离散时间系统与z变换分析法(一)
离散时间信号与系统的复频域分析——z变换ppt
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析
离散时间系统与z变换简介
离散时间系统与z变换简介离散时间系统是一种在时间轴上以离散方式运行的系统。
在这种系统中,信号的取样是在特定的时间间隔内进行的,而不是连续地采样。
离散时间系统可以用于模拟实际世界中的许多系统,如数字信号处理、数字滤波器和控制系统等。
离散时间系统的数学表达通常使用z变换。
z变换是一种将离散时间信号转换为复平面上的函数的变换。
它与连续时间系统中的拉普拉斯变换类似,但在z变换中,时间是用离散的步长表示的。
z变换将离散时间系统中的差分方程转换为复平面上的代数表达式,从而方便了对系统的分析和设计。
在离散时间系统中,信号和系统的运算通常使用差分方程进行描述。
差分方程是一种递推关系,它将当前时间步的输入和输出与其之前的时间步的输入和输出之间建立起关联。
z变换提供了一种将这些差分方程转换为代数方程的方法,从而可以更方便地分析系统的特性。
使用z变换,可以计算离散时间系统的频率响应、稳定性和传输函数等重要性质。
频率响应描述了系统对不同频率输入的响应。
稳定性判断了系统是否能够产生有界的输出,而传输函数则表示系统输入和输出之间的关系。
总结来说,离散时间系统是一种以离散方式运行的系统,可以使用z变换进行数学建模和分析。
z变换将离散时间信号和系统转换为复平面上的函数,方便了对系统的频率响应、稳定性和传输函数等特性进行研究。
离散时间系统和z变换在数字信号处理和控制系统等领域具有广泛的应用。
离散时间系统是现代通信、信号处理、控制系统等领域中的核心概念之一。
离散时间系统可以通过对输入信号进行离散采样,以特定的时间间隔获取信号的采样值,从而实现在离散时间点上对信号进行处理和操作。
与连续时间系统不同,离散时间系统的输入和输出信号在时间上都是离散的。
离散时间系统的分析和设计常常采用差分方程描述。
差分方程是一种递推关系,它表达了当前时间步的输入和输出与之前时间步的输入和输出之间的关系。
在离散时间系统中,z变换是一种非常重要的数学工具。
z变换将离散时间信号转换为复平面上的函数,从而方便了对离散时间系统进行数学建模和分析。
第二章 z变换与离散时间傅里叶变换(DTFT)
2.2 z变换
定义: X ( z ) = ΖT [ x (n) ]
注意符号:时域小写 x 变换域大写 X
= ∑ x(n)z − n
n =−∞ ∞
∞
=
n =−∞
∑ x(n)r
− n − jω n
e
复变量: z = re jω ,复平面上的点 r = z 幅度,到原点的距离 ω 数字角频率, 与水平轴之间的夹角
重叠区域。一般缩小,个别扩大
十一、时域乘积定理 x(n) ⋅ h(n) ←⎯ → X ( z) ∗ H ( z) Rx − Rh− < z < Rx + Rh + 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ X (ν )H ⎜ 2π j C ν ⎝ ⎠ 1 ⎛ z ⎞ −1 = ⎟ν dν ∫ H (ν )X ⎜ 2π j C ν ⎝ ⎠
Rx − < z < Rx +
Rx − < z < Rx +
2.4 z变换的基本性质和定理
若
ZT x(n) ←⎯→ X ( z)
Rx − < z < Rx +
五、共轭序列 x *(n) ←⎯ → X * ( z *)
Rx − < z < Rx +
六、翻摺序列
⎛1⎞ → X ⎜ ⎟, x(− n) ←⎯ ⎝z⎠ 1 1 < z < Rx + Rx −
实用公式——根据极点的阶,用相应的公式求留数
若zr 是X ( z )z n -1 的多重极点(l 阶极点),则该点处的留数
n -1 ⎤ X z Res ⎡ ( )z ⎣ ⎦ z = zr
1 d l −1 ⎡ l = ⋅ l −1 ( z − zr ) X ( z )z n -1 ⎤ ⎦ z = zr ( l-1)! dz ⎣
离散时间信号、系统和Z变换
冲激信号的强度压缩到原信号的1/2。
第二章信号分析和处理基础
设时域离散系统的输入为x(n),经过规定的运算,系统输出序 列用 y(n) 表示。设运算关系用 T [· ] 表示,输出与输入之间关 系用下式表示:
y(n)=T[x(n)]
其框图如图所示:
在时域离散系统中,最重要的是线性时不变系统,因为很多物 理过程可用这类系统表征。
e j(ω +2πM)n= e jω n,
0 0
M=0,〒1,〒2…
复指数序列具有以2π为周期的周期性。
指数信号
表达式:
f (t ) K e
直流(常数) 指数衰减
指数增长
t
f (t )
0
K
a0 a0 a0
0 0
O
t
重要特性:其对时间的微分和积分仍然是指数形式。
通常把 称为指数信号的时间常数,记作,代表 信号衰减速度,具有时间的量纲。
设输入为x1(n)和x2(n)时,输出分别为y1(n)和y2(n),即: T[ax1(n)] =3ax1(n)+4;
例2 已知f(t)的波形如图所示,试画出f(-3t-2)的波形
1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4
f(t)
-3
-2
-1
0 f(t-2)
1
2
3
4
-3
-2
-1
0
1 f(3t-2)
2
3
4
-3
-2
-1
0
1 f(-3t-2)
2
