础知识](https://img.taocdn.com/s3/m/e71df8f0a0c7aa00b52acfc789eb172ded6399f3.png)
统计学基础知识统计学是一门重要的学科,它运用数理统计方法研究和解释数据,并为决策提供科学依据。
在现代社会中,统计学扮演着重要的角色,许多领域都需要统计学的支持,包括经济学、社会学、医学等。
本文将介绍统计学的基础知识,包括数据类型、描述统计、概率论以及统计推断等。
一、数据类型我们首先要了解不同的数据类型,数据可以分为定性数据和定量数据两种类型。
定性数据是描述性的,如性别、口味偏好等;定量数据则是可量化的,如年龄、收入等。
在统计学中,应根据具体情况选择合适的数据类型进行分析。
二、描述统计描述统计是统计学中最基本的部分,它通过对数据进行整理、分析和展示,揭示数据的规律和特征。
描述统计常用的方法包括频数分布表、直方图、条形图和饼图等。
这些方法能够帮助我们直观地了解数据的分布情况和集中趋势。
三、概率论概率论是统计学中的重要理论基础,它研究随机现象的概率规律。
在概率论中,我们需要了解一些基本概念,如样本空间、事件、概率等。
通过概率论的知识,我们可以预测随机事件的发生概率,并进行合理的决策。
四、统计推断统计推断是通过对样本数据进行分析,推断总体数据的统计特征。
在统计推断中,我们需要了解抽样方法、置信区间、假设检验等概念。
通过统计推断,我们可以根据样本推断总体的特征,并对决策进行科学评估。
五、常见统计方法统计学中有许多常见的统计方法,其中包括相关分析、回归分析、方差分析等。
相关分析用于衡量变量之间的关联程度,回归分析用于研究变量之间的因果关系,方差分析则用于比较不同组之间的差异。
这些方法在实际问题中具有广泛的应用。
六、统计软件为了更好地进行数据分析,许多统计学家和研究人员开发了各种各样的统计软件。
这些软件可以帮助我们进行复杂的统计计算和数据可视化,如SPSS、R、Python等。
掌握合适的统计软件,能够提高工作效率和数据分析的准确性。
七、应用领域统计学在各个领域中都有广泛的应用。
在经济学中,统计学可以用于预测经济发展趋势和分析市场需求;在社会学中,统计学可以用于研究社会现象和调查民意;在医学中,统计学可以用于分析疾病传播规律和评估药物疗效等。
统计基础的知识点总结
![统计基础的知识点总结](https://img.taocdn.com/s3/m/33c06fa04bfe04a1b0717fd5360cba1aa8118c88.png)
统计基础的知识点总结统计学是一门研究数据收集、分析、解释和展示的科学。
它是各种学科中的重要基础,如经济学、医学、社会学、心理学等。
统计学广泛应用于各种领域,从商业到政府,从科学研究到医学诊断。
本文将对统计学的基础知识点进行总结,包括数据类型、数据收集、描述统计、概率、推断统计等内容。
一、数据类型1. 根据变量的性质,数据可以分为定量数据和定性数据。
定量数据是用数字表示,并且可以进行各种数学运算,如年龄、身高、成绩等;定性数据是用描述性词语表示的,如性别、颜色、好坏等。
2. 根据数据的测量尺度,数据可以分为名义数据、序数数据、区间数据和比率数据。
名义数据是表示对象不同之处的,仅表明事物的种类,如性别、颜色等;序数数据是数据的排列顺序有意义的,如学历、职位等;区间数据表示数据之间的间隔是有意义的,但没有零点,如温度;比率数据是有意义的零点,可以进行比较的,如比率、百分数等。
二、数据收集1. 数据的收集方式主要包括调查、实验和观察。
调查是采用问卷、访谈等方式获取信息;实验是通过控制变量来观察和测量影响结果的因素;观察是直接观察对象的状态和行为来获取数据。
2. 数据的收集过程中需要考虑样本的选择、样本量的确定、数据的准确性和可靠性等因素。
三、描述统计描述统计是研究数据分布的综合统计分析方法,主要包括中心趋势和离散程度两个方面。
1. 中心趋势主要包括均值、中位数和众数。
均值是所有数据的平均值,具有良好的代表性;中位数是将数据按大小排序后位于中间的数值;众数是数据集中出现频率最高的值。
2. 离散程度主要包括极差、方差和标准差。
极差是最大值与最小值之差;方差是各个数据与均值的差的平方和的平均值;标准差是方差的平方根,用来度量数据的波动程度。
