高一下学期期末考试数学试题

合集下载

陕西省子洲中学2024届数学高一第二学期期末达标检测试题含解析

陕西省子洲中学2024届数学高一第二学期期末达标检测试题含解析

陕西省子洲中学2024届数学高一第二学期期末达标检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在三角形ABC 中,2AB BC AC ===,、、A B C 点都在同一个球面上,此球面球心O 到平面ABC 的距离为263,点E 是线段OB 的中点,则点O 到平面AEC 的距离是( ) A .33B .63C .12D .12.在ABC △中,3AB =,1AC =,π6B =,则ABC △的面积是( ). A .32B .34C .32或34 D .32或3 3.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1204.已知{}n a 为递增等比数列47565,6a a a a +==,则110a a +=() A .152B .5C .6D .3565.已知函数,且实数,满足,若实数是函数的一个零点,那么下列不等式中不可能成立的是( ) A .B .C .D .6.已知正方体1111ABCD A B C D -中,E 、F 分别为11A D ,1A A 的中点,则异面直线EF 和1BD 所成角的余弦值为( )A .6 B 3 C 2D 67.在ABC 中,12AN AC =,点P 是直线BN 上一点,若AP mAB AC =+,则实数m 的值是( ) A .2B .1-C .14-D .548.函数ln xy x=的图象大致为( ) A . B . C .D .9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C 26D .3210.函数()cos 2f x x x π⎛⎫=- ⎪⎝⎭是( ) A .奇函数 B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数二、填空题:本大题共6小题,每小题5分,共30分。

深圳市2022-2023年高一下学期期末考试数学试卷

深圳市2022-2023年高一下学期期末考试数学试卷

深圳市2022-2023年高一下学期期末考试数学试卷一、选择题(共15题,每题2分,共30分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 设a不等于0,则关于x的一次方程ax+b=0()。