列就是时域离散信号。 实际信号处理中,这些数字序列值按顺序放在存贮器中,此时 nT 代表
z变换与离散时间傅里叶变换(DTFT)
az
n 1
1 az
az 1 z 1/ a
an zn
n0
1 1 az1
az1 1 z a
当 a 1时,无公共收敛域,X(z)不存在
当a
1时,X (z)
az 1 az
1
1 az
1
z(1 a2 ) (1 az)(z a)
Roc : a < z 1/ a
j Im[z]
零点:z 0, 极点:z a,a1
1)有限长序列
x(n)
x(n) 0
n1 n n2 其它n
n2
其Z变换:X (z) x(n)zn
n n1
Roc至少为: 0 z
j Im[z]
Re[z] 0
• 除0和∞两点是否收敛与n1和n2取值情况 有关外,整个z 平面均收敛。
X (z) x(n1)zn1 x(n1 1)z(n11) x(1)z1 x(0)z0 x(1)z1 x(n2 1)z(n21) x(n2 )zn2
[n]ZT 1,0 z
δ [n]zn 1 n
收敛域应是整个z的闭平面
例2:求x(n)=RN(n)的z变换及其收敛域
解:X(z)= x(n)zn = RN (n)zn
n
n
N 1
=
zn
1 zN 1 z1
n0
zN 1 z N 1(z 1)
n2 qn qn1 qn2 1
n n1
z
4
4
z
z n 1
z
1/
4
z
4
4n2
15
x(n) 4n u(n 1) 4n2 u(n 2)
15
15
j Im[z]
C
第二章z变换
ˆ ( s ) Lx (t ) L x(nT ) (t nT ) Xs s n
st ˆ s x t e st dt XS x(nT ) (t nT )e dt s n
解:
X 1 ( z ) Z x1[n] a n z n
n0
如果|z|>a, 则上面的级数收敛, 1 z n n X1 ( z) a z 1 za 1 az n0
X 2 ( z ) Z x2 [n]
n
z a
(a n ) z n
lim
n
an1 ρ an
2.根值判定法 即令正项级数的一般项 a n 的n次根的极限等于,
lim n a n
n
则
<1:收敛 =1:可能收敛也可能发散 >1:发散
例2.1
例已知两序列分别为x1[n]=anu[n], x2[n]= -anu[-n-1],分别 求它们的z变换,并确定它们的收敛域。
1
a z 1 (a 1 z ) n
n n n 1 n0
1 z 1 1 1 a z z a
za
两个不同的序列对应于相同的z变换,但它们的收敛域不同。
三 几类序列的Z变换收敛域
1、有限长序列 此序列只在有限的区间(n1n n2)具有非零的有限值, 此时,Z变换为: n2
n
b u ( n 1)z
n
n
= a z
n n 0
n
n
b
n 0
1
z
n
= a z
基于Matlab语言的线性离散系统的Z变换分析法
基于Matlab语言的线性离散系统的Z变换分析法实验一基于Matlab语言的线性离散系统的Z变换分析法班级: 姓名: 学号: 日期:一、实验目的:1、学习并掌握Matlab语言离散时间系统模型建立方法;2.学习离散传递函数的留数分析与编程实现的方法;3.学习并掌握脉冲与阶跃的编程方法;4.理解与分析离散传递函数不同极点的时间响应特点。
二、实验工具:1MATLAB软件(6、5以上版本);2每人计算机一台。
三、实验内容:1在Matlab语言平台上,通过给定的离散时间系统差分方程,理解课程中Z变换定义,掌握信号与线性系统模型之间Z传递函数的几种形式表示方法;2学习语言编程中的Z变换传递函数如何计算与显示相应的离散点序列的操作与实现的方法,深刻理解课程中Z变换的逆变换;3通过编程,掌握传递函数的极点与留数的计算方法,加深理解G(z)/z的分式方法实现过程;4通过系统的脉冲响应编程实现,理解输出响应的离散点序列的本质,即逆变换的实现过程;5通过编程分析,理解系统单位阶跃响应的Z变换就是系统的传递函数与单位阶跃函数Z变换,并完成响应的脉冲离散序列点的计算;6通过程序设计,理解课程中的不同的传递函数极点对系统动态行为的影响,如单独极点、复极点对响应的影响。
四、实验步骤:(一)传递函数的零极点程序: 结果:numg=[0、1 0、03 -0、07];deng=[1 -2、7 2、42 -0、72];g=tf(numg,deng,-1)get(g);[nn dd]=tfdata(g,'v')[zz,pp,kk]=zpkdata(g,'v')hold onpzmap(g), hold offaxis equal(二)留数法程序:numg=[2 -2、2 0、65];deng=[1 -0、6728 0、0463 0、4860];[rGoz, pGoz,other]=residue(numg,[deng 0])G=tf(numg,deng,-1)impulse(G)[y,k]=impulse(G);stem(k,y,'filled');impulse(G)结果:rGoz = 0、4905 + 0、0122i0、4905 - 0、0122i-2、31851、3374pGoz = 0、6364 + 0、6364i0、6364 - 0、6364i-0、6000other = []Transfer function:2 z^2 - 2、2 z + 0、65-----------------------------------z^3 - 0、6728 z^2 + 0、0463 z + 0、486Sampling time: unspecified(三)不同位置的根对系统的影响1)2个共轭极点(左圆内)+1实极点(圆内)P1 =0、6364 + 0、6364iP2=0、6364 - 0、6364iP3=-0、6000程序: 结果:zz3=[-0、2 0、4];pp3=[-0、6 0、6364+0、6364i 0、6364-0、6364i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,50);stem(k,y,'filled'),grid2)2个共轭极点(右圆内)+1实极点(圆内)P1= -0、8592 P2= -0、0932 + 0、4558i P3= -0、0932 - 0、4558i 程序: 结果:zz3=[-0、2 0、4];pp3=[-0、8592 -0、0932+0、4558i -0、0932-0、4558i]; kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,50);stem(k,y,'filled'),grid3)2个共轭极点(圆上)+1实极点(圆内)p1=0、6+0、8i p2=0、6-0、8i p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[-0、8592 -0、6+0、8i -0、6-0、8i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid4、2个共轭极点(虚轴上)+1实极点(圆内)p1=i p2= -i p3= -0、6程序: 结果:zz3=[-0、2 0、4];pp3=[-0、6 i -i];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid5、2个实极点(圆内)+1个实极点(圆外)p1=2 p2=0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[2 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid6、2个实极点(圆内)+1个实极点(圆上)p1=1 p2=0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[1 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),gridp1=1 p2=-0、8 p3=-0、6程序: 结果:zz3=[-0、2 0、4];pp3=[1 0、8 -0、6];kk3=2;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);[y,k]=impulse(eg3,100);stem(k,y,'filled'),grid五、实验报告要求1、根据实验结果,分析离散传递函数不同极点的时间响应特点2、通过程序设计,分析不同的传递函数极点如:单极点、复极点、重根极点对系统动态行为的影响3、分析留数法的意义,根据系统的阶跃响应判别系统的稳定性4、对Z变换的进一步思考六、实验结果:1、根据实验结果,分析离散传递函数不同极点的时间响应特点。
数字信号处理-z变换与离散时间傅立叶变换(DTFT)
N a i y i ( n ) T a i xi ( n ) i 1 i 1
N
9
4.移不变系统
——系统的响应与激励施加于系统的时刻无关
x ( n)
移位m
T[ ]
T [ x(n m)]
x ( n)
T[ ]
移位m
y ( n m)
10
5.单位抽样响应与卷积和
序列x(n)的Fourier反变换定义:
a<-1
0<a<1
-1<a<0
a=1
a=-1
7
5.复指数序列 x(n) Ca n
x(n) C a n cos(0 n ) j sin( 0 n )
|a|=1
C C e j a a e j0
|a|>1
|a|<1
8
3.线性系统
——满足叠加原理(可加性、比例性)
15
1.1 z变换的定义
序列x(n)的Z变换定义为:
X ( z) Z x(n) x(n) z
n
n
Z是复变量,所在的平面称为Z平面
16
1.2 z变换的收敛域
对于任意给定的序列x(n),使其Z变换X(z)收敛的所有z值
的集合称为X(z)的收敛域(Region of convergence,ROC)。
=X (e
jT
ˆ ( j ) ) X a
抽样序列在单位圆上的z变换=其理想抽样信号的傅里叶变换
52
第五节 序列的傅立叶变换(DTFT)
5.1 序列的傅立叶变换定义
序列x(n)的Fourier变换定义:
X (e ) DTFT [ x(n)]
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析
实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
数字信号处理——第2章 离散时间傅里叶变换与Z变换
• 总结:
①序列ZT的收敛域以极点为边界(包含0 和 ②收敛域内不含任何极点,可以包含0 ③相同的零极点可能对应不同的收敛域,即: 不同的序列可能有相同的ZT ④收敛域汇总:右外、左内、双环、有限长z平面
)
常见典型序列z变换
序列 Z变换 收敛域
z a
z b
注意:只有z变换和它的收敛域两者在一起才和序列相对应。 其它序列见P54: 表2-1 几种序列的z变换
2.3
z反变换