四、概率概率是统计学中的一个重要概念,用来描述事物发生的可能性。
概率的计算方法主要包括古典概率、几何概率和条件概率。
1. 古典概率是指事件发生的概率等于有利事件的数量除以样本空间的数量,即P(A) =n(A)/n(S)。
统计法基础必学知识点
![统计法基础必学知识点](https://img.taocdn.com/s3/m/ee748e50fbd6195f312b3169a45177232f60e49e.png)
统计法基础必学知识点以下是统计法基础必学的知识点:1. 统计学的定义和作用:统计学是一门研究如何收集、整理、分析和解释数据以及对数据进行推断和预测的学科。
它在科学研究、经济决策、社会调查等领域中起着重要作用。
2. 数据类型:数据可以分为定量数据和定性数据。
定量数据是可计数的或可测量的数据,如身高、体重等;定性数据是描述性的,如性别、颜色等。
3. 数据收集方法:数据可以通过实验、调查、观察等方式进行收集。
选择适当的数据收集方法对结果的准确性和代表性有重要影响。
4. 数据展示方法:数据的展示可以通过表格、图表等方式进行。
常见的数据展示方法包括条形图、折线图、饼图等。
5. 数据描述统计:描述统计是对数据进行整理和概括的方法。
常用的描述统计方法包括平均数、中位数、众数、标准差等。
6. 概率基础:概率是描述事件发生可能性的数值。
常见的概率计算方法包括频率法、相对频率法和主观概率法。
7. 抽样方法:抽样是从总体中选择样本的过程。
常用的抽样方法包括简单随机抽样、系统抽样、分层抽样等。
8. 参数估计和假设检验:参数估计是通过样本数据估计总体参数的值。
假设检验是对统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
9. 相关性分析:相关性分析用于研究两个变量之间的关系。
常见的相关性分析方法包括相关系数、回归分析等。
10. 置信区间:置信区间是对参数估计结果的一种区间估计方法。
它能够反映参数估计的精度和可信程度。
以上是统计法基础必学的知识点,掌握这些知识可以帮助我们更好地进行数据分析和统计推断。
统计学知识点梳理
![统计学知识点梳理](https://img.taocdn.com/s3/m/9278521d4b35eefdc8d333e7.png)
统计学第一章导论1.1.1什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所用的方法分为描述统计方法和推断统计方法。
1.2统计数据的类型1.2.1分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。
例如:支付方式、性别、企业类型等。
顺序数据:只能归于某一有序类别的非数字型数据。
例如:员工对改革措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、工资、产量等。
统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。
观测数据:通过调查或观测而收集的数据。
例如:降雨量、GDP、家庭收入等。
实验数据:在实验中控制实验对象而收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。
截面数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同一现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合。
1.3.2参数和统计量参数:用来描述总体特征的概括性数字度量。
统计量:用类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。
第二章数据的搜集2.1数据的来源2.1.1数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。
统计学基础必学知识点
![统计学基础必学知识点](https://img.taocdn.com/s3/m/756ec198b04e852458fb770bf78a6529657d3558.png)