A. 无解B. 有唯一解-x/bC. 有无数解D. 无法确定2. 如果root(5)x = root(20),则x的值为()A. 1/2B. 2C. 4D. 163. 下列关于集合的说法错误的是()。

A. 空集也是集合B. 集合中元素的排列顺序可以更改C. 集合中不允许重复的元素D. 所有元素都是集合的子集4. 已知函数f(x)=log(1-x),g(x)=x-1,则f[g(10)-g(3)]的值为()。

A. 0B. 1C. -1D. 25. 在△ABC中,∠B=90度,∠C=30度,BC=2,则AC的长为()。

A. 1B. 3C. 2sqrt(3)D. sqrt(3)6. 当a+b=2时,下列哪组值可以是()。

A. a=1,b=1B. a=-1,b=3C. a=0,b=2D. a=-2,b=47. 在下列选项中,属于等比数列的是()。

A. k-5,k-3,kB. k,2k,3kC. k,k+1,k+2D. k,k^2,k^38. 关于词组“及以下”,哪项说法是错误的()。

A. 包括本身B. 不包括本身C. 只限于本身D. 这要视题意而定9. 甲,乙,丙三个数相乘为30,已知甲+乙+丙=13,丙=1,则甲的值为()。

A. -1B. 2C. 3D. 510. 式子x/sqrt(x^2+1)+1/sqrt(x^2+1)的值为()。

A. 1+sqrt(x^2+1)B. 1+x^2C. 1+1/sqrt(x^2+1)D. 1/x11. 把4800元按月存入,每月存入的金额相等,月利率为1.5%,存8个月后,本息和为()。

A. 元B. 元C. 元D. 元12. 如果正五边形的周长为20,求它的面积()。

A. 20sqrt(5)-25B. 5sqrt(5)C. 25sqrt(5)D. 2513. 设函数f(x)=3x+2,g(x)=x^2-9,四个实数a,b,c,d满足a<b,c<d,且f(a)=f(b),g(c)=g(d),则()。

江苏省苏州市2023-2024学年高一下学期6月期末考试 数学含答案

江苏省苏州市2023-2024学年高一下学期6月期末考试 数学含答案

苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学(答案在最后)2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.22.sin164sin 44cos16sin 46-= ()A.12-B.2C.12D.23.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.55.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A .等腰三角形B.锐角三角形C.直角三角形D.钝角三角形8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2233f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x=对称 D.()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增10.已知复数1z ,2z ,3z ,则下列说法正确的有()A.1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB = .(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.2【答案】B 【解析】【分析】利用复数的商的运算法则求得z ,进而可求||z .【详解】11i 1i 1i 1i (1i)(21i)z --====-++-,则2||2z ==.故选:B .2.sin164sin 44cos16sin 46-= ()A.12-B. C.12D.32【解析】【分析】利用诱导公式与两角差的正弦公式化简求值.【详解】()()sin164sin 44cos16sin 46sin 18016sin 9046cos16sin 46-=---()1sin16cos 46cos16sin 46sin 1646sin 302=-=-=-=-.故选:A.3.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.【答案】D 【解析】【分析】利用极差、中位数、平均数、标准差的定义,根据条件逐一对各个选项分析判断即可得出结果.【详解】某射击运动员射击6次,命中的环数从小到大排列如下:6,7,7,9,9,10,对A ,极差为1064-=,故A 错误;对B ,中位数为7982+=,故B 错误;对C ,平均数为677991086+++++=,故C 错误;对D ,标准差为=,故D 正确.故选:D4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.5【答案】B【分析】根据百分位数计算规则计算可得.【详解】因为()0.010.0250.035100.70.75++⨯=<,()0.010.0250.0350.02100.90.75+++⨯=>,所以第75百分位数位于[)80,90,设为x ,则()()0.010.0250.035100.02800.75x ++⨯+-=,解得82.5x =.故选:B5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒【答案】C 【解析】【分析】利用正弦定理求出C ,即可求出A .【详解】由正弦定理sin sin c b C B=,则32sin 22sin 2c B C b ⨯===,又c b <,所以60C B <=︒,所以45C =︒,所以180604575A =︒-︒-︒=︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥【答案】D 【解析】【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】对于A :若//l m ,//l α,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故A 错误;对于B :若l m ⊥,l α⊥,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故B 错误;对于C :若//αβ,l ⊂α,则//l β,又m β⊂,则l 与m 平行或异面,故C 错误;对于D :若l m ⊥,l α⊥,则//m α或m α⊂,若//m α,则在平面α内存在直线c ,使得//m c ,又m β⊥,则c β⊥,又c α⊂,所以αβ⊥;若m α⊂,又m β⊥,所以αβ⊥;综上可得,由l m ⊥,l α⊥,m β⊥,可得αβ⊥,故D 正确.故选:D7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】C 【解析】【分析】利用二倍角公式及正弦定理将角化边,即可判断.【详解】因为2cos 2cos 22cos A B C +=,所以22212sin 12sin 22sin A B C -+-=-,所以222sin sin sin A B C +=,由正弦定理可得222+=a b c ,所以ABC 为直角三角形.故选:C8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<【答案】B 【解析】【分析】计算事件M 和事件N 的概率,由互斥事件的性质和相互独立事件的定义,对选项进行判断即可.【详解】三个人随机选三篇文章研究,样本空间共33327⨯⨯=种,事件M :“三人都没选择《子归》篇”共有:2228⨯⨯=,所以()827P M =,事件N :“至少有两人选择的篇目一样”共有27621-=种,所以()1272P N =,()()1P M P N +>,所以M 与N 不互斥,A 错误,D 错误;事件MN 共有2338++=种,所以()782P MN =,B 正确;因为()()()P MN P M P N ≠,所以C 错误.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x =对称 D.()f x 在区间π,04⎛⎫-⎪⎝⎭上单调递增【答案】BD 【解析】【分析】利用二倍角公式及两角和的正弦公式化简,在根据正弦函数的性质计算可得.【详解】因为2()sin 2sin 22f x x x x x=+=+132sin 2cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭π2sin 23x ⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==,故A 错误;因为π1sin 213⎛⎫-≤+≤ ⎪⎝⎭x ,所以()2f x ≥-,故B 正确;因为πππ2sin 2663f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π6x =对称,故C 错误;当π,04x ⎛⎫∈-⎪⎝⎭,则,ππ233π6x ⎛⎫-∈ ⎝+⎪⎭,又sin y x =在ππ,63⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD10.已知复数1z ,2z ,3z ,则下列说法正确的有()A .1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =【答案】ACD 【解析】【分析】A 项,表达出12||z z 和12||||z z ,即可得出相等;B 项,作出示意图即可得出结论;C 项,写出12||z z -和12||z z +的表达式,利用120z z =得出两复数的实部和虚部的关系,即可得出结论;D 项,对1213z z z z =进行化简即可得出结论.【详解】由题意,设12i,i,,,,Rz a b z c d a b c d =+=+∈A 项,()()()12i i i z z a b c d ac bd bc ad =++=-++=12z z ==∴1212||||||z z z z =,A 正确;B 项,当120z z ->时,若两复数是虚数1z ,2z 不能比较大小,B 错误;C 项,()()1212i,i z z a c b d z z a c b d -=-+-+=+++,12z z -==12z z +==,当120z z =时,12120z z z z ==0=,∴0,0a b ==,,c d 任取,或0,0c d ==,,a b 任取,即12,z z 至少有一个为0∴1212z z z z -=+=(其中至少有两项为0),C 正确;D 项,∵1213z z z z =,∴()1230z z z -=,∵10z ≠,∴230z z -=,即23z z =,D 正确;故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为【答案】ACD 【解析】【分析】取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,即可得到正六边形LEMGKF 为平面EFG 截该正方体所得截面,求出截面面积,即可判断D ;根据线面垂直的判定定理说明A ,证明1//AD 平面EFG ,即可说明B ,根据正方体的性质判断D.【详解】如图,取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,连接GK 、KF 、FL 、LE 、EM 、MG 、11A C 、MF 、AC 、1AD ,则11//GK A C ,//EL AC ,11////A C AC MF ,所以//GK MF ,所以G 、K 、F 、M 四点共面,又//EL MF ,所以L 、E 、F 、M 四点共面,同理可证//KF ME ,所以K 、E 、F 、M 四点共面,正六边形LEMGKF 为平面EFG 截该正方体所得截面,又12EL AC ===,所以216sin 602LEMGKF S =⨯⨯⨯︒=D 正确;因为AC ⊥平面11DBB D ,1DB ⊂平面11DBB D ,所以1AC DB ⊥,则1EL DB ⊥同理可证1FL DB ⊥,又EL FL L = ,,EL FL ⊂平面LEMGKF ,所以1DB ⊥平面LEMGKF ,即1B D ⊥平面EFG ,故A 正确;因为1//GM AD ,GM ⊂平面LEMGKF ,1AD ⊄平面LEMGKF ,所以1//AD 平面LEMGKF ,即1//AD 平面EFG ,又1AH AD A = ,1,AH AD ⊂平面11AD A A ,平面EFG ⋂平面11AD A A GM =,所以AH 不平行平面EFG ,故B 错误;设O 为正方体的中心,即O 为1DB 的中点,根据正方体的性质可知1EF DB O = ,即1DB 交平面LEMGKF 于点O ,所以点1B ,D 到平面LEMGKF 的距离相等,即点1B ,D 到平面EFG 的距离相等,故D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.【答案】15##0.2【解析】【分析】求出p,利用m p ⊥ ,即可求出实数λ的值.【详解】由题意,(1,3)m = ,(4,2)n =- ,p m n λ=+,∴()4,32p λλ=+-∵m p ⊥ ,∴()()143320λλ⨯++-=,解得:15λ=,故答案为:15.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.【答案】13π【解析】【分析】证明,,HA HB HC '两两垂直,由,,HA HB HC '的边长,求出外接球半径,求表面积即可.【详解】直角三角形ABC 中,AC =2BC =,则斜边4AB =,30A = ,CH 为斜边AB 上的高,则CH =3AH =,1HB =,平面B CH '⊥平面ACH ,平面B CH ' 平面ACH CH =,B H CH '⊥,B H '⊂平面B CH ',则B H '⊥平面ACH ,又AH CH ⊥,所以,,HA HB HC '两两垂直,HC =3HA =,1HB '=,则三棱锥B ACH '-的外接球半径1322R ==,所以三棱锥B ACH '-的外接球表面积为24π13πS R ==.故答案为:13π.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.【解析】【分析】利用二倍角公式化简,即可求出C ,从而得到π3A B +=,从而将3sin 2sin A B +转化为A 的三角函数,再利用辅助角公式计算可得.【详解】因为cos 21sin 2cos 212C C C +=++,所以222cos sin 12sin cos 2cos 112C C C C C -+=+-+,即()()()cos sin cos sin 132cos cos sin 2C C C C C C C -+=+,所以cos sin 1113tan 2cos 222C C C C -=-=,所以tan C =,又()0,πC ∈,所以2π3C =,则π3A B +=,所以π3sin 2sin 3sin 2sin 3A B A A ⎛⎫+=+-⎪⎝⎭()ππ3sin 2sin cos 2cos sin 2sin33A A A A A A ϕ=+-==+,取ϕ为锐角,其中sinϕ=,cos ϕ=1sin 2ϕ=>,所以π6ϕ>,所以当π2A ϕ+=时3sin 2sin AB +.【点睛】关键点点睛:本题关键是推导出C 的值,从而将3sin 2sin A B +转化为A 的三角函数,结合辅助角公式求出最大值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先证BC ⊥平面PAB ,有BC AG ⊥,再由AG PB ⊥,可证AG ⊥平面PBC ;(2)连接BE 交AF于点H ,由AHE FHB ≅ ,得H 为BE 中点,可得//GH PE ,线面平行的判定定理得//PE 平面AFG .【小问1详解】底面ABCD 为矩形,所以BC AB ⊥,PA ⊥底面ABCD ,BC ⊂底面ABCD ,则PA BC ⊥,AB PA A = ,,AB PA ⊂平面PAB ,则BC ⊥平面PAB ,AG ⊂平面PAB ,所以BC AG ⊥,又PA AB =,G 为PB 中点,则AG PB ⊥,,BC PB ⊂平面PBC ,BC PB B = ,所以AG ⊥平面PBC .【小问2详解】连接BE 交AF 于点H ,连接GH ,由四边形ABCD 为矩形,,E F 分别为,AD BC 中点,所以AHE FHB ≅ ,则BH HE =,即H 为BE 中点,又因为G 为BP 中点,有//GH PE ,GH Ì平面AFG ,PE ⊄平面AFG ,所以//PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.