Z反变换: 从X(z)中还原出原序列x(n)
X ( z ) ZT [ x ( n)]
n
x (n) z n
实质:求X(z)幂级数展开式
Z反变换的求解方法: 留数定理法
部分分式法
长除法
1. 留数定理法
根据复变函数理论,可以推导出
x ( n)
1 2 j
X ( z ) z n 1dz
1 1 3z 1
n
z 2
2 n u ( n)
z 3
3
n
n
u (n 1)
x n 2 u n 3 u n 1
3. 幂级数法(长除法)
如果序列的ZT能表示成幂级数的形式,则序列x(n) 是幂 级数 说明: ①这种方法只对某些特殊的ZT有效。 ②如果ZT为有理函数,可用长除法将X(z)展开成幂级 数。 若为右边序列(特例:因果序列),将X(z)展开成负幂 级数; 若为左边序列(特例:反因果序列),将X(z)展开成正 幂级数; 中
z z 1 1 X z 1 z 2 z 3 1 2z 1 3 z 1
1 ZT [a u (n)] z a 1 1 az 1 n ZT [a u (n 1)] z a 1 1 az
实验一 基于matlab语言的线性离散系统的z变换分析法1(1)
实验一基于MATLAB语言的线性离散系统的Z变换分析法一、实验目的1. 学习并掌握 Matlab 语言离散时间系统模型建立方法;2.学习离散传递函数的留数分析与编程实现的方法;3.学习并掌握脉冲和阶跃响应的编程方法;4.理解与分析离散传递函数不同极点的时间响应特点。
二、实验工具1. MATLAB 软件(6.5 以上版本);2. 每人计算机一台。
三、实验内容1. 在Matlab语言平台上,通过给定的离散时间系统差分方程,理解课程中Z变换定义,掌握信号与线性系统模型之间Z传递函数的几种形式表示方法;2. 学习语言编程中的Z变换传递函数如何计算与显示相应的离散点序列的操作与实现的方法,深刻理解课程中Z变换的逆变换;3. 通过编程,掌握传递函数的极点与留数的计算方法,加深理解G(z)/z 的分式方法实现过程;4. 通过系统的脉冲响应编程实现,理解输出响应的离散点序列的本质,即逆变换的实现过程;5. 通过编程分析,理解系统的Z传递函数等于单位脉冲响应的Z变换,并完成响应的脉冲离散序列点的计算;6. 通过程序设计,理解课程中脉冲传递函数极点对系统动态行为的影响,如单独极点、复极点对响应的影响。
四、实验步骤1.创建系统How to create digital system g Four examples are as follows:numg=[0.1 0.03 -0.07];deng=[1 -2.7 2.42 -0.72];g=tf(numg,deng,-1)get(g);[nn dd]=tfdata(g,'v')[zz,pp,kk]=zpkdata(g,'v')Unite circle region with distrbuting zeros points and poles points hold onpzmap(g), hold offaxis equal运行结果:2.转换为零极点标准形式Convert from tf(z-function) to zpk(z-function) Part C exercise form gg=zpk(g)[zz,pp,kk tts]=zpkdata(gg,'v')[z,p k,ts]=zpkdata(g,'v')运行结果:3.四个例子Four examples are as follows:Part A exerciseeg1mun=[1.25 -1.25,0.30];eg1den=[1 -1.05 0.80 -0.10];eg1=tf(eg1mun,eg1den,-1);eg1zpk=zpk(eg1);[zz1,pp1,kk1,tts1]=zpkdata(eg1zpk,'v');Part B exerciseeg2mun=[0.84 -0.062 -0.156 0.058];eg2den=[1 -1.03 0.22 0.094 0.05];eg2=tf(eg2mun,eg2den,-1);eg2zpk=zpk(eg2);[zz2,pp2,kk2,tts2]=zpkdata(eg2zpk,'v');Part C exercisezz3=[-0.2 0.4];pp3=[0.6 0.5+0.75i 0.5-0.75i 0.3];kk3=150;tts3=-1;eg3zpk=zpk(zz3,pp3,kk3,tts3);eg3=tf(eg3zpk);Part D exercisezz4=[-0.3 0.4+0.2i 0.4-0.2i];pp4=[-0.6 -0.3,0.5 0.6];kk4=5;tts4=-1;eg4zpk=zpk(zz4,pp4,kk4,tts4);eg4=tf(eg4zpk);4.留数法Residue method and impluse response numg=[2 -2.2 0.65];deng=[1 -0.6728 0.0463 0.4860]; [rGoz, pGoz,other]=residue(numg,[deng 0]) [mag_pGoz,theta_pGoz] =xy2p(pGoz)[mag-rGoz,theta-rGoz]=xy2p(rGoz)G=tf(numg,deng,-1)impulse(G)[y,k]=impulse(G);stem(k,y,'filled');impulse(G)运行结果:5.