统计学基础必学知识点1. 数据的类型:数据可以分为定量数据和定性数据。
定量数据是以数字形式表示的数据,可以进行运算和统计分析,例如身高、体重等;定性数据是以非数字形式表示的数据,通常是描述性的,例如性别、颜色等。
2. 数据的分布:数据的分布描述了数据的值在取值上的分布情况。
常见的数据分布有正态分布、均匀分布、偏态分布等。
3. 描述统计学:描述统计学是研究如何使用统计方法来描述和总结数据的学科。
常用的描述性统计方法包括测量中心趋势的平均数、中位数、众数,以及测量数据分散程度的标准差、方差等。
4. 统计推断:统计推断是研究如何利用样本数据对总体进行推断的学科。
常用的统计推断方法包括参数估计和假设检验。
参数估计是利用样本数据估计总体参数的值,例如利用样本均值估计总体均值;假设检验是对总体参数假设进行推断的方法,例如检验总体均值是否等于某个特定值。
5. 概率:概率是描述事件发生可能性的数值,介于0和1之间。
概率论是研究随机现象的数学理论。
常用的概率计算方法包括计数法、频率法、几何法等。
6. 抽样方法:抽样是从总体中选择部分个体进行观察和分析的方法。
常用的抽样方法包括随机抽样、系统抽样、整群抽样等。
7. 参数和统计量:参数是指总体的某种特征值,例如总体均值、总体方差等;统计量是根据样本数据计算得到的总体参数的估计值,例如样本均值、样本方差等。
8. 假设检验:假设检验是通过比较样本数据与给定假设之间的差异来判断假设是否成立的方法。
常用的假设检验方法有正态总体均值的检验、两个总体均值的检验、总体方差的检验等。
9. 相关分析:相关分析是研究两个或多个变量之间关系的方法。
常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数等。
10. 回归分析:回归分析是研究变量之间关系的方法,可以用于预测和解释变量之间的关联关系。
常用的回归分析方法包括简单线性回归分析、多元线性回归等。
以上是统计学基础中的一些必学知识点,通过学习和掌握这些知识点,可以帮助我们理解和分析数据,从而做出科学的统计推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、统计分析与数据挖掘的异同:(当前比较热门的话题)
何为数据挖掘(Data Mining)? (1)是个什么样的学科:是在多个学科的基础上发展起来的。包括数据库、人工智能、机器学习、统计学、数据可视化 等一系列学科交叉结合。 (2)为什么会发展起来:随着数据库技术的发展,数据的积累快速膨胀,导致简单的查询和统计已经无法满足企业的商 业需求(尤其是在互联网公司),急需革命性的技术去挖掘数据背后的信息。 (3)如何发展起来:随着计算机领域人工智能的巨大进步,进入机器学习的阶段,故人们将数据库和机器学习相结合, 用数据库管理系统存储数据,用计算机分析数据,产生了一门新的学科:数据库中的知识发现(Knowledge Discovery in Databases,KDD)。
统计学基本知识介绍
Part One:什么是统计学???
人类发现了统计,统计改变了世界。——《统计学的故事》第一章标题 •(1)统计学的定义 •(2)统计学起源 •(3)统计学与其他学科的区别 •(4)统计模型 •(5)总结:统计学是一门什么样的学科
(1)统计学的定义
•定:
统计学是一门研究随机现象,以推断为特征的方法论科学,“由部分推及全体”的思想贯穿于统计学的始
综上:数据挖掘则是知识发现的核心部分,指的是从数据集合中自动抽取隐藏在数据中的那些有用信息
的过程,这些信息的表现形式为:规则、概念、规律以及模式等。
二、统计分析与数据挖掘的异同
相同点: (1)都是对数据做分析与发现。“不管是白猫还是黑猫,抓住老鼠才是好猫”。在实战中,分析问题解决问题的首要考
虑是思路,其次才是筛选与思路相匹配的分析挖掘技术;
彩,而且有待考证,但是在欧洲兴起并兴盛的骰子赌博活动,引起了一批好奇的学者的关注。掷骰子得到的点数直接决定 赌局的输赢,于是开始研究各种点数出现的机遇的大小,胜率的大小,最早开始数量研究并且给概率下定义的学者已经无 从考证了,可是有一些著作的问世和问题的讨论对概率统计的发展产生了重大的影响,比如卡丹诺的《机遇博弈》、惠更 斯的《机遇的规律》 、伯努利的《推测数》 、著名的分赌本问题、帕斯卡和费马之间的通信,在这期间,古典概型得到