【答案】(1)()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=(2)()12P A =,()14P B =,()13P C =(3)()34P A B C ⋃⋃=【解析】【分析】(1)根据事件的定义列出样本空间即可;(2)根据古典概型概率计算公式计算即可;(3)根据古典概型概率计算公式计算即可.【小问1详解】样本空间()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=,Ω共有12个基本事件;【小问2详解】事件A 的基本事件为:()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4共6个基本事件,所以()12P A =,事件B 的基本事件为:()()(){}1,3,2,3,4,3共3个基本事件,所以()14P B =,事件C 的基本事件为:()()()(){}1,42,4,4,1,4,2共4个基本事件,所以()13P C =,【小问3详解】事件A ,B ,C 中至少有一个发生的基本事件为:()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,44,1,4,2,4,3共9个基本事件,所以()34P A B C ⋃⋃=.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.【答案】(1)12(2)7【解析】【分析】(1)由sin 14ABD ∠=,有cos 14ABD ∠=,又120AEB ∠= ,AEB △中,()sin sin BAE AEB ABD ∠=∠+∠,求值后由正弦定理求线段AE 的长;(2)在AED △和AEB △中,余弦定理得22222AB AD AE +=+,又:AB AD =解得13AE =,在ACD 中,由余弦定理求cos ADC ∠,再得sin ADC ∠.【小问1详解】因为BCE 为等边三角形,所以120AEB ∠= ,又sin 14ABD ∠=,所以cos 14ABD ∠=,在AEB △中,()()sin sin 180sin BAE AEB ABD AEB ABD ⎡⎤∠=-∠+∠=∠+∠⎣⎦,所以21sin sin cos cos sin 7BAE AEB ABD AEB ABD ∠=∠∠+∠∠=,由正弦定理得sin sin AE BEABD BAE =∠∠,21sin 114sin 2217BE ABD AE BAE ⋅∠===∠.【小问2详解】()cos cos 180cos AED AEB AEB ∠=-∠=-∠ ,1DE BE ==,在AED △中,由余弦定理,2222cos AD AE DE AE DE AED =+-⋅⋅∠,在AEB △中,由余弦定理,2222cos AB AE BE AE BE AEB =+-⋅⋅∠两式相加得222222222AB AD AE DE BE AE +=++=+,因为:AB AD =,所以设AB =,AD =,则AE =,在AEB △中,120AEB ∠= ,由余弦定理得,2222cos AB AE BE AE BE AEB =+-⋅⋅∠,得2211310112m m ⎛⎫=-+-- ⎪⎝⎭,化简得23m =由0m >,解得1m =或13m =,当1m =时,3AE BD =>,不合题意,舍去;当13m =时,13AE BD =<,符合题意,所以13AE =,43AC AE EC =+=,73AD ==,在DCE △中,1CE DE ==,120DEC ︒=∠,可得CD =,在ACD中,由余弦定理,222cos 2AD CD AC ADC AD CD+-∠==⋅,所以sin 7ADC ∠=.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.【答案】(1)2(2)68,1111x y =-=(3)7-【解析】【分析】(1)由向量的线性运算可得1122EF AD AB =+,两边平方可求解;(2)由已知可得34DF DC CF AB AD =+=- ,12CE CB BE AD AB =+=--,可得结论;(3)利用向量的线性关系可得1255GE AB AD =-- ,933510GF AD AB =-+,计算可得结论.【小问1详解】若12m =,则1122BF BC AD == ,12BE AB =-,所以1122EF BF BE AD AB =-=+ ,两边平方可得22222211117()(2)(12122)44424EF AD AB AD AD AB AB =+=++=+⨯⨯⨯+= ,所以2EF =;【小问2详解】若14m =,则1144BF BC AD == ,所以34CF AD =-,34DF DC CF AB AD =+=- ①,12CE CB BE AD AB =+=-- ②,由①②可得681111AB CE DF =-+;【小问3详解】1122EF EB BF AB mBC AB mAD =+=+=+,1122EC EB BC AB BC AB AD =+=+=+ ,设2EG EC AB AD λλλ==+ ,又122AG AE EG AE AB AD AB AD λλλλ+=+=++=+,又AG EF ∥,所以1212m λλ=+①,由EG EC λ= ,可得GE CE λ= ,所以CE CG CE λ-=,所以(1)CG CE λ=- ,所以11(1)(1)()(1)22CG CE AB BC CB CD λλλλ-=-=---=-+ ,由BF mBC = ,可得(1)CF m CB =- ,11CB CF m=-所以11(1)12CG CE CF CD m λλλ--=-=+-,又,,D F G 三点共线,所以11112m λλ--+=-②,联立①②解11,23m λ==,所以1142EG AB AD =+ ,所以1142GE AB AD =--,111111242424CG CB CD BC DC AD AB =+=--=-- ,21111(32464GF CF CG AD AD AB AD AB =-=----=-+ ),所以2211111111····64422412168GE GF AD AB AB AD AD AB AD AB AD AB ⎛⎫⎛⎫=-+--=+-- ⎪ ⎪⎝⎭⎝⎭111112412484=+--=-,又2222111111113()4216444444GE AB AD AB AB AD AD =--=++=++=,所以||2GE =,同理可得||6GF = ,所以1214cos ,726GE GF -==-.【点睛】关键点点睛:本题第三问的关键是用基底表示向量后,求向量模或者夹角就可以利用公式直接计算.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为3,求平面1A BC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)证明见解析(3)19或7.【解析】【分析】(1)由已知可得//EF 平面1A BC ,//DF 平面1A BC ,从而可证结论;(2)由余弦定理可得23DC =,从而可证AD CD ⊥,进而结合已知可证CD ⊥平面11ADD A ,可证结论;(3)延长,AD BC 交于N ,过1A 作1A M AD ⊥于M ,过M 作MH BN ⊥于H ,连接1A H ,可得1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,求解即可.【小问1详解】因为12AE EA =uu u r uuu r ,2AF FB = ,所以1EF A B ∥,又1A B ⊂平面1A BC ,EF ⊄平面1A BC ,所以//EF 平面1A BC ,2AF FB = ,3AB =,可得2AF =,又2AD =,60BAD ∠=︒,所以ADF △是等边三角形,所以2DF =,60AFD ∠=︒,又60ABC ∠=︒,所以DF BC ∥,又BC ⊂平面1A BC ,DF ⊄平面1A BC ,//DF 平面1A BC ,又DF EF F = ,又,DF EF ⊂平面DEF ,所以平面DEF 平面1A BC ;【小问2详解】由侧面11CDD C 为矩形,可得1CD DD ⊥,连接CF ,可得BCF △是等边三角形,所以60BFC ∠=︒,所以60DFC ∠=︒,又2DF =,1CF =,由余弦定理可得22211221232DC =+-⨯⨯⨯=,所以222DC CF DF +=,所以90FCD ∠=︒,所以30FDC ∠=︒,所以90ADC ∠=︒,所以AD CD ⊥,又1AD DD D = ,1,AD DD ⊂平面11ADD A ,所以CD ⊥平面11ADD A ,又CD ⊂平面ABCD ,所以平面11ADD A ⊥平面ABCD ;【小问3详解】延长,AD BC 交于N ,可得ABN 是等边三角形,过1A 作1A M AD ⊥于M ,由(1)可知//EF 平面1A BC ,所以三棱锥1E A BC -的体积即为三棱锥1F A BC -的体积,又三棱锥1F A BC -的体积等于三棱锥1A BCF -的体积,由(2)可知平面11ADD A ⊥平面ABCD ,且两平面的交线为AD ,所以AM ⊥平面ABCD ,所以111111331133223B F BCF A C V S A M A M -==⨯⨯⨯⨯= ,解得14A M =,过M 作MH BN ⊥于H ,连接1A H ,AM ⊥平面ABCD ,BN ⊂平面ABCD ,所以AM BN ⊥,又1HM A M M ⋂=,1,HM A M ⊂平面1A MH ,所以BN ⊥平面1A MH ,又1A H ⊂平面1A MH ,1BN A H ⊥,所以1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,若12A AD π∠<,则点M 在线段AD 上,且为AD 中点,又117AA =,由勾股定理可得1AM =,所以2MN =,所以3MH =131619A H =+=,所以1357cos 1919A HM ∠==,所以平面1A BC 与平面ABCD 的夹角的余弦值为5719;若12A AD π∠>,则点M 在线段DA 延长线上,此时13,7MH A H ==,11321cos 727MH A HM A H ∠===.。

浙江宁波市九校2024年高一下学期期末联考数学试题+答案

浙江宁波市九校2024年高一下学期期末联考数学试题+答案

宁波市2023学年第二学期期末九校联考高一数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改 动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.四棱锥至多有几个面是直角三角形? A .2B .3C .4D .52.已知点()2,3A ,()3,1−B ,若直线l 过点()0,1P 且与线段AB 相交,则直线I 的斜率k 的取值范围是( ) A .23≤−k 或1≥k B .23≤−k 或01≤≤k C .203−≤≤k 或1≥kD .213−≤≤k 3.若平面向量,,a b c 两两的夹角相等,且1= a ,1= b ,2= c ,则++=a b c ( ) A .1B .4C .1或4D .1或24.已知m ,n 为两条不同的直线,αβ为两个不同的平面,若α⊥m ,β⊂n ,则“⊥m n ”是“αβ∥”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件5.逢山开路,遇水搭桥,我国摘取了一系列高速公路“世界之最”,锻造出中国路、中国桥等一张张闪亮的“中国名片”。

如图,一辆汽车在一条水平的高速公路上直线行驶,在A ,B ,C 三处测得道路一侧山顶的仰角依次为30°,45°,60°,若=AB a ,()03=<<BC b a b ,则此山的高度为( )ABCD6.已知复数11=+z i 是关于x 的方程2)0(,++=∈x px q p q R 的一个根,若复数z 满足1−=−z z p q ,复数z 在复平面内对应的点Z 的集合为图形M ,则M 围成的面积为( ) A .πB .4πC .16πD .25π7.慢走是一种简单又优良的锻炼方式,它不仅可以帮助减肥,还可以增强心肺功能、血管弹性、肌肉力量等小温从小到大记录了近6周的慢走里程(单位:公里):11,12,m ,n ,20,27,其中这6周的慢走里程的中位数为16,若要使这6周的周慢走里程的标准差最小,则=m ( ) A .14B .15C .16D .178.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2222sin −+=b c B c a ,且2=a , 则tan tan tan AB C的最大值为( )A 2−B .3−C D 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列描述正确的是( )A .若事件A ,B 相互独立,()0.6=P A ,()0.3=P B ,则()0.54= P AB AB B .若三个事件A ,B ,C 两两独立,则满足()()()()=P ABC P A P B P CC .若()0>P A ,()0>P B ,则事件A ,B 相互独立与A ,B 互斥一定不能同时成立D .必然事件和不可能事件与任意事件相互独立10.已知复数12=−+z ,则下列说法正确的是A .zB .12=−z z C .复平面内1+z z对应的点位于第二象限 D .2024=z z11.如图,已知四面体ABCD 的各条棱长均等于2,E ,F 分别是棱AD ,BC 的中点.G 为平面ABD 上的一动点,则下列说法中正确的有( )A .三棱锥E -AFCB .线段+CG GFC .当G 落在直线BD 上时,异面直线EF 与AG D .垂直于EF 的一个面α,截该四面体截得的截面面积最大为1第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分,12.已知直线1:40+−=l ax y 23:202+++=l x a y 平行,则实数=a _______. 13.已知圆O 的直径AB 把圆分成上下两个半圆,点C ,D 分别在上、下半圆上(都不与A ,B 点重合)若2=AC ,1=AD ,则⋅=AB DC _______.14.已知三棱锥P -ABC 的四个面是全等的等腰三角形,且=PA ,==PB AB ,点D 为三棱锥P -ABC 的外接球球面上一动点,=PD 时,动点D 的轨迹长度为_______.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(13分)如图,在等腰梯形ABCD 中,2222====ADDC CB AB a ,E ,F 分别为AB ,AD 的中点,BF 与DE 交于点M .(1)用 AD ,AE 表示 BF ;(2)求线段AM 的长.16.(15分)已知直线l :()()1231−=−+a y a x . (1)求证:直线l 过定点;(2)若直线l 不经过第二象限,求实数a 的取值范围;(3)若直线l 与两坐标轴的正半轴围成的三角形面积最小,求l 的方程17.(15分)“数学好玩”是国际著名数学家陈省身赠送给少年数学爱好者们的一句话某校为了更好地培养学生创新精神和实践能力,激发学生钻研数学的兴趣和热情,特举办数学节活动.在活动中,共有20道数学问题,满分100分在所有的答卷中随机抽取100份作为样本,将样本的成绩分成六段:[)40,50,[)50,60,……,[]90,100,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值,并估计该校全体学生这次数学成绩的中位数;(2)活动中,甲、乙、丙三位同学独立参加竞赛,已知甲同学答对了12道,乙同学答对了8道,丙同学答对了n 道,假设每道数学问题难度相当,被答对的可能性都相同. (i )任选一道数学问题,求甲、乙两位同学恰有一人答对的概率;(ii )任选一道数学问题,若甲、乙、丙三个人中至少有一个人答对的概率为2225,求n 的值. 18.(17分)如图1,有一个边长为4的正六边形ABCDEF ,将四边形ADEF 沿着AD 翻折到四边形ADGH 的位置,连接BH ,CG ,形成的多面体ABCDGH 如图2所示.(1)求证:AD ⊥CG :(2)若AH ⊥CD ,试求直线CH 与平面ABCD 所成角的正弦值:(3)若二面角H -AD -B M 是线段CG 上的一个动点(M 与C ,G 不重合),试问四棱锥M -ABCD 与四棱锥M -ADGH 的体积之和是否为定值?若是,求出这个定值,若不是,请说明理由19.(17分)矩形ABCD 中,P ,Q 为边AB 的两个三等分点,满足===AP PQ QB BC ,R 点从点A 出发.沿着折线段AD -DC -CB 向点B 运动(不包含A ,B 两点),记α∠=ARP ,β∠=BRQ .(1)当△APR 是等腰三角形时,求sin α;(2)当R 在线段AD (不包含A ,D 两点)。