复杂极点响应When transfer function is G(Z) with complex ,t=t*ts;pole of z=e^(+-j*30*pi/3) and z=-0.5,as well as its gain value is unit step signal,its collecting cycle is 0.5 second,how to analyze its response.gcfts=0.3;num=[1 0.5];den=conv([1 -exp(i*pi/3)],[1 -exp(-i*pi/3)]);g1=tf(num,den,ts)[y,k]=impulse(g1,20);stem(k,y,'filled'),grid运行结果:6.重极点响应How to analyze response with repeating poles dtime=[0:90];y(k+2)-1.8y(k+1)+0.81y(k)=3u(k+1)-1.2u(k) yi=impulse(gstep,dtime)gcfnum=[3 -1.2];den=[1 -1.8 0.81];[rGoz, pGoz,other]=residue(num,[den 0])t=0:60;y=rGoz(2,1).*(t.*(pGoz(2,1).^(t-1)))+rGoz(1,1).*(pGoz(1,1).^(t)) y1=zeros(1,61);y1(1,1)=rGoz(3,1);y=y+y1;t=ts*t;stem(t,y,'filled'),gridSpecial example about difference real pole tosystem response[rGoz,pGoz,other]=residue(num,[den,0])num1=[rGoz(1) 0];den1=[1 -pGoz(1)]gg1=tf(num1,den1,ts)[y,t]=impulse(gg1,50)stem(t,y,'filled'),grid运行结果:7.阶跃响应numg=[2 -2.2 0.56];deng=[1 -0.6728 0.0463 0.4860];g=tf(numg,deng,1);numgstep=[numg 0];dengstep=conv(deng,[1 -1]);gstep=tf(numgstep,dengstep,1)dtime=[0:90];yi=impulse(gstep,dtime)subplot(2,1,1)stem(dtime,yi,'filled')ys=step(g,dtime);subplot(2,1,2)stem(dtime,ys,'filled')dcgain(g)ys_ss=ys(end)ys_ss=ys(max(dtime))运行结果:Example 1: Analysis of subsection input function subplot(1,1,1)num=[2 -2.2 0.56];den=[1 -0.6728 0.0463 0.4860];ts=0.2;g=tf(num,den,ts);dtime=[0:ts:8]';u=2.0*ones(size(dtime));ii=find(dtime>=2.0); u(ii)=0.5;y=lsim(g,u,dtime);stem(dtime,y,'filled'),gridhold onplot(dtime,u,'o')hold offtext(2.3,-1.8,'output')text(1.6,2.3,'input')运行结果:五、实验思考1、根据实验结果,分析离散传递函数不同极点的时间响应特点。
第六章(1) Z变换
k1
k2
k
6.1例6.1-2求因果序列
0 f1(k) = a ε (k) = k a
k
k <0 k ≥0
Im[z]
变换(式中a为常数). 的z变换(式中a为常数). 解: F (z) = 1
|a| 0
k =∞
∑a ε (k)z
k
∞
k
= ∑(az )
k =0
∞
Re[z]
1 k
1 z = 1 az1 = z a
z b ε (k 1) z b z k (b) ε (k 1) z +b
k
z <b z <b
令b=1,则有 b=1,
a=e
± jβ
则有
z e ε (k) jβ z e z jβk e ε (k) jβ z e
jβk
z ε (k 1) z <1 z 1 z >1
z >1
本节小结
1,Z变换的确定 , 变换的确定 2,收敛域的确定 2,
因果序列的收敛域
z>a
平面上, |z|>|a|是一个半径为|a|的圆 是一个半径为|a| 在z平面上, |z|>|a|是一个半径为|a|的圆 外区域,称其为象函数F(z)的收敛域,如图所示. F(z)的收敛域 外区域,称其为象函数F(z)的收敛域,如图所示. 显然它也是单边z变换的收敛域. 显然它也是单边z变换的收敛域. 它也是单边
第8章 z变换离散时间系统的z变换分析
-n -n
收敛域 为 z >1
3. 斜变序列
间接求 解方法 已知 两边对(z -1)求导
两边乘(z -1)
∴
同理,两边再求导,得
…
4. 指数序列
x(n) a n u(n)
运用留数定理来进行运算。又称为留数法,即
f (n) Res[F ( z )z n1 ]z pm
m
略!
二、幂级数展开法(长除法)
F ( z ) f (n)z n f (0) f (1)z 1 f ( 2)z -2
n 0
!
一般为变量z的有理分式,可用长除法,
例
s = 2,
例题 解
求x(n) = ?