(4)统计模型
•模型的作用:预测 or 理解产生数据的机制。
•如何寻找模型: (1)对数据进行初步探索性分析,利用图形和各种统计量(比较简单的如期望、方差等)作基础分析,了解数据的分布 ,必要的话对部分数据(缺失值、异常值等)进行清洗或者转换处理; (2)根据具体业务需求选定因变量(目标变量、响应概率)和自变量(解释变量),分析变量与变量之间的关联性、相 关性、线性性、共线性等各种关系; (3)选定变量后就要寻找合适的模型和算法(已有的模型或自己建立新的模型); (4)对多个模型进行比较分析,选择最合适的模型,并对模型不断优化,解释其中的各个变量。 (5)对模型进行检验,是否具有稳健性,对业务是否真的有帮助。
结论:统计学起源于国家的实际应用。
一个关于生男生女的问题:
• 从生物学角度来说,XX染色体与XY染色体结合是随机的,故孕妇生男生女的概率均是1/2。已知一对夫妇有两个孩子 ,且其中一个是男孩,问另外一个是女孩的概率是多少???
•A: 1/3 •B: 1/2 •C: 2/3 •D: 3/4
你知道答案吗???
终。具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原
理和方法。此外,统计学也是于收集、整理、分析和解释统计数据的科学,是一门认识方法论性质的科学,其目的是探 索数据内在的数量规律性,以达到对客观事物的科学认识。
用统计来认识事物的步骤是:研究设计—>抽样调查—>统计推断—>结论。这里,研究设计就是制定调查研究和实验
发现的知识规则; (2)相对于重视理论和方法的统计分析而言,数据挖掘更强调应用,毕竟数据挖掘的目的是方便企业用户的使用; (3)“统计分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。如传统的控制论建模的本
质就是描述输入变量与输出变量之间的函数关系,“数据挖掘”可以通过机器学习自动建立输入与输出的函数关系, 根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。
研究的计划,抽样调查是搜集资料的过程,统计推断是分析资料的过程。显然统计的主要功能是推断,而推断的方法
是一种不完全归纳法,因为是用部分资料来推断总体。
(2)统计学起源
•两个源头: 概率论 VS 国情学 一、概率论:
16世纪,概率论的体系渐渐发展起来,而这要从一种和掷骰子有关的赌博活动说起。虽然这个起源并不是很光
(3)统计学与其他学科的异同
一、统计学与概率论的异同: ➢ 不是废话的废话:概率论是统计学的基础,统计学是概率论的发展。
➢ 区别:概率论就好比是给你一个模型,你可以知道这个模型会产生什么样的数据;而统计则是给你一些数据,你来判 断是由什么样的模型产生的。
For example,概率论研究的是一个透明箱子,你知道这个箱子的构造(里面有几个红球、几个白球,也就是所谓的 分布函数),然后计算下一个摸出来的球是红球的概率。而统计学面对的是一个黑箱子,你只看得到每次摸出来的是
(2)二者的理论来源很多是同根同源。数据挖掘中的技术有相当比例是依靠统计分析中的多变量分析来支撑; (3)更有观点认为,数据挖掘是统计分析技术的延伸和发展,用于处理更大规模的数据(几十万行、几百万行的数据)
不同点: (1)“统计分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)
了极大的发展,概率、期望、二项分布、中心极限定理等概念被相继提出。
结论:赌博也是把双刃剑!!!
•二、国情学: 统计学的英文是“statistic”,其实它是源于意大利文的“stato”,意思是“国家”、“情况”,也就是后来英语里
的state(国家),在十七、十八世纪,统计学很多时候都是以国情学的姿态出现的。而且很长一段时间,都是在研究人 口统计,尤其是生男生女的比例问题。 概率论和国情学的融合,统计学渐渐发展也是从这开始。在这期间时,一 些重要的理论被发现,如二项分布和大数定律。