浙江省温州市2023-2024学年高一下学期期末教学质量统一检测数学试题(A卷)含答案

浙江省温州市2023-2024学年高一下学期期末教学质量统一检测数学试题(A卷)含答案

2023学年第二学期温州市高一期末教学质量统一检测数学试题(A 卷)(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卡上.2.选择题的答案须用2B 铅笔将答题卡上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卡上相应区域内,答案写在本试题卷上无效.选择题部分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()2,1,,1a b t ==-,若a ∥b,则t =()A.2B.12C.2- D.3【答案】C 【解析】【分析】根据向量平行的坐标表示运算求解.【详解】因为()()2,1,,1a b t ==-,若a∥b,则()211t ⨯-=⨯,即2t =-.故选:C.2.设m 是一条直线,α、β是两个不同的平面,则下列命题一定正确的是()A.若αβ⊥,m α⊥,则//m βB.若αβ⊥,//m α,则m β⊥C.若//αβ,m α⊥,则m β⊥D.若//αβ,//m α,则//m β【答案】C 【解析】【分析】对于选项A :根据面面垂直的性质定理即可判断;对于选项B :根据面面垂直的性质定理即可判断;对于选项C :根据面面平行的性质定理判断即可;对于选项D :根据线面的位置关系判断即可.【详解】对于选项A :若αβ⊥,m α⊥,则//m β或m β⊂,故A 不正确;对于选项B :若αβ⊥,//m α,则//m β或m β⊂或m β⊥,故B 不正确;对于选项C :若//αβ,m α⊥,根据面面平行的性质定理可得m β⊥,故C 正确;对于选项D :若//αβ,//m α,则//m β或m β⊂,故D 不正确.故选:C.【点睛】本题主要考查了面面垂直的性质定理以及面面平行的性质定理.属于较易题.3.复数024i 1i2=+()A.11i 22-- B.11i 22-+ C.11i 22- D.11i 22+【答案】C 【解析】【分析】由复数的乘除法运算法则求解即可.【详解】()()2024i 11i 1i 11i 1i 1i 1i 1i 222z --=====-+++-.故选:C.4.如图,某校数学兴趣小组对古塔AB 进行测量,AB 与地面垂直,从地面C 点看塔顶A 的仰角β为60︒,沿直线BC 前行20米到点D 此时看塔顶A 的仰角α为30︒,根据以上数据可得古塔AB 的高为()米.A. B.20 C.10D.【答案】A 【解析】【分析】根据直角三角形三角关系可得3BC h =,BD =,根据题意列式求解即可.【详解】设古塔AB 的高为h 米,在Rt ABC △中,可得60tan 3h BC ︒==;在Rt △ABD 中,可得tan 30hBD ==︒;由题意可知:CD BD BC =-,即203h =-,解得h =,所以古塔AB 的高为米.故选:A.5.数据:1,1,2,3,3,5,5,7,7,x 的40%分位数为2.5,则x 可以是()A.2 B.3 C.4D.5【答案】A 【解析】【分析】按照百分位数计算公式,逐项计算即可求解.【详解】对于A ,因为1040%4⨯=,所以若2x =,则1,1,2,2,3,3,5,5,7,7的40%分位数为232.52+=,故A 正确;对于B ,因为1040%4⨯=,所以若3x =,则1,1,2,3,3,3,5,5,7,7的40%分位数为3332+=,故B 错误;对于C ,因为1040%4⨯=,所以若4x =,则1,1,2,3,3,4,5,5,7,7的40%分位数为3332+=,故C 错误;对于D ,因为1040%4⨯=,所以若5x =,则1,1,2,3,3,5,5,5,7,7的40%分位数为3332+=,故D 错误.故选:A.6.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,)2224a c b S +-=,若1c =,则ABC 面积的取值范围是()A.,84⎛⎫⎪ ⎪⎝⎭ B.,82⎛⎫⎪ ⎪⎝⎭ C.,42⎛⎫⎪⎪⎝⎭D.,8⎛⎫+∞ ⎪⎪⎝⎭【答案】A 【解析】【分析】根据题意利用余弦定理和面积公式可得π3B=,利用正弦定理结合三角恒等变换可得112tanaC⎛⎫=+⎪⎪⎝⎭,代入面积公式结合角C的范围运算求解.)2224a cb S+-=,则12cos4sin2ac B ac B=⨯,整理可得tan B=,且π0,2B⎛⎫∈ ⎪⎝⎭,可知π3B=,由题意可得:π22ππ32CC⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C<<,由正弦定理sin sina cA C=可得()31cos sinsinsin1221sin sin sin2tanC CB Cc AaC C C C+⎛⎫+====+⎪⎪⎝⎭,则ABC面积111sin111222tan28tanS ac BC C⎛⎫⎫==⨯+⨯⨯⎪⎪⎪⎪⎝⎭⎝⎭,因为ππ62C<<,则tan3C>,可得01tan C<<,所以ABC面积1,8tan84SC⎛⎫⎛⎫=+∈⎪ ⎪⎪ ⎪⎝⎭⎝⎭.故选:A.7.已知样本数据129,,,x x x⋅⋅⋅的平均数为9,方差为12,现这组样本数据增加一个数据10x,此时新样本数据的平均数为10,则新样本数据的方差为()A.18.2B.19.6C.19.8D.21.7【答案】C【解析】【分析】根据平均数和方差公式整理可得9921181,837i ii ix x====∑∑,由新样本数据的平均数可得1019x=,结合方差公式运算求解即可.【详解】由题意可知:()9992221111119,99912999i i i i i i x x x ===⎛⎫=-=-⨯= ⎪⎝⎭∑∑∑,可得9921181,837ii i i xx ====∑∑,且()9101011181101010i i x x x =⎛⎫+=+= ⎪⎝⎭∑,解得1019x =,所以新样本数据的方差为()1010922222210111111101010101019.8101010i i i i i i x x x x ===⎛⎫⎛⎫-=-⨯=+-⨯= ⎪⎪⎝⎭⎝⎭∑∑∑.故选:C.8.已知平面向量,,a b c 满足12,2a c a b a b a b λ==⋅=-≥- 对任意实数λ恒成立.若对每一个确定的c ,对任意实数m ,n ,c ma c nb -+- 有最小值t .当c变化时,t 的值域为[],x y ,则x y +=()A.2+B.C.2+D.【答案】D 【解析】【分析】根据题意结合向量的几何意义分析可知2b =,进而分析可知,MC NC 的最小值分别为过点C 分别作直线,OA OB 的垂线长,设COA θ∠=,分π0,3θ⎡⎤∈⎢⎥⎣⎦和π,π3θ⎡⎤∈⎢⎥⎣⎦两种情况讨论,结合三角函数运算求解即可.【详解】设,,OA a OB b OC c === ,OP b =uu u r rλ,可知P OB ∈,则a b OA OP PA -=-=uu r uu u r uu r r r λ,可知PA 的最小值即为点A 到直线OB 的距离,若12a b a b λ-≥-对任意实数λ恒成立,可知当点P 为线段OB 的中点,且AP OB ⊥,即a 在b方向上的投影向量为12b r ,则2122a b b ⋅==r r r ,可得2b = ,即2OB OA BA ===,可知OAB 为等边三角形,可设,OM ma ON nb ==uuu r uuur r r ,则,c ma MC c nb NC -=-= ,可知,MC NC的最小值分别为过点C 分别作直线,OA OB的垂线长,设COA θ∠=,根据对称性只需分析[]0,πθ∈即可,若π0,3θ⎡⎤∈⎢⎥⎣⎦,可得min minπ2sin 2sin 3t MC NC θθ⎛⎫=+=+- ⎪⎝⎭π2sin sin sin 2sin 3θθθθθθ⎛⎫=+-=+=+ ⎪⎝⎭,因为π0,3θ⎡⎤∈⎢⎥⎣⎦,则ππ2π,333θ⎡⎤+∈⎢⎥⎣⎦,可得πsin ,132θ⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,即2t ⎤∈⎦;若π,π3θ⎡⎤∈⎢⎥⎣⎦,则min min π2sin 2sin 3t MC NC θθ⎛⎫=+=+- ⎪⎝⎭π2sin sin 3sin 6θθθθθθ⎛⎫=+=-=- ⎪⎝⎭,因为π,π3θ⎡⎤∈⎢⎥⎣⎦,则ππ5π,666θ⎡⎤-∈⎢⎥⎣⎦,可得π1sin ,132θ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,即t ∈;综上所述:t ∈,即x y ==x y +=故选:D.【点睛】关键点点睛:本题的解题关键是把向量的模长转化为两点间距离,结合几何性质分析求解,这样可以省去烦琐的运算.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知复数z 满足1z =,则下列结论正确..的是()A.1z z ⋅= B.1z z+∈R C.1z -的最大值为2 D.21z =【答案】ABC 【解析】【分析】根据共轭复数及乘法计算判断A,B 选项,应用特殊值法判断D 选项,结合模长公式判断C 选项.【详解】设i z =,所以22i 1z ==-,D 选项错误;112z z -≤+=,C 选项正确;设i z a b =+,因为1,z =所以221,1a b =+=,所以()()22222·i i i =1z z a b a b a b a b =+-=-+=,A 选项正确;1·i+i=2R z z z z z z a b a b a z z+=+=+=+-∈,B 选项正确.故选:ABC.10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.正方体1111ABCD A B C D -棱长为1,E ,F 分别为棱11B C ,AD (含端点)上的动点,记过C ,E ,F 三点的平面为α,记1d 为点B 到平面α的距离,2d 为点1D 到平面α的距离,则满足条件()的α是不唯一的.A.12d d +=B.12d d +=C.122d d -=D.122d d +=【答案】AC 【解析】【分析】设1,C E x DF y ==,结合解三角形知识求得CEF △的面积S =,利用等体积法求得1d =2d =.根据题意结合选项逐一分析判断即可.【详解】设1,C E x DF y ==,则[],0,1x y ∈,可得CE CF EF ===在CEF △中,由余弦定理可得222cos 2CE CF EF ECF CE CF+-∠==⋅且()0,πECF ∠∈,则sin ECF ∠==,所以CEF △的面积1sin 2S CE CF ECF =⋅⋅∠=,设平面α与直线11A D 的交点为G ,连接,GF GE ,可知1D G x y =+,因为平面11ADD A ∥平面11BCC B ,且平面α 平面11ADD A GF =,平面α 平面11BCC B CE =,可得GF ∥CE ,同理可得:GE ∥CF ,可知四边形CEGF 为平行四边形,则GEF CEF S S S ==△△,对于三棱锥B CEF -可知:B CEF E BCF V V --=,则1111111332S d ⋅=⨯⨯⨯⨯,解得112d S ==;对于三棱锥1D GEF -可知:11D GEF F D EG V V --=,则()211111332S d x y ⋅=⨯⨯⨯⨯+,解得22x y d S +==;对于选项A:若12d d +==+=,显然01x y =⎧⎨=⎩和1x y =⎧⎨=⎩上式均成立,所以平面α是不唯一的,故A 正确;对于选项B:若12d d ==+=,整理可得()()()222110x y x y -+-+-=,解得1x y ==,所以平面α是唯一的,故B 错误;对于选项C:若122d d -+-===,显然02x y =⎧⎪⎨=-⎪⎩和20x y ⎧=-⎪⎨=⎪⎩上式均成立,所以平面α是不唯一的,故C 正确;对于选项D:若122d d +===,整理可得()()()22221210x y x y -+-+-=,解得12x y ==,所以平面α是唯一的,故D 错误;故选:AC.【点睛】关键点点睛:将平面α延展为平面CEGF ,分析可知CEGF 为平行四边形,进而可利用等体积法求12,d d .非选择题部分三、填空题:本大题共3小题,每题5分,共15分.把答案填在题中的横线上12.已知2i 3-是关于x 的实系数方程220x px q ++=的一个根,则实数p 的值为_______.【答案】12【解析】【分析】根据题意分析可知2i 3--也是方程220x px q ++=的一个根,利用韦达定理运算求解即可.【详解】因为2i 3-是关于x 的实系数方程220x px q ++=的一个根,则2i 3--也是关于x 的实系数方程220x px q ++=的一个根,由韦达定理可得()()2i 32i 362p-+--=-=-,解得12p =.故答案为:12.13.设样本空间{}1,2,3,4Ω=含有等可能的样本点,{}{}{}1231,2,1,3,1,4A A A ===,则()()()()123123P A A A P A P A P A =_______.【答案】2【解析】【分析】根据题意利用列举法求()()()()123123,,,P A P A P A P A A A ,代入即可得结果.【详解】因为样本空间{}1,2,3,4Ω=,{}{}{}1231,2,1,3,1,4A A A ===,则{}1231A A A =,可知()()()()()1231234,2,1n n A n A n A n A A A Ω=====,则()()()()()()()()()()()()1231231231231111,,,2224n A n A n A n A A A P A P A P A P A A A n n n n ========ΩΩΩΩ,所以()()()()123123142111222P A A A P A P A P A ==⨯⨯.故答案为:2.14.与多面体的每条棱都相切的球称为该多面体的棱切球.已知四面体ABCD 满足6AB BC CD DA ====,8BD =,且四面体ABCD 有棱切球,则AC 的长为________.【答案】4【解析】【分析】设球心,和相应的切点,根据题意结合切线长性质可知相应的长度关系,结合题中棱长关系分析运算即可.【详解】设棱切球的球心为O ,与棱,,,,,AB BC CD DA AC BD 分别切于点,,,,,E F G H I J ,可知,,,AH AI AE BE BF BJ CI CF CG DH DG DJ ========,由题意可得:6668AH DH AE BE AH BE BF CF BE CF BJ DJ BE DH +=⎧⎪+=+=⎪⎨+=+=⎪⎪+=+=⎩,解得42BE DH AH CF ==⎧⎨==⎩,所以4AC AI CI AH CF =+=+=.故答案为:4.【点睛】关键点点睛:本题的解题关键是切线长相等,结合棱长列式求解即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知圆台上底面半径为1,下底面半径为2,高为2.(1)求该圆台的体积;(2)求该圆台母线与下底面所成角的余弦值.【答案】(1)14π3(25【解析】【分析】(1)根据题意利用台体的体积公式运算求解;(2)借助于轴截面,分析可知该圆台母线与下底面所成角的大小为CBE ∠,结合题中数据分析求解.【小问1详解】由题意可知:该圆台的体积(114ππ4ππ4π233V =++⨯⨯=.【小问2详解】借助于轴截面,如图所示,其中21,O O 分别为上、下底面圆的圆心,则21O O 与上、下底面均垂直,过C 作CE AB ⊥,垂足为E ,可知CE ∥21O O ,则CE 与上、下底面均垂直,则该圆台母线与下底面所成角的大小为CBE ∠,由题意可知:212CE O O ==,1BE =,可得BC ==,则cos 5BE CBE BC ∠==,所以该圆台母线与下底面所成角的余弦值为5.16.已知,a b是单位向量,满足2a b -= a 与b 夹角为θ.(1)求θ;(2)若平面向量c 在a 上的投影向量为,1a b c ⋅=,求c .【答案】(1)2π3θ=(2)2c =【解析】【分析】(1)由题意可知1==a b r r ,cos a b θ⋅=r r ,由2a b -= 结合数量积的运算可得1cos 2θ=-,即可得结果;(2)设,,c xa yb x y =+∈R rr r,结合题意列式解得2x y ==,结合模长与数量积的运算律分析求解.【小问1详解】因为1==a b r r ,则cos cos a b a b θθ⋅==,若2a b -= ,则222244a b a a b b -=-⋅+,即714cos 4=-+θ,可得1cos 2θ=-,且[]0,πθ∈,所以2π3θ=.【小问2详解】由(1)可知:1==a b r r ,12a b ⋅=-r r ,由题意可设,,c xa yb x y =+∈R r r r,因为平面向量c 在a 上的投影向量为a,则21a c a ⋅==r r r ,由题意可得:22a c xa yab bc xa b yb⎧⋅=+⋅⎪⎨⋅=⋅⋅+⎪⎩ ,可得112112x y x y ⎧-=⎪⎪⎨⎪-+=⎪⎩,解得2x y ==,则()2a c b =+ ,可得()()2224241114c a a b b =+⋅+=-+= ,所以2c =.17.如图,ABC 绕边BC 旋转得到DBC △,其中2AC BC ==,,AC BC AE ⊥⊥平面ABC ,DE ∥AC.(1)证明:BC ⊥平面ACD ;(2)若二面角B DE C --的平面角为60︒,求锐二面角D CB A --平面角的正弦值.【答案】(1)证明见详解(2)3【解析】【分析】(1)根据题意可得,BCAC BC CD ⊥⊥,结合线面垂直的判定定理分析证明;(2)作辅助线,根据三垂线法分析可知二面角B DE C --的平面角为60BFC ∠=︒,可得CF =结合(1)分析可知锐二面角D CB A --平面角为ACD ∠,运算求解即可.【小问1详解】由题意可知:,BCAC BC CD ⊥⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以BC ⊥平面ACD .【小问2详解】过C 作CF DE ⊥,垂足为F ,连接BF ,即CF EF ⊥,因为BC ⊥平面ACD ,EF ⊂平面ACD ,则BC EF ⊥,且CF BC C = ,,CF BC ⊂平面BCF ,则EF ⊥平面BCF ,由BF ⊂平面BCF ,可得EF BF ⊥,可知二面角B DE C --的平面角为60BFC ∠=︒,且2BC =,可得23CF =,由(1)可知:,BCAC BC CD ⊥⊥,则锐二面角D CB A --平面角为ACD ∠,且DE ∥AC ,可知ACD CDF ∠=∠,可得233sin sin 23CF ACD CDF CD ∠=∠==,所以锐二面角D CB A --平面角的正弦值为33.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,过ABC 内一点M 的直线l 与直线AB 交于D ,记BA 与DM夹角为θ.(1)已知cos sin c a B b A -=,(i )求角A ﹔(ii )M 为ABC 的重心,1,30b c θ===︒,求AD;(2)请用向量方法....探究θ与ABC 的边和角之间的等量关系.【答案】(1)(i )45︒;(ii )6226+(2)cos cos()cos()c a B b A θθθ=-++【解析】【分析】(1)(i )利用正弦定理将边化角,再由两角和的正弦公式计算可得;(ii )由1()3AM AB AC =+ 及数量积模的运算求得2cos 32AAM =,根据正弦定理结合三角恒等变换得AD211sin cos 3222A A ⎛⎫=++ ⎪ ⎪⎝⎭,将45A =o 代入求值即可;(2)由BA BC CA =+,结合数量积可得DE BA DE BC DE CA ⋅=⋅+⋅ ,再运用数量积定义可分别求出DE BA ⋅ 、DE BC ⋅、DE CA ⋅ ,代入整理即可.【小问1详解】(i )因为cos sin c a B b A -=,由正弦定理可得sin sin cos sin sin C A B B A -=,即()sin sin cos sin sin A B A B B A +-=,所以cos sin sin sin A B B A =,又0180B << ,所以sin 0B >,所以cos sin A A =,所以tan 1A =,又0180A << ,所以45A =o .(ii )由题意1,30b c θ===︒,因为M 为ABC 的重心,所以1()3AM AB AC =+,所以12cos 332A AM AM AB AC ==+=== ,在ADM △中,由正弦定理知AD AM θ=∠,所以sin AM AD AMD θ=⨯∠,显然ABC 为等腰三角形,则AM 平分BAC ∠,所以sin 302sin 301222AM A A AD AD AM ⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭441cos sin 30cos sin cos 322322222A A A A A ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭222112sin cos cos sin cos 322223222A A A A A ⎛⎫⎛⎫=⨯+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2321216223222226⎛⎫++=⨯+⨯+= ⎪ ⎪⎝⎭;【小问2详解】直线l 与ABC 的边AC 相交于点E ,如图所示,因为BA BC CA =+,所以()DE BA DE BC CA ⋅=⋅+ ,即DE BA DE BC DE CA ⋅=⋅+⋅ ,又因为||||cos ||cos DE BA DE BA EDA c DE θ⋅=∠=,||||cos()||cos()DE BC DE BC B a DE B θθ⋅=-=-,||||cos()||cos()DE CA DE CA A b DE A θθ⋅=+=+,所以||cos ||cos()||cos()c DE a DE B b DE A θθθ=-++,即cos cos()cos()c a B b A θθθ=-++.19.给定两组数据()12,,,n A x x x =⋅⋅⋅与()12,,,n B y y y =⋅⋅⋅,称()1,niii X A B x y==-∑为这两组数据之间的“差异量”.鉴宝类的节目是当下非常流行的综艺节目.现有n 个古董,它们的价值各不相同,最值钱的古董记为1号,第二值钱的古董记为2号,以此类推,则古董价值的真实排序为()1,2,,I n =⋅⋅⋅.现在某专家在不知道古董真实排序的前提下,根据自己的经验对这n 个古董的价值从高到低依次进行重新排序为12,,,n x x x ⋅⋅⋅,其中i x 为该专家给真实价值排第i 位古董的位次编号,记()12,,,n A x x x =⋅⋅⋅,那么A 与I 的差异量()1,nii X A I x i ==-∑可以有效反映一个专家的水平,该差异量(),X A I 越小说明专家的鉴宝能力越强.(1)当3n =时,求(),X A I 的所有可能取值;(2)当5n =时,求(),4X A I =的概率;(3)现在有两个专家甲、乙同时进行鉴宝,已知专家甲的鉴定结果与真实价值I 的差异量为a ,专家甲与专家乙的鉴定结果的差异量为4,那么专家乙的鉴定结果与真实价值I 的差异量是否可能为6a +?请说明理由.【答案】(1)0,2,4(2)18(3)不可能,理由见详解【解析】【分析】(1)利用列举法求A 的所有可能性结果,结合(),X A I 的定义运算求解;(2)分析可知样本容量()Ω120n =,且(),4X A I =只能调整两次两个连续序号或连续三个序号之间调整顺序,结合(1)中结论运算求解;(3)由题意可得:1n ii x i a =-=∑,14niii x y=-=∑,结合绝对值不等式的运算求解.【小问1详解】若3n =时,则()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1A =,且()1,2,3I =,可得(),0,2,2,4,4,4X A I =,所以(),X A I 的所有可能取值为0,2,4.【小问2详解】设“(),4X A I =”为事件M ,样本空间为Ω,因为5n =,可知A 共有54321120⨯⨯⨯⨯=个,即样本容量()Ω120n =,显然若对调两个位置的序号之差大于2,则(),4X A I >,可知(),4X A I =只能调整两次两个连续序号或连续三个序号之间调整顺序,若调整两次两个连续序号:则有()(){}()(){}()(){}1,2,3,4,1,2,4,5,2,3,4,5,共有3种可能;若连续三个序号之间调整顺序,连续三个序号有:{}{}{}1,2,3,2,3,4,3,4,5,共3组,由(1)可知:每组均有3种可能满足(),4X A I =,可得共有3412⨯=种可能;综上所述:()31215n M =+=.所以()()()151Ω1208n M P B N ===.【小问3详解】不可能,理由如下:设专家甲的排序为12,,,n x x x ⋅⋅⋅,记()12,,,n A x x x =⋅⋅⋅;专家乙的排序为12,,,⋅⋅⋅n y y y ,记()12,,,n B y y y =⋅⋅⋅;由题意可得:()1,n ii X A I x i a ==-=∑,()1,4niii X A B x y==-=∑,因为()()i i i i i i i i i i y i y x x i y x x i x i x y -=-+-≤-+-=-+-,结合i 的任意性可得11146nnniiiii i i y i x i x ya a ===-≤-+-=+<+∑∑∑,所以专家乙的鉴定结果与真实价值I 的差异量不可能为6a +.【点睛】方法点睛:1.对于(2):利用转化法,将问题转为(1)中已知的结论;2.对于(3):结合绝对值不等式分析证明.。