∴
∴
见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性 若 x(n) ←→ X(z) y(n) ←→ Y(z)
则
Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
ax(n) + by(n) ←→ aX(z) + bY(z)
F ( z ) f (0) f (1) z 1 f (2) z 2
所以
f (0) 0, f (1) 1, f (2) 0, f (3) 3, f (4) 4,
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) (|z|>R) ← Z → x(n)
对于N阶LTI离散系统的差分方程:
2.z变换与离散时间傅里叶变换(DTFT)
z 变换与离散时间Fourier 1、z 变换2、离散时间3、序列的z Fourier 变换的关系4、离散系统的系统函数,系统的频率响应信号与系统的分析方法:时域分析方法 变换域分析方法连续时间信号与系统: Fourier Laplace离散时间信号与系统: z 变换离散时间信号与系统的分析方法2.1.1 z 变换的定义2.1 z 变换:z X )(其中成一个复平面,称为ωj e r z ⋅=(x z 反变换:其中,积分路径是在逆时针旋转的闭合围线。
在数字信号处理中,不需要用围线积分来求2.1.2 z 变换的收敛域对任意给定序列的所有z 值的集合称为z 变换公式的级数收敛的充要条件是满足绝对可和,对某一具体的使该不等式成立,这个域,收敛域内不能有极点。
n ∞=−∞∑2.1.3 4 种典型序列的除0 和∞两点是否收敛与n 1和n 2取值情况有关外,整个z 平面均收敛。
1. 有限长序列x (n ) 只在n 1≤n ()()z X z x n 其变换:即要求: ROC 至少为:1()()X z x n z −=0(0)x z +如果n 2 ≤0 n 1<0,n 2≤如果n 1≥0 n 1≥0,n 2> 0如果n 1< 0 <n 1<0,n 2 > 0 1100n n Roc ∴≥<当时, 当时, 因果序列的处收敛在∞处收敛的变换,其序列必为因果序列在工程中,人们感兴趣的主要是因果序列。
1()()n n X z x n ∞==∑2. 右边序列x (n ) 在n ≥n 1时有值,在2200n n Roc ∴≤>当时, 当时,2()()()n n n X z x n x n =−∞=−∞==∑∑3. 左边序列x (n ) 在n ≤n 2 时有值,在x x x x x R R R R z R −+−++∴≥<<<当时, 当时,0()()()nn n X z x n x n z ∞−=−∞==∑ Roc: 0≤前式 Roc: x R −后式4. 双边序列n 为任意值时x 例1:x (n )=δ(变换及收敛域。
第七章 z变换、离散时间系统的z域分析 PPT课件
1
n
u(n)的z变换,
2
3
并标明收敛域,绘出零极点图。
解:Zx(n)
x(n)zn
1
n
z
+
n
1
n
z
n
1
n
+
1
n
n-
n0 2
n0 3
n0 2z n0 3z
当 1 2z
1即 z
1时,
1
n
2 n0 2z
1 1-1/(2z)
z z1
2
当1 3z
1即 z
1时,
1
n
X (z) k A
m
z
m0 z z
m
其中,z 是 X (z)的极点,z 0。
m
z
0
A m
z
z m
X (z) z
zzm
k
X (z)
Az m
m0 z z
m
k
m0
A m
z m
n
u
(
n),
(右边Fra bibliotek序列
)
x(n)
Z
X 1
(z)
Z
1
k
m0
A m
z
z z
m
k
m0
A m
z m
n
u(n
1),(左边序列)
级数的系数就是序列x(n)。
• 右边序列,N(z)、D(z)按z的降幂(或z-1的升幂)排列
X (z) x(n)zn x(0)z0 x(1)z1 x(2)z2 n0
• 左边序列,N(z)、D(z)按z的升幂(或z-1的降幂)排列
1
X (z) x(n)zn x(1)z1 x(2)z2 x(3)z3 n
第八章1Z变换
1.离散时间信号-序列 2.离散时间系统的数学模型 3.常系数线性差分方程的求解 4.离散时间系统的单位样值(冲激)响应 5.卷积 6.反卷积
差分方程与微分方程的转换
差分方程与微分方程:
对连续y(t ), 若在t nT 各点取样值y(nT ), 且T 足够小
y(nT ) n 1 T dy(t ) y 则 dt T
小结
j Im[z]
有限长序列
Re[z ]
1 例:已知 x(n) [u (n) u (n 8)] 3 求其Z变换,并作出极零点图 ,画出收敛域。
n
j Im[z]
右边序列
Rx1
Re[z ]
1 例:已知 x(n) u (n) 3 求其Z变换,并作出极零点图 ,画出收敛域。
例:RC低通滤波器
dy(t ) Rc y (t ) x (t ) dt y (n 1) y (n ) RC y (n) x(n) T T T y (n 1) (1 ) y (n ) x(n) RC RC
课后习题7-26
差分方程可以解决很多实际中的离散问题 习题7-27:海诺塔问题
y(10) 1023
N-1个移动 N-1个移动
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个 古老传说的益智玩具(也说起源于越南河內附近一個 不知名小村庄的寺庙)。
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北 部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天 在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的 64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣 在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针 上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿 好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭, 而梵塔、庙宇和众生也都将同归于尽。
离散系统_1(z变换) 自动控制原理 浙江大学考研资料
*
求e*(t) *(t)的拉氏变换 t 0 ,求
E ( s ) e nT e 2 nT e nTs
n 0
1
T ( s 1)
1 e 1 e T ( s 2) (e T e 2T )eTs Ts T Ts 2T (e e )(e e )
8
离散系统基本概念——计算机控制
9
离散系统基本概念——计算机控制
连续时间控制系统——系统中所有环节的信号均为时间的连续函数,简称连续系统。 系统中所有环节的信号均为时间的连续函数 简称连续系统 线性离散时间控制系统——当系统中含有采样开关或数字处理环节时,系统中便有离 散的数字序列信号存在 简称离散系统 散的数字序列信号存在,简称离散系统
13
离散系统基本概念——简介
分析采样系统的时域响应特性和稳定性的方法可以分为两类:
(1) 直接法 (DIR) (----在 z 平面) (2) 数字化 (DIG, digitalization) 或 离散 数字控制分析方法. 对 数字控制系统的分析与设计可以采用Matlab等分析工具来进行.