四川省达州市2024学年高一年级(春季)下学期期末监测考试数学试题卷

四川省达州市2024学年高一年级(春季)下学期期末监测考试数学试题卷

达州市2024年普通高中一年级春季期末监测数学试题注意事项:1.答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量(),6a m = ,()1,3b = ,若a b ∥,则m =().A .18-B .18C .2D .2-2.将两枚质地均匀的骰子同时投掷,设事件A =“两枚骰子掷出点数均为偶数”,若连续投掷100次,则事件A 发生的频数为().A .20B .25C .50D .无法确定3.设ABC △中角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,6b =,1cos 2C =-,则ABC △的面积为().A .B .C .12D .4.已知复数i12iz =--,则z 的虚部为().A .15B .1i5C .15-D .255.下列计算不正确的是().A .1cos 22sin 52sin158cos522︒︒︒︒=--B .1sin15sin 754︒︒=C .223cos 75sin 752︒-︒=-D .tan88tan 4311tan88tan 43︒-︒=+︒︒6.已知()()()35211sin 1,3!5!21!k k x x x x x x k k --*=-+++-⨯+∈∈-R N L L ,其中()()!12321n n n n =⨯-⨯-⨯⨯⨯⨯L .若函数()πcos 6f x x ⎛⎫=+ ⎪⎝⎭,10.0083335!≈,10.0001987!≈,结果精确到小数点后4位,则π13f ⎛⎫-= ⎪⎝⎭().A .0.5394B .0.8419C .0.8415D .0.53987.在某次考试成绩中随机抽取50个,成绩均在[]50,100之间,将这些成绩共分成五组:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,得到如图所示的频率分布直方图,由图中数据估计总体的众数和中位数(中位数精确到个位)分别是().A .65,70B .65,71C .65,72D .65,738.已知甲船在小岛B 正东方向4海里的C 处,乙船在小岛B 正南方向3海里的A 处.甲船沿北偏西60︒方向直线航行.若乙船要与甲船会合,则乙船航行的最短里程为().A .32⎛⎫+ ⎪⎝⎭海里B .22⎛⎫+ ⎪ ⎪⎝⎭海里C .32⎛⎫-⎪⎝⎭海里D .4333⎛⎫+⎪ ⎪⎝⎭海里二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知样本数据1x ,2x ,…,n x 的样本平均数为x ,样本方差为()2s x ,由这组数据得到新样本数据1y ,2y ,…,n y ,这组新样本数据的样本平均数为y ,样本方差为()2s y ,其中()251,2,,i i y x i n =+=L ,则().A .两组样本数据的样本平均数满足25y x =+B .两组样本数据的样本方差满足()()224s y s x =C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同10.某校举办羽毛球比赛,有4名同学进入半决赛,这4名同学恰好来自两个不同的班,每班两名同学,现通过摸球决定半决赛分组情况.袋子里有大小、质地完全相同的2个黄球、2个白球,共4个球.这4名同学每人不放回地摸出一个球,摸到同色球的两人对战,且摸到黄色球两人先进行比赛,胜者进入决赛.记事件A =“决赛两人来自同一个班”,事件B =“决赛两人来自不同班”,事件C =“先进行半决赛两人来自同一个班”,事件D =“后进行半决赛两人来自不同班”.则().A .()1P AB ⋃=B .A 与B 互斥但不对立C .C 与D 对立D .()()()()P A P B P C P D +=+11.如图,已知O 是ABC △内部任意一点,BOC △,AOC △,AOB △的面积分别为A S ,B S ,C S ,0A B C S OA S OB S OC ⋅+⋅+⋅=.根据上述结论,则().A .如果4320OA OB OC ++=,那么::2:3:4A B C S S S =B .如果3277AO AB AC =+,那么::2:3:2A B C S S S =C .如果O 为ABC △的重心,那么A B CS S S ==D .如果O 为直角ABC △的内心,且两直角边5BC =,12AC =,那么512130OA OB OC ++=三、填空题:本题共3小题,每小题5分,共15分.12.某校用分层随机抽样的方法从高中学生中抽取一个容量为60的样本,其中高一年级有学生900人,从中抽取了18人.则该校高中学生总人数是__________人.13.复数1z ,2z 满足π2cos 1lg1253lg 24ei z =++,121z z -=,则2z 的取值范围为__________.14.已知某操场看台上有一个与操场水平面垂直的圆柱,该圆柱上方挂有高5米的电子屏幕,电子屏幕底部到操场水平面的距离为5.75米.某人站立在操场时,他眼睛中心到操场水平面的距离为1.75米,则该人离圆柱距离__________米站立,看电子屏幕底部到顶部的视角(从眼睛中心向物体两端所引射线的夹角)最大.四、解答题:本题共5小题,共77分.解答应写文字说明、证明过程或演算步骤.15.(13分)为提高国民法律意识,某地开通了网上学法考试平台,方便广大群众网上学习法律知识,并且可以通过考试检测自己学习情况.为了解广大群众学习法律知识的情况,在参与考试的男性参考者和女性参考者中各随机抽取10名参考者的考试成绩(满分100分),得分如下:男性参考者考试成绩:70,74,85,84,82,81,92,89,98,95.女性参考者考试成绩:69,71,82,84,75,88,89,87,95,97.(1)求抽取的男性参考者考试成绩的平均数、极差和方差;(2)若规定得分在90分及以上的为成绩优秀,从上述成绩优秀的人员中任取2人,求这2人性别相同的概率.16.(15分)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,图象与x 轴正半轴的第一个交点(从左至右)为5π,06A ⎛⎫⎪⎝⎭,图象与y 轴的交点为()0,1B .(1)求()f x 的解析式及对称中心;(2)将()f x 的图象上各点的纵坐标保持不变,横坐标缩短为原来的12倍,再将所得图象上各点向右平移π4个单位长度,得到()g x 的图象,求()g x 在区间[]0,π上的单调递减区间.17.(15分)一个袋子中有10个大小相同的球,其中有7个红球,3个白球,从中随机摸球两次,每次摸取一个.(1)求有放回地摸球第二次摸到白球的概率;(2)求不放回地摸球第二次摸到白球的概率;(3)求有放回地摸球摸到球颜色相同的概率;(4)求不放回地摸球摸到球颜色相同的概率.18.(17分)已知函数()14f x m n =⋅+,其中πsin ,13m x ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,()2sin ,sin n x x = .(1)当π0,2x ⎡⎫∈⎪⎢⎣⎭时,求()f x 的值域;(2)若存在[]0,x t ∈,使得()40f x ≥成立,求t 的取值范围.19.(17分)如图,在ABC △中,AD 平分BAC ∠交BC 于D ,12AB =,10AD =,8BD =.(1)求AC 的长;(2)若E 是AD 延长线上一点,当BDE △与CDE △各边长均为整数时,求图中与BCE △相似的三角形的个数.。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

河南天一大联考2024届高一数学第二学期期末考试试题含解析

河南天一大联考2024届高一数学第二学期期末考试试题含解析

河南天一大联考2024届高一数学第二学期期末考试试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .125- D .1252.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .3.下列函数中,既是偶函数又在(,0)-∞上是单调递减的是A .cos y x =-B .lg y x =C .21y x =-D .x y e -=4.在正方体1111ABCD A B C D -中,M 、N 分别是棱1AA 和AB 的中点,P 为上底面1111D C B A 的中心,则直线PB 与MN 所成的角为( ) A .30° B .45° C .60° D .90°5.若a 、b 、c >0且a (a +b +c )+bc =4-32a +b +c 的最小值为( ) A . 3-1B . 3 1C .3 2D .3 26.已知直线1:230l x ay +-=与()2:110l a x y -++=,若12l l //,则a =( ) A .2 B .1 C .2或-1 D .-2或17.若两个球的半径之比为1:3,则这两球的体积之比为( )A .1:3B .1:1C .1:27D .1:98.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,5sin 7A =,5a =,7b =,则sin B 等于( )A .35B .45C .37D .19.函数tan()42y x ππ=-的部分图像如图所示,则()OA OB AB +⋅的值为( )A .1B .4C .6D .710.下列命题正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

遵义市2023~2024学年度第二学期期末质量监测高一数学(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,62.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A. B.514C.514-D.143.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c++r r rB.a b c+-r r rC.a b c -+r r rD.a b c--4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A.8-B.378C.9714-D.97145.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.56.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.87.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米B.34米C.米D.30米8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=t D.复数z 的共轭复数为23iz =-+10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B =D.若B 发生时A 一定发生,则()14P AB =11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,3BD =,求2a c +的最小值.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n nf x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.遵义市2023~2024学年度第二学期期末质量监测高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,6【答案】C 【解析】【分析】根据交集和补集含义即可得到答案.【详解】由题意得{}3,4A B = ,则(){}1,2,5,6U A B = ð.故选:C.2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A.5314-B.514C.514-D.14【答案】D 【解析】【分析】根据正弦定理即可得到答案.【详解】根据正弦定理有sin sin a b A B =,即10sin 2A =sin 14A =.故选:D.3.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c ++r r rB.a b c+-r r rC.a b c-+r r rD.a b c--【答案】A【解析】【分析】利用图形结合向量线性运算即可.【详解】AC AD DC A a b c B BD DC =+=++++=.故选:A.4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A. B.8C.14-D.14【答案】B 【解析】【分析】首先求出cos 4α=,再利用二倍角正弦公式即可.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,3sin 4α=,则cos 4α==,则3sin 22sin cos 24ααα==⨯⨯.故选:B.5.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.5【答案】C 【解析】【分析】根据平均数计算公式直接求解即可.【详解】全班75名学生的平均成绩4035828583.47575x =⨯+⨯=.故选:C .6.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.8【答案】A 【解析】【分析】根据两点间的距离判定三角形为直角三角形,求解即可.【详解】||AB == ,||BC ===,||AC ===222||||AC AB BC ∴+=,所以三角形ABC 为直角三角形,1=2S ∴⨯,故选:A .7.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米 B.34米C.米D.30米【答案】D 【解析】【分析】根据仰角可得BC AB h ==,BD ==,在三角形BCD 利用余弦定理即可求解.【详解】设教学楼的高度为h ,在直角三角形ABC 中,因为45ACB ∠= ,所以BC AB h ==,在直角三角形ABD 中,因为30ADB ∠= ,所以tan 30ABBD= ,所以BD ==,在BCD △中,由余弦定理可得2222cos CD BC BD BC BD CBD =+-⋅∠,代入数值可得)22233022h h =+-⨯,解得30h =或30h =-(舍),故选:D.8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减【答案】B 【解析】【分析】对A ,赋值法令0x y ==求解;对B ,赋值法结合奇函数的定义判断;对C ,令2y =求得函数的周期求解;对D ,利用单调性定义结合赋值法求解判断.【详解】对于A ,令0x y ==,可得()()()0002f f f =+-,解得()02f =,故A 错误;对于B ,令y x =-,可得()()()02f f x f x =+--,又()02f =,则()()()222f x f x f x ⎡⎤--=-+=--⎣⎦,所以函数()2f x -是奇函数,故B 正确;对于C ,令2y =,得()()()()222f x f x f f x +=+-=,则()f x 是周期函数,周期为2,所以()()202402f f ==,故C 错误;对于D ,令1x x =,21y x x =-,且210x x >>,则()()()1211212f x x x f x f x x +-=+--,即()()()21212f x f x f x x -=--,而0x >时,()f x 与2大小不定,故D 错误.故选:B.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=tD.复数z 的共轭复数为23iz =-+【答案】AB 【解析】【分析】对A ,根据复数的模的计算公式即可判断;对B ,根据复数虚部的定义即可判断;对C ,根据复数的分类可判断;对D ,根据共轭复数的定义即可判断.【详解】对于A ,z ==A 正确;对于B ,复数23i z =+的虚部为3,故B 正确;对于C ,因为()i 23i z t t +=++是实数,则30t +=,即3t =-,故C 错误;对于D ,复数23i z =+的共轭复数为23i z =-,故D 错误.故选:AB.10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B = D.若B 发生时A 一定发生,则()14P AB =【答案】ABD 【解析】【分析】根据互斥事件和独立事件的概率公式逐项判断.【详解】对于A ,若A 与B 相互独立,则()()()1113412P AB P A P B ==⨯=,所以()()()()111134122P A B P A P B P AB ⋃=+-=+-=,故A 对;对于B ,因为()13P A =,()14P B =,则()()131144P B P B =-=-=,因为()()()131344P A P B P AB =⨯==,所以事件A 与B 相互独立,故B 对;对于C ,若A 与B 互斥,则()()()1173412P A B P A P B ⋃=+=+=,故C 错;对于D ,若B 发生时A 一定发生,则B A ⊆,则()()14P AB P B ==,故D 对.故选:ABD11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦【答案】AC 【解析】【分析】根据图象变换得到()f x 的解析式,进而可判断A ,B ,C 选项;对D ,题意转化为πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,根据正弦函数的性质求解判断.【详解】把函数sin 1y x =+图象上所有的点向左平移π3个单位,可得πsin 13y x ⎛⎫=++ ⎪⎝⎭,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()πsin 2π13f x x ⎛⎫=++ ⎪⎝⎭,对于A ,周期2π12πT ==,故A 正确;对于B ,令πππ2π2π2π232k x k -+≤+≤+,Z k ∈,即511212k x k -++≤≤,Z k ∈,所以函数()f x 的单调递增区间为51,1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈,故B 错误;对于C ,()22ππsin 2π1sin 2π13333f x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫++-=++++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5ππsin 2πsin 2π233x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭ππsin 2π2πsin 2π233x x ⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππsin 2πsin 2π2233x x ⎛⎫⎛⎫=---+= ⎪ ⎪⎝⎭⎝⎭.故C 正确;对于D ,根据题意方程112f x ω⎛⎫= ⎪⎝⎭即πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,ππππ2π333x ωω∴≤+<+,由正弦函数性质得π4π2π5π3ω<+≤,解得11763ω<≤,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.【答案】【解析】【详解】试题分析:.考点:三角函数的定义13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.【答案】1()2sin(24f x x π=+【解析】【分析】根据函数()f x 的图象求得2,4A T π==,得到1()2sin()2f x x ϕ=+,再由(22f π=和题设条件,求得4πϕ=,即可求得函数的解析式.【详解】由函数()f x 的图象可得72,()422A T πππ==--=,所以22142T ππωπ===,即1()2sin()2f x x ϕ=+,又由()22f π=,即1sin()122πϕ⨯+=,可得2,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又因为||2ϕπ<,所以4πϕ=,所以1()2sin()24f x x π=+.故答案为:1()2sin(24f x x π=+.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.【答案】⎡-+⎣【解析】【分析】建立平面直角坐标系,得到向量的坐标,用向量的数量积坐标运算即可求解.【详解】以A 为坐标原点,,AB AF 所在直线分别为轴,建立平面直角坐标系,则()()0,0,4,0A B 过H 作AF的垂线,垂足为N ,正八边形ABCDEFGH 中,边长为4,所以()821801358HAB ︒︒-⨯∠==,所以AN HN =,所以222AN HN HA AN +=⇒=,所以4AF =+,设(),P x y ,则()()4,0,,AB AP x y == ,所以4AP AB x ⋅=,因为P 是正八边形ABCDEFGH 内的动点(含边界),所以x 的范围为4x -≤≤+所以416x -≤≤+故答案为:⎡-+⎣.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.【答案】(1)5(2)1-或89【解析】【分析】(1)根据向量的坐标运算,向量模的公式运算得解;(2)根据向量的坐标运算求得ma c + 和a mb +坐标,再由向量共线即可计算出m 的值.【小问1详解】因为()1,4a =- ,()2,1b =-r,所以()5858582,43,4777777a b ⎛⎫-=--⨯⨯+=- ⎪⎝⎭r r ,所以58577a b -==r r .【小问2详解】因为()2,5ma c m m +=-+r r ,()21,4a mb m m +=--+r r,又ma c + 与a mb +共线,所以()()()24521m m m m -+-+=-,所以2980m m +-=,解得1m =-或89.所以m 的值为1-或89.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.【答案】(1)82.5;(2)15.【解析】【分析】(1)根据给定的频率分布直方图,结合75%分位数的意义列式计算即得.(2)求出抽取的6人中,“探月达人”人数,再利用列举法求出概率.【小问1详解】由频率分布直方图知,成绩在[40,50),[50,60),[60,70),[70,80),[80,90)内的频率依次为:0.05,0.15,0.2,0.3,0.2,则成绩在80分以下的频率为0.7,成绩在90分以下频率为0.9,因此参加这次竞赛的学生成绩的75百分位数为(80,90)x ∈,由(80)0.020.05x -⨯=,解得82.5x =,所以参加这次竞赛的学生成绩的75百分位数为82.5.【小问2详解】由于0.30.20.163,62,610.30.20.10.30.20.10.30.20.1⨯=⨯=⨯=++++++,则6人中,成绩在[70,80),[80,90),[90,100]内的学生分别为3人,2人,1人,其中有3人为“探月达人”,设为a ,b ,c ,有3人不是“探月达人”,设为,,d e f ,则从6人中选择2人作为学生代表,有,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,共15种,其中2人均为“探月达人”为,,ab ac bc ,共3种,所以被选中的2人均为“探月达人”的概率为31155=.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,BD =,求2a c +的最小值.【答案】(1)π3B =(2)6+【解析】【分析】(1)利用正弦定理进行角换边,再结合余弦定理即可得到答案;(2)根据面积法得1112a c +=,再利用乘“1”法即可得到最小值.【小问1详解】因为sin sin sin C A Ba b a c-=+-,所以由正弦定理可得c a ba b a c-=+-,即222a c b ac +-=,又因为222cos 2a c b B ac+-=,则1cos 2B =,因为(0,π)B ∈,所以π3B =.【小问2详解】因为ABD CBD ABC S S S += 所以1π1π1πsin sin sin 262623AB BD BC BD AB BC ⨯+⨯=⨯,因为BD =,所以c BD a BD ⨯+⨯=,所以2()c a ac ⨯+=,即1112a c +=,所以22242(2)66c a a c a c a c a c ⎛⎫+=++=++≥+⎪⎝⎭,当且仅当22a c ==+时,2a c +取得最小值6+.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.【答案】(1)最小值为2-,x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈(2)6365-【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则得到其最小值和此时所对应的x 的集合;(2)首先求出4sin()5αβ-=,再计算出3cos()5αβ-=,5cos 13β=-,12sin 13β=,最后化简为繁,利用两角和的余弦公式即可得到答案.【小问1详解】21()14sin cos cos 1cos 2cos 22f x x x x x x x ⎛⎫=-++=-++ ⎪ ⎪⎝⎭π121cos 22sin 26x x x ⎛⎫=-+++=+ ⎪⎝⎭当ππ22π,Z 62x k k +=-+∈,即ππ,Z 3x k k =-+∈时,()f x 取得最小值2-,此时x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈.【小问2详解】πππ82sin 22sin()21221265f αβαβαβ⎛⎫--⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则4sin()5αβ-=,因为ππ2β<<,所以ππ2β-<-<-,又因为ππ2α<<,所以ππ22αβ-<-<,所以3cos()5αβ-=,因为πππ102sin 22sin 2cos 26266213f βπβββ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5cos 13β=-,因为ππ2β<<,所以12sin 13β==,cos cos[()]cos()cos sin()sin ααββαββαββ=-+=---354126351351365⎛⎫=⨯--⨯=- ⎪⎝⎭.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.【答案】(1)下凸函数,理由见解析(2)证明见解析(3)【解析】【分析】(1)作差()()121222f x f x x x f ++⎛⎫-⎪⎝⎭,化简即可证明;(2)任意取12,(0,π)x x ∈,作差()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其符号即可;(3)根据(2)中结论得sin sin sin sin sin 44A B C D A B C D ++++++⎛⎫≤ ⎪⎝⎭,代入计算即可得到答案.【小问1详解】下凸函数,理由如下:任意取12,R x x ∈,因为()()()()22221212*********22424f x f x x x x x x x x x f ++-+++⎛⎫-=+-=- ⎪⎝⎭即()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,当且仅当12x x =时等号成立,故2()1(R)f x x x =+∈是下凸函数.【小问2详解】任意取12,(0,π)x x ∈,不妨设12x x ≤,()()12121212sin sin sin 2222h x h x x x x x x x h ++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭12121122sincos cos sin sin cos sin cos 22222222x x x x x x x x=+--2112sin sin cos cos 2222x x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,由于12π0222x x <≤<,根据sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则2112sin sin ,cos cos 2222x x x x ≥≥,所以()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭,即函数()h x 是上凸函数.【小问3详解】当(0,,π,),A B C D ∈,且πA B C D +++=,由(2)知()sin ,(0,π)h x x x =∈是上凸函数,所以sin sin sin sin πsin sin 4442A B C D A B C D++++++⎛⎫≤==⎪⎝⎭,故πsin sin sin sin 4sin 4sin 244A B C D A B C D +++⎛⎫+++≤== ⎪⎝⎭所以当且仅当π4A B C D ====时等号成立,即sin sin sin sin A B C D +++的最大值为.【点睛】关键点点睛:本题第二问的关键是作差因式分解得()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其正负即可.。