比较繁琐 eTs是s的超越函 数
1
26
采样与采样过程——3. 理想采样
• 问题:(1) 在理论上,采样后的信号 f*(t)能否保证恢复原连续信号 f(t) (即 f*(t)是否包含了f(t) 的主要特征? )(2) 在实际应用中,如何实 现控制系统前向通道传递函数的低通特性(即过滤采样后f f*( (t)中的高 频信号,仅保留主频信号——其仅在幅值上与原信号相差1/T倍)? • 采样定理:为了能不失真地从离散信号中恢复原有的连续信号,
e(t )
实验三 z变换及离散时间LTI系统的z域分析
实验三 z 变换及离散时间LTI 系统的z 域分析一. 实验目的● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点;● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ●学会运用MATLAB 进行离散时间系统的频率特性分析。
二.实验原理及实例分析 1. z 正反变换序列()n x 的z 变换定义为()()[]()∑∞-∞=-==n nzn x n x z X Z (3-1)其中,符号Z 表示取z 变换,z 是复变量。
相应地,单边z 变换定义为()()[]()∑∞=-==0n n z n x n x z X Z (3-2)MATLAB 符号数学工具箱提供了计算离散时间信号单边z 变换的函数ztrans 和z 反变换函数iztrans ,其语句格式分别为Z=ztrans(x) x=iztrans(z)上式中的x 和Z 分别为时域表达式和z 域表达式的符号表示,可通过sym 函数来定义。
注意:符号变量和符号表达式在使用前必须说明;matlab 提供了两个建立符号变量的函数:sym 和syms ,两个函数的用法不同 (1)sym 函数用来建立单个符号变量,调用格式: 符号变量名=sym('符号字符串')该函数可以建立一个符号量,符号字符串也可以是常量、变量、函数或表达式。
>>f1=sym(‘a x^2+b x+c ’) %创建符号变量f1和一个符号表达式(2)函数sym 一次只能定义一个符号变量,而syms 函数一次可以定义多个符号变量,调用格式为:syms 符号变量名1 符号变量名2 … 符号变量名n用这种格式定义符号变量时不要在变量名上加字符串分界符('),变量间用空格而不要用逗号分隔。
>> syms a b c x(3)MATLAB 提供的对符号表达式化简的函数有: simplify(s)【实例3-1】 试用ztrans 函数求下列函数的z 变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)单根 n k k k y zi ( k ) = A1γ 1 + A2γ 2 + L + Anγ n = ∑ Aiγ ik 式中待定系统由初始值 y zi (0), y zi (1), y zi ( 2),L , y zi ( n − 1) 确定 A1 + A2 + L + An = y zi (0) A1γ 1 + A2γ 2 + L + Anγ n = y zi (1)
2004年12月24日8时49分
5.4 离散时间系统的零输入响应(2)
法二:一般方法 y zi ( k + 1) − ay zi ( k ) = 0 特征方程 γ − a = 0 γ =a 特征根
y zi ( k ) = Aγ k = Aa k
0 若已知 y zi (0) , 则有 y zi (0) = Aa = A
= bm x ( k − m ) + bm −1 x( k − m + 1) + L + b1 x( k − 1) + b0 x ( k )
或
10
∑ a y( k − i ) = ∑ b x( k − j )
i =0 i j =0 j
n
m
m≤n
2004年12月24日8时49分
电路基础教学部
5.2离散时间系统的数学模型—差分方程(2)
f 如: ( k ) = {1, − 2,3,0,4}
k=0的位置,即f(0)=-2
函数式
f 如: ( k ) = ( −1) k ( k + 1)U ( k )
f (k )
图形
如
−2
2 1 −1 −2 1
0 1
2 2
3 k
4
电路基础教学部
2004年12月24日8时49分
5.1.2 常见离散时间信号
单位函数δ (k )
⎧1 k = 0 δ (k ) = ⎨ ⎩0 k ≠ 0
δ (k )
1 0
U (k )
k
单位阶跃序列 U (k )
⎧1 k ≥ 0 U (k ) = ⎨ ⎩0 k < 0
1 0
1 1 2
1 3
1ห้องสมุดไป่ตู้
L
k
单边指数序列
f ( k ) = a kU (k )
f ( k ) = a k U ( k ) (0 < a < 1) 1
y( k ) = b1q( k + 1) + b0 q( k )
b1
x (k)
∑
D -a1 -a0
D
b0
∑
y(k)
14
电路基础教学部
2004年12月24日8时49分
5.4 离散时间系统的零输入响应(1)
一阶差分方程
y zi ( k + 1) − ay zi ( k ) = 0
法一:递推法(迭代法)
∆f ( k ) = ∇f ( k + 1)
8
∇f ( k ) = ∆f ( k − 1)
2004年12月24日8时49分
电路基础教学部
5.1.3 离散时间信号的基本运算(4)
序列 f (k ) 的二阶前向差分 ∆2 f ( k ) = ∆[∆f ( k )] = f ( k + 2) − 2 f ( k + 1) + f ( k ) 序列 f (k ) 的二阶后向差分 ∇ 2 f ( k ) = ∇[∇f ( k )] = f ( k ) − 2 f ( k − 1) + f ( k − 2)
例: U ( k ) = ? ∇U ( k ) = ? ∆ ∆ 解: U ( k ) = U ( k + 1) − U ( k ) = δ ( k + 1) ∇U ( k ) = U ( k ) − U ( k − 1) = δ ( k ) 例:sgn( k ) = U ( k ) − U ( − k ) ∇ sgn( k ) = ? ∆ sgn( k ) = ? 解:∇ sgn( k ) = ∇U ( k ) − ∇U ( − k ) = δ ( k ) + δ ( k − 1) ∆ sgn( k ) = ∆U ( k ) − ∆U ( − k ) = δ ( k + 1) + δ ( k )
2 k U ( k − 2)
δ ( k − 2) ⋅ 2 k U ( k + 2) = ? 4δ ( k − 2)
7
电路基础教学部
2004年12月24日8时49分
5.1.3 离散时间信号的基本运算(3)
序列差分
∆f ( k ) = f ( k + 1) − f ( k ) 序列 f (k ) 的一阶前向差分 ∇f ( k ) = f ( k ) − f ( k − 1) 序列 f (k ) 的一阶后向差分
解: U ( k ) = δ ( k ) + δ ( k − 1) + δ ( k − 2) + L = ∑ δ ( k − m )
m =0
U 解: ( k + 2) − U ( k − 1) = δ ( k + 2) + δ ( k + 1) + δ ( k )
例:2 k U ( k )U ( k − 2) = ?