浙江金华十校2024年高一下学期6月期末调研数学试题

浙江金华十校2024年高一下学期6月期末调研数学试题

金华十校2023-2024学年第二学期期末调研考试高一数学试题卷本试卷分选择题和非选择题两部分.考试时间120分钟.试卷总分为150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合AA={xx|0<xx<2},BB={xx|1<xx<3},则AA∩BB=A.{xx|1<xx<2}B.{xx|0<xx<3}C.{xx|2<xx<3}D.{xx|1<xx<3} 2.“αα=π6”是“sinαα=12”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.数据2,3,3,4,4,5,5,5,5,6的中位数为A.3.5 B.4 C.4.5 D.54.复数zz=1−3i1+i,则|zz|=A.5 B.�5C.4√2D.32�����⃗=aa,OOBB�����⃗=bb,点PP关于点AA的对称点为MM,点MM关于点BB的对称点为QQ,则PPQQ�����⃗=5.已知OOAAA.aa+bb B.2aa+2bb C.bb−aa D.2bb−2aa6.某圆锥的底面半径为6,其内切球半径为3,则该圆锥的侧面积为A.20πB.30πC.60πD.90π7.若函数ff(xx)=ee2xx+ee−2xx−4(ee xx+ee−xx)+2bb(bb是常数)有且只有一个零点,则bb的值为A.2 B.3 C.4 D.58.已知△AABBAA三个内角AA,BB,AA的对边分别是aa,bb,cc,且满足aa2+2bb2+2cc2=4,则△AABBAA面积的最大值为A.√28B.√24C.√22D.�2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.对于事件AA和事件BB,PP(AA)=0.4,PP(BB)=0.5,则下列说法正确的是A.若AA与BB互斥,则PP(AABB)=0.4B.若AA与BB互斥,则PP(AA∪BB)=0.9C.若AA⊂BB,则PP(AABB)=0.1D.若AA与BB相互独立,则PP(AABB)=0.210.已知OO,AA与BB,AA分别是异面直线aa与bb上的不同点,EE,FF,GG,HH分别是线段OOAA,OOBB,BBAA,AAAA上的点.以下命题正确的是A.直线OOBB与直线AAAA可以相交,不可以平行B.直线EEHH与直线BBAA可以异面,不可以平行C.直线EEGG与直线FFHH可以垂直,可以相交D.直线EEFF与直线GGHH可以异面,可以相交11.小明在研究物理中某种粒子点PP(xx,yy)的运动轨迹,想找到yy与xx的函数关系,从而解决物理问题,但百思不得其解,经过继续深入研究,他发现yy和xx都与某个变量tt(tt∈RR)有关联,且有�xx=tt−sin tt,yy=1−cos tt.小明以此为依据去判断函数yy=ff(xx)的性质,得到了一些结论,有些正确的结论帮助小明顺利的解决了物理问题,同时也让小明深深感受到学好数学对物理学习帮助很大!我们来看看,小明的以下结论正确的是A.函数yy=ff(xx)的图象关于原点对称B.函数yy=ff(xx)是以2π为周期的函数C.函数yy=ff(xx)的图象存在多条对称轴D.函数yy=ff(xx)在(0,12)上单调递增非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数ff(xx)=�log2(xx+1),xx>2,xx2+2xx,xx≤2.则ff(ff(1))= .13.甲船在BB岛的正南方向AA处,AABB=10千米,甲船向正北方向航行,同时乙船自BB岛出发向北偏东60∘的方向航行,两船航行速度相同,则甲、乙两船的最近距离为千米.14.在△AABBAA中,AABB=3,AAAA=6,∠BBAAAA=60∘,DD在边BBAA上,延长AADD到EE,使AAEE=15.若EEAA�����⃗=ttEEBB�����⃗+ (32−tt)EEAA�����⃗,则BBDD= .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知ee1,ee2是夹角为60∘的两个单位向量,aa=2ee1−ee2,bb=λλee1−2ee2(λλ∈RR).(1)若aa,bb可以作为一组基底,求实数λλ的取值范围;(2)若aa,bb垂直,求实数λλ的值;(3)求|bb|的最小值.16.(本题满分15分)已知函数ff(xx)=√3sin xx+cos xx.(1)求函数ff(xx)的值域和其图象的对称中心;(2)在△AABBAA中,三个内角AA,BB,AA的对边分别是aa,bb,cc,满足ff(AA)=√3,aa=2,bb=2√3,求△AABBAA的面积SS的值.17.(本题满分15分)在五一假期中,某校组织全校学生开展了社会实践活动,抽样调查了其中的100名学生,统计他们参加社会实践活动的时间(单位:小时),并将统计数据绘制成如图的频率分布直方图.另外,根据参加社会实践活动的时间从长到短按4:4:2的比例分别被评为优秀、良好、合格.(1)求aa的值并估计该学校学生在这个五一假期中参加社会实践活动的时间的平均数(同一组中的数据用该组区间的中点值作为代表);(2)试估计至少参加多少小时的社会实践活动,方可被评为优秀.(结果保留两位小数).(3)根据社会实践活动的成绩,按分层抽样的方式抽取5名学生.从这5名学生中,任选3人,求这3名学生成绩各不相同的概率.18.(本题满分17分)在四棱台AABBAADD−AA1BB1AA1DD1中,BBAA//AADD,平面AABBBB1AA1⊥平面AABBAADD,AADD=2,AADD=√2,AABB=BBAA= AAAA1=AA1DD1=1,∠AA1AABB=120∘.(1)求证:AA1BB//平面AADDDD1AA1;(2)求直线AAAA1与直线AADD所成角的余弦值;(3)若QQ是DDDD1的中点,求平面QQAAAA与平面AABBAADD的夹角的余弦值.19.(本题满分17分)假设GG(xx)是定义在一个区间II上的连续函数,且{GG(xx)|xx∈II}⊂II.对∀xx0∈II,记xx1=GG(xx0)=GG1(xx0),xx2= GG(xx1)=GG(GG(xx0))=GG2(xx0),…,xx nn=GG(GG nn−1(xx0))=GG nn(xx0)⋯.若某一个函数GG(xx)满足GG nn+2(xx0)= ppGG nn+1(xx0)+qqGG nn(xx0),则有xx nn=ssααnn+ttββnn(其中αα,ββ为关于xx的方程xx2=ppxx+qq的两个根,ss,tt是可以由xx0,xx1来确定的常数).(1)若xx0=2,xx1=3且满足GG nn+2(2)=−GG nn+1(2)+2GG nn(2).(ⅰ)求xx2,xx3的值;(ⅱ)求xx nn的表达式;(2)若函数GG(xx)的定义域为AA,值域为BB,且AA=BB=(0,+∞),且函数GG(xx)满足GG nn+2(xx)=−GG nn+1(xx)+ 6GG nn(xx),求GG(xx)的解析式. 【参考答案】金华十校2023-2024学年第二学期期末调研考试选择题部分(共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 2.A 3.C 4.B 5.D 6.C 7.B 8.B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.BD 10.BCD 11.BCD非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.213.5√314.4四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15.(1)解:由题意得:aa,bb不平行,故2−1≠λλ−2,有λλ≠4.…………4分(2)aa⋅bb=2λλee12−(4+λλ)ee1⋅ee2+2ee22=0,∵ee12=ee22=1,ee1⋅ee2=12.∴2λλ−(4+λλ)12+2=0,解得λλ=0.…………9分(3)bb2=λλ2ee12−4λλee1⋅ee2+4ee22=λλ2−2λλ+4=(λλ−1)2+3当λλ=1时,(|bb|)min=√3.…………13分16.(1)解:ff(xx)=2sin(xx+π6),所以值域为[−2,2],…………2分令xx+π6=kkπ,kk∈ZZ,得xx=−π6+kkπ,所以其图象的对称中心坐标为(−π6+kkπ,0),kk∈ZZ.…………5分(2)由ff(AA)=2sin(AA+π6)=√3得sin(AA+π6)=√32,∵0<AA<π,∴π6<AA+π6<7π6,所以AA+π6=π3或2π3,即AA=π6或AA=π2,∵aa=2<bb=2√3,∴AA=π6,…………9分由余弦定理得4=12+cc2−2×2√3cc cos30∘,cc=2或4.…………12分当cc=2时,SS=12×2×2√3×12=√3;当cc=4时,SS=12×4×2√3×12=2√3.故所求△AABBAA的面积SS为√3或2√3.…………15分17.(1)解:由(0.02+0.06+0.075+aa+0.025)×4=1,解得aa=0.07,…………2分因为(0.02×12+0.06×16+0.075×20+0.07×24+0.025×28)×4=20.32,所以该学校学生假期中参加社会实践活动的时间的平均数约为20.32小时.…………5分(2)由题意可知,即求60百分位数,又∵(0.02+0.06)×4=0.32,(0.02+0.06+0.075)×4=0.62,∴60百分位数位于18~22之间,设60百分位数为yy,则yy−1822−18=0.6−0.320.3,解得yy=18+5615≈21.73.故至少参加21.73小时的社会实践活动,方可被评为优秀.…………10分(3)易知,5名学生中,优秀的2人,良好的2人,合格的1人.任选3人,总共有10种情况,其中符合的有4种,故pp=25.…………15分18.(1)解:连接AADD1,∵BBAA=AA1DD1=1,BBAA//AA1DD1,∴AA1BBAADD1是平行四边形,∴AA1BB//AADD1.又AA1BB⊄面AADDDD1AA1,AADD1⊂面AADDDD1AA1,故AA1BB//平面AADDDD1AA1.…………5分(2)法一:取AADD中点EE,连DD1EE,AAEE,BBDD1,则AAAA1//DD1EE,BBEE//AADD,所以∠BBEEDD1就是直线AAAA1与AADD所成的角.在梯形AABBAADD中,由已知可得AABB⊥AADD,又平面AABBBB1AA1⊥平面AABBAADD,AABB是交线,∴AADD⊥面AABBBB1AA1,∴BBAA⊥面AAEEDD1,∴BBAA⊥AADD1,∴BBDD1=2,∴cos∠BBEEDD1=1+2−42√2=−√24,所以,直线AAAA1与直线AADD所成角的余弦值为√24.…………11分法二:平面AABBBB1AA1⊥平面AABBAADD,AABB是交线,∴AADD⊥面AABBBB1AA1,如图,以AA为坐标原点,AABB所在直线为xx轴,AADD所在直线为yy轴,建立空间直角坐标系.则AA(0,0,0),BB(1,0,0),AA(1,1,0),DD(0,2,0),AAAA1�������⃗=(−12,0,√32),AADD�����⃗=(−1,1,0)∴cosθθ=|cos⟨AAAA1�������⃗,AADD�����⃗⟩|=√24.…………11分(3)过DD1作AAEE延长线的垂线于OO,连接OODD,取OODD中点HH,连接QQHH,过HH作HHMM⊥AAAA,连接QQMM.易证QQHH⊥面AABBAADD,则∠QQMMHH就是二面角QQ−AAAA−DD的平面角.QQHH=12OODD1=√34,MMHH=7√28,所以MMQQ=√1108,故cos∠QQMMHH=MMMM MMMM=7√5555.…………17分AA1DD1����������⃗=BBAA�����⃗=(0,1,0),∴DD1(−12,1,√32),∴QQ(−14,32,√34)设mm =(xx ,yy ,zz )是面QQAAAA 的法向量,则�xx +yy =0,−14xx +32yy +√34zz =0, 令xx =√3,得mm =(√3,−√3,7), 又nn =(0,0,1)是面AABBAADD 的法向量,所以cos θθ=|cos ⟨mm ,nn ⟩|=7√55=7√5555.…………17分 19.(1) (ⅰ) 解:由题意可知,xx nn+2=−xx nn+1+2xx nn , 又xx 0=2,xx 1=3,∴xx 2=−xx 1+2xx 0=−3+4=1,…………2分xx 3=−xx 2+2xx 1=−1+2×3=5.…………4分 (ⅱ) 由题意可知,xx nn =ss ⋅ααnn +tt ⋅ββnn ,又αα,ββ为xx 2=−xx +2的两个根1,−2,∴xx nn =ss +tt (−2)nn .…………6分又�xx 0=ss +tt =2,xx 1=ss +tt ×(−2)=3,所以�ss =73,tt =−13, ∴xx nn =73−13⋅(−2)nn .…………8分(2) 由(ⅱ)可知,xx nn =ss ⋅(−3)nn +tt ⋅2nn ,…………10分 因为值域为BB =(0,+∞),∴ss =0;…………12分 ∴xx nn =tt ⋅2nn ,又xx 0=tt ⋅20=tt ,…………14分 xx 1=GG (xx 0)=2tt =2xx 0,∴GG (xx )=2xx .…………17分。

辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)

辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)

大连市2023~2024学年度第二学期期末考试高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效;2、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数满足,则( )A B. C.D.2. 已知,则的值为( )A.B. 3C. D. 3. 已知圆锥的底面半径是1,则圆锥的侧面积是( )A. B.C.D. 4. 下列四个函数中,以为最小正周期,且为奇函数的是( )A. B. C. D. 5. 将函数图象上所有点向右平移个单位,得到函数的图象,则图象的一条对称轴为( )A. B. C. D. 6. 设,是两个不重合平面,,是两条不重合直线,则( )A. 若,,则 B. 若,,则C. 若,,,则 D. 若,,,则7. 已知平面直角坐标系内点,为原点,线段绕原点按逆时针方向旋且长度变为原来的一半,得到线段,若点的纵坐标为,则( ).的z ()1i 1z -=z =i1i+1i 211i 22+tan 2α=sin cos sin cos αααα+-1313-3-π4π2πππsin 22y x ⎛⎫=-⎪⎝⎭πcos 22y x ⎛⎫=+⎪⎝⎭()tan 2πy x =+()sin 2πy x =-()sin2f x x =π8()g x ()g x π8x =-π8x =3π16x =5π16x =αβm l //l αm α⊂//m l //m ααβ⊥m β⊥m α⊥l β⊥//m l //αβαβ⊥//m αl //βm l⊥A O OA (0π)αα<<OA 'A '513cos α=A.B.C.D.8. 已知中,,,为所在平面内一点,,则的最小值为( )A B. C. 0 D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知复数,,则下列说法正确是( )A. 若,则的共轭复数为B. 若为纯虚数,则C. 若,则D. 10. 已知角的顶点与坐标原点重合,角的始边落在轴的正半轴上,如果是角终边上不同于坐标原点的任意一点,记,当角的终边不在轴上时,称为角的正割,记作.则下列说法正确的是( )A. B. 函数的最小正周期为,其图象的对称轴为C. (其中和的取值使各项都有意义)D. 在锐角中,角,,的对边分别为,,,则11. 如图,正三棱台上、下底面边长分别为1和3,侧棱长为2,则下列说法正确的是( ).的的ABC V 4AB =3AC =2AB AC +=P ABC V 8AP AB ⋅=PA PC ⋅ 5-14-741z 2z 132i z =+1z 32i -()()()11i m m m -++∈R 1m =12z z =12z z =1212z z z z =ααx (),P x y αr =αy rxαsec απsec23=()sec f x x =2πππ(Z)2x k k =+∈()sec sec sec 1tan tan αβαβαβ+=-αβABC V A B C a b c sec sec b c a B C=+111ABC A B C -A.B. 若过点的平面与平面平行,则平面C. 若点在棱上,则的最小值为D.第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)12. 已知向量,,若,则实数____.13. 已知函数在上单调递增,则的最大值为____.14. 已知矩形中,,,将沿折至,得到三棱锥,则该三棱锥体积的最大值为____;该三棱锥外接球的表面积为____.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知,角,,的对边分别为,,.(1)求角的大小;(2)若,,求的面积.16. 如图,在直三棱柱中,,.(1)求证:平面平面;(2)求证:.17. 如图,某沿海地区计划铺设一条电缆联通,两地,地位于岸边东西方向的直线上,地1C α11ABB A αP 1BB AP CP +()3,a x = ()1,1b =- a b ⊥x =()π2sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π0,4⎡⎤⎢⎥⎣⎦ωABCD 4AB =3AD =ACD V AC ACD '△D ABC '-ABC V A B C a b c cos sin B b A =B 7b =13a c +=ABC V 111ABC A B C -1AB BB =AB BC ⊥1A BC ⊥11ABB A 11AC A B ⊥M N M AB N位于海上一个灯塔处,在地用测角器测得的大小,设,已知.在地正东方向的点处,用测角器测得.在直线上选一点,设,且,先沿线段在地下铺设电缆,再沿线段在水下铺设电缆.已知地下、水下的电缆铺设费用分别为3万元,6万元.(1)求,两点间的距离;(2)设铺设电缆总费用为.①求的表达式;②求铺设电缆总费用的最小值,并确定此时的长度.18. 如图,在四棱锥中,底面为菱形,,,为的中点.(1)证明:平面;(2)若,.①求二面角的余弦值;②求直线与平面所成角的正弦值.19. 已知函数,,若对于任意实数,,,都能构成三角形的三条边长,则称函数为上的“完美三角形函数”.(1)试判断函数是否为上的“完美三角形函数”,并说明理由;(2)设向量,,若函数为上的“完美三角形函数”,求实数的取值范围;M NMB ∠0NMB ∠α=05tan 12α=M 7km 5P π4NPB ∠=AB Q NQB ∠α=0π2αα<≤MQ QN /km /km M N ()f α()fαMQ P ABCD -ABCD 60∠= BAD PA PD ⊥E PC //PA BDE PA PB ==2PD =P AD B --BC ABP ()y f x =x D ∈a b c ∈,,D ()f a ()f b ()f c ()y f x =D ()215cos sin 4f x x x =++R ()2sin 2cos m k x x = ,()cos 2cos n x k x = ,()21g x m n k =⋅-+ π0,4⎡⎤⎢⎥⎣⎦k(3)已知函数为(为常数)上的“完美三角形函数”.函数的图象上,是否存在不同的三个点,满足,?若存在,求的值;若不存在,说明理由.()πsin 26h x x ⎛⎫=+⎪⎝⎭π,6θ⎡⎤⎢⎥⎣⎦θ()h x ()()()111123,A x h x i =,,1322x x x +=()()()132h x h x x +=()13cos x x -大连市2023~2024学年度第二学期期末考试高一数学答案第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】D二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】AC【11题答案】【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)【12题答案】【答案】3【13题答案】【答案】【14题答案】【答案】①.②. 四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)证明略 (2)证明略【17题答案】【答案】(1); (2)①;②万元,.【18题答案】【答案】(1)证明略 (2)①;②【19题答案】【答案】(1)是,理由略(2)(3)不存在,理由略.2324525ππ3B =13km 5()()032cos 36π(5sin 2fααααα-=+<≤365+12513122⎛⎫ ⎪ ⎪⎝⎭。