难于得到 y zi (k ) 的一般表达式
17
电路基础教学部
2004年12月24日8时49分
5.4 离散时间系统的零输入响应(4)
法二:一般方法 a n y zi ( k + n) + a n −1 y zi ( k + n − 1) + L + a1 y zi (1) + a0 y zi (0) = 0
差分方程的建立
例:一质点沿水平方向作直线运动,它在某一秒内所走的距离 等于前一秒内所走距离的2倍,试列出描述该质点行程的方程。 解: y(k )表示质点在第 k 秒末的行程,则依题意有 设 y( k + 2) − y( k + 1) = 2[ y( k + 1) − y( k )] 即 y( k + 2) − 3 y( k + 1) + 2 y( k ) = 0 例:试建立描述如图所示系统的差分方程。 解: RCy′( t ) + y( t ) = x ( t )
y zi ( k + 1) = ay zi ( k ) k=0 k =1
M
y zi (1) = ay zi (0) y zi ( 2) = ay zi (1) = a 2 y zi (0) y zi ( n) = a n y zi (0)
k=n
y zi ( k ) = a k y zi (0)
15
电路基础教学部
因此
y zi ( k ) = y zi (0)a k
16
电路基础教学部
2004年12月24日8时49分
5.4 离散时间系统的零输入响应(3)
n阶差分方程
a n y zi ( k + n) + a n −1 y zi ( k + n − 1) + L + a1 y zi (1) + a0 y zi (0) = 0
∑ x (k)
D -3 -2
D y(k)
13
电路基础教学部
2004年12月24日8时49分
5.3 离散时间系统的模拟(3)
y( k + 2) + a1 y( k + 1) + a0 y( k ) = b1 x( k + 1) + b0 x ( k )
引入q(k) q( k + 2) + a1q( k + 1) + a0 q( k ) = x( k )
试求 y1 ( k ) = f1 ( k ) + f 2 ( k ) 和 y2 ( k ) = f1 ( k ) f 2 ( k ) 解:
⎧ 2k k < −1 ⎪ y1 (k ) = ⎨ 7.5 k = −1 ⎪2 − k + k + 7 k ≥ 0 ⎩
6
序列相乘
0 k < −1 ⎧ ⎪ y2 (k ) = ⎨ 3.5 k = −1 ⎪k ⋅ 2−k + 2−k +1 + 5k + 10 k ≥ 0 ⎩
L
0 1 2 3
4
k
5
电路基础教学部
2004年12月24日8时49分
5.1.3 离散时间信号的基本运算(1)
序列相加
f ( k ) = f1 ( k ) + f 2 ( k ) 两序列同序号的数值逐项对应相加 f ( k ) = f1 ( k ) f 2 ( k ) 两序列同序号的数值逐项对应相乘 ⎧ 2k k<0 k < −1 ⎧ 0 例:已知序列 f1 ( k ) = ⎨ − k , f 2 (k ) = ⎨ ⎩k + 2 k ≥ 0 ⎩ 2 + 5 k ≥ −1
信号与系统 (Signal & system)
教师:徐昌彪 xucb@
2004-12-24
电路基础教学部
1
第五章 离散时间系统与Z变换分析法
5.1 离散时间信号 5.2 离散时间系统的数学模型—差分方程 5.3 离散时间系统的模拟 5.4 离散时间系统的零输入响应 5.5 离散时间系统的零状态响应 5.6 Z变换 5.7 Z反变换 5.8 Z变换的性质,ZT与LT的关系 5.9 离散时间系统的Z变换分析法 5.10 离散系统函数,离散系统稳定性判别 5.11 离散系统的频率响应特性