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。

吉林省吉林市普通高中2023-2024学年高一下学期期末调研数学试题

吉林省吉林市普通高中2023-2024学年高一下学期期末调研数学试题

吉林省吉林市普通高中2023-2024学年高一下学期期末调研数学试题一、单选题1.已知样本数据:6,5,7,8,9,6,则这组样本数据的中位数为( ) A .6B .6.5C .7D .7.5 2.设复数11i z i -=+,则||z =( )A .0B .1CD .23.若m ,n 是两条直线,α是一个平面,则下列命题中正确的是( )A .若m n ⊥,m α⊂,则n α⊥B .若//m α,n ⊂α,则//m nC .若m α⊥,//m n ,则n α⊥D .若//m α,//n α,则//m n4.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =,2b =,120A =︒,则c =( )A .2B .3C .4D .2或4 5.已知圆锥的侧面展开图是半径为6,圆心角为2π3的扇形,则该圆锥的表面积为( )A .12πB .16πC .D .28π 6.在ABC V 中,2BC CD =u u u r u u u r ,则AD =u u u r ( )A .1122AB AC +u u u r u u u r B .1322AB AC -u u u r u u u r C .1322AB AC -+u u u r u u u r D .1322AB AC +uu u r uuu r 7.中国国家馆以“城市发展中的中华智慧”为主题,表现出了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质.如图,现有一个类似中国国家馆结构的正四棱台1111ABCD A B C D -,2AB =,114A B =,侧面面积为 )A B .C D .8.已知锐角ABC V 是单位圆的内接三角形,角A ,B ,C 的对边分别为a ,b ,c ,且2222sin sin sin 4sin cos 2sin sin cos A C B A B A B C +-=-,则bc a的取值范围是( )A .1,22⎛⎫ ⎪⎝⎭B .⎝⎭C .D .⎝二、多选题9.已知(3,1)a =-r ,(1,2)b =-r ,(1,)c λ=r ,则( )A .10a =rB .若//a c r r ,则13λ=-C .若b c ⊥r r ,则2λ=-D .b r 在a r 上的投影向量的坐标为31,22⎛⎫- ⎪⎝⎭10.分别抛掷两枚质地均匀的硬币,设事件A =“第一枚正面朝上”,事件B =“第二枚正面朝上”,事件C =“两枚硬币朝上的面相同”,事件D =“两枚硬币朝上的面不同”,则( )A .1()2P A =B .B 与C 互斥C .C 与D 互为对立D .A 与C 相互独立 11.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,CD 的中点,则( )A .三棱锥1A ACD -的外接球的表面积为12πB .三棱锥1A ACD -的外接球的体积为C .点C 到平面1C EF 的距离为13D .已知点P 是底面ABCD (不含边界)内一动点,且1//D P 平面11A EC ,则线段1D P 的长度的取值范围是⎣三、填空题12.已知2i +是关于x 的方程250x ax ++=的根,则实数=a .13.在ABC V 中,6AB =,2AC CB ⋅=u u u r u u u r ,D 为AB 中点,则CD =.14.我国古代数学家祖暅于5世纪末提出了下面的体积计算原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等.在正四棱柱1111ABCD A B C D -中,122AB AA ==,E 是1A D 上一点,EF AD ⊥于点F ,设EF d =,02d <<,则点E 绕1CC 旋转一周所得的圆的面积为(用d表示);将空间四边形11DAC C 绕1CC 旋转一周所得几何体的体积为.四、解答题15.某高校强基计划考试分“笔试”和“面试”两部分,每部分考试成绩记“合格”或“不合格”两部分考试成绩均“合格”者则考试“通过”,并给予录取.现甲、乙两人都参加此高校的强基计划考试,甲、乙在笔试中成绩“合格”的概率分别为12,13,在面试中成绩“合格”的概率分别为23,34,且每人在笔试和面试成绩是否“合格”是相互独立的. (1)甲、乙两人谁被录取的可能性大,并说明理由;(2)求甲、乙两人中至少有一人被录取的概率.16.如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得60BCD ∠=︒,75BDC ∠=︒,60m CD =,并在点C 处测得塔顶A 的仰角30ACB ∠=︒.(1)求B 与D 两点间的距离;(2)求塔高AB .17.随着全民健身意识增强,马拉松运动逐渐成为深受群众喜爱的体育健身项目之一.吉林市自2016年以来,现已成功举办五届马拉松比赛,“吉马”也因此成为了东北地区乃至全国颇具影响力的品牌赛事.2023年“吉马”被中国田径协会评为“城市形象媒体传播赛事典型案例”.时隔一年,吉林市委、市政府再次启动这一国际化赛事,将挑战自我、超越极限、坚韧不拔、永不放弃的马拉松精神与我市激流勇进的城市精神相结合,并将其发扬光大.为此,某校举办了“吉马”知识竞赛,从所有竞赛成绩中抽取一个容量为100的样本,并按竞赛成绩(单位:分)分成六组:[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,得到如下图所示的频率分布直方图.(1)求频率分布直方图中a 的值,并求样本中竞赛成绩的第80百分位数;(2)现从样本中竞赛成绩在[)60,80内用比例分配的分层随机抽样的方法抽取6人,再从这6人中抽取2人座谈,求至少有一人竞赛成绩在[)70,80内的概率;(3)已知样本中竞赛成绩在[)80,90内的平均数182x =,方差212s =,样本中竞赛成绩在[]90,100内的平均数294x =,方差225s =,并据此估计所有答卷中竞赛成绩在[]80,100内的总体方差.参考公式:总体分为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:1n ,1x ,21s ;2n ,2x ,22s .记总的样本平均数为ω,样本方差为2s ,{}22222111222121()()s n s x n s x n n ωω⎡⎤⎡⎤=+-++-⎣⎦⎣⎦+. 18.如图,在四棱锥P ABCD -中,AB ⊥BC ,//BC AD ,2BC AD =,且M 是PB 的中点.(1)求证://AM 平面PCD ;(2)若平面PBC ⊥平面ABCD ,且4PC BC ==,2PB AB ==.(ⅰ)求证:CM ⊥平面PAB ;(ⅱ)求直线CD 与平面PAB 所成的角的正弦值.19.法国伟大的军事家、政治家拿破仑一生钟爱数学,他发现并证明了著名的拿破仑定理:“以任意的三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”.如图,ABC V 的内角A ,B ,C 的对边分别为a ,b ,c,sin cos A a B c +=,以AB ,BC ,AC 为边向外作三个等边三角形,其中心分别为D ,E ,F .(1)求角A ;(2)若3a =,且DEF V 的周长为9,求AD AB AF AC ⋅+⋅u u u r u u u r u u u r u u u r ;(3)若DEF VABC V 的角平分线AM 的取值范围.。

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知i为虚数单位,复数,则()A. B. C. D.2.已知两条不同的直线m,n和两个不同的平面,,下列四个命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则3.高一年级某位同学在五次考试中的数学成绩分别为105,90,104,106,95,这位同学五次数学成绩的方差为()A. B.C.50D.4.在直三棱柱中,,且,则异面直线与所成角的余弦值是()A. B. C. D.5.数据1,2,5,4,8,10,6的第60百分位数是()A. B.C.6D.86.已知圆台的上、下底面圆的半径分别为1和3,高为1,则圆台的表面积为()A. B.C. D.7.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层随机抽样方法抽取了容量为180的样本,经计算得男生样本的均值为170,女生样本的均值为161,则抽取的样本的均值为是()A. B.166C. D.1688.棱长为2的正方体内有一个棱长为a的正四面体,且该正四面体可以在正方体内任意转动,则a的最大值为()A.1B.C.D.2二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.某单位为了解员工参与一项志愿服务活动的情况,从800位员工中抽取了100名员工进行调查,根据这100人的服务时长单位:小时,得到如图所示的频率分布直方图.则()A.a的值为B.估计员工平均服务时长为45小时C.估计员工服务时长的中位数为小时D.估计本单位员工中服务时长超过50小时的有45人10.正六边形ABCDEF的边长为2,G为正六边形边上的动点,则的值可能为()A. B. C.12 D.1611.如图,正三棱锥和正三棱锥的侧棱长均为,若将正三棱锥绕BD旋转,使得点A,C分别旋转至点M,N处,且M,B,D,E四点共面,点M,E分别位于BD两侧,则()A. B.C.MC的长度为D.点C与点A旋转运动的轨迹长度之比为三、填空题:本题共3小题,每小题5分,共15分。

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

四川省名校2023-2024学年高一下学期7月期末联考数学试题

四川省名校2023-2024学年高一下学期7月期末联考数学试题

四川省名校2023-2024学年高一下学期7月期末联考数学试题一、单选题1.下列几何体中,不是旋转体的是( )A .B .C .D . 2.若12i 3i z +=+,则z =( )A B C D .3.如图所示,在平行四边形OABC 中,1,2OA OB ==,则它的直观图面积是( )A .B .2C 2D 4.某花农连续8天采摘的栀子花重量依次为7.2,7.4,8.7,8.1,8.9,8.4,8.6,8.9(单位:斤),则这组数据的第75百分位数为( )A .8.9B .8.8C .8.7D .8.65.四边形中ABCD 中,AB DC =u u u r u u u r ,则下列结论中错误的是( )A .AB CD =u u u r u u u r 一定成立 B .AC AB AD =+u u u r u u u r u u u r 一定成立 C .AD BC =u u u r u u u r 一定成立 D .BD AB AD =-u u u r u u u r u u u r 一定成立6.某人抛掷一枚质地均匀的骰子一次,记事件A =“出现的点数为奇数”,B =“出现的点数不大于3”,事件C =“出现点数为3的倍数”,则下列说法正确的是( )A .A 与B 互为对立事件B .()()()P A B P A P B =+UC .()23P C =D .()()P A P C =7.已知,a b r r 是不共线的向量,且2,4,65AB a b BC a b CD a b =-=-=-+r r u u u r u u u r u r r r u ur r ,则( ) A .,,A B C 三点共线 B .,,A B D 三点共线C .,,A CD 三点共线 D .,,B C D 三点共线8.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且12341p p p p +++=,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.35,0.15p p p p ====B .12340.35,0.3,0.2,0.15p p p p ====C .14230.15,0.35p p p p ====D .12340.15,0.2,0.3,0.35p p p p ====二、多选题9.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是( )A .娱乐开支金额为100元B .日常开支比食品中的肉类开支多100元C .娱乐开支比通信开支多5元D .肉类开支占储蓄开支的1310.设12,z z 是复数,则下列说法正确的是( )A .若21z ∈R ,则1z ∈RB .设12,z z 互为共轭复数,则.12z z ∈RC .若120z z -=,则12z z =D .复数12z z 在复平面内对应的点位于第四象限11.已知平面αβγ,,,直线,m l ,则下列命题正确的是( )A .若αβ∥,m α⊂,l β⊂,则m l ∥B .若αβ⊥,m αβ=I ,l ⊂α,l m ⊥,则l β⊥C .若αβ⊥,βγ⊥,则αγ⊥D .若l α⊥,l βP ,则αβ⊥12.据统计,从1932年至1990年,历次所测乐山大佛高度均不一样.某校计划开展数学建模活动,打算运用所学知识测量乐山大佛的高度.老师提前准备了三种工具:测角仪、米尺、量角器.下面是四个小组设计的测量方案,其中可能测量出大佛高度的方案有( )A .把两只佛脚底部看作,M N 两点,分别测量佛顶的仰角,αβ和MN 的距离B .在佛脚平台上一点测得佛顶的仰角为α,再面对大佛前行S 米,测得佛顶的仰角为βC .高为h 的同学站在佛脚平台上,在该同学头顶和脚底分别测量佛顶的仰角,αβD .在佛脚平台上寻找两点,A B 分别测量佛顶的仰角,αβ,再测量,A B 两点间距离和两点相对于大佛底部的张角θ三、填空题13.某校围棋社团、舞蹈社团、美术社团和篮球社团的学生人数分别为50,30,40,60,现采用分层抽样的方法从这些学生中选出18人参加一项活动,则美术社团中选出的学生人数为. 14.甲、乙两人进行投篮比赛,甲投篮命中的概率为0.5,乙投篮命中的概率为0.6,且两人投篮是否命中相互没有影响,则两人各投篮一次,至多一人命中的概率是.15.已知向量,a b r r 在正方形网格中的位置如图所示,{}12,e e u r u u r 为单位正交基底,则a b λ-r r 最小值是.四、单选题16.已知直四棱柱1111ABCD A B C D -的棱长均相等,且60BAD ∠=o ,以1B 径的球面与侧面11ADD A 的交线为半圆,且长为π2,则该四棱柱的体积为.五、解答题17.已知平面向量()()()1,1,,1,1,2a b t c =-==r r r .(1)若()c a b +⊥r r r ,求实数t 的值;(2)若c a -r r 与b r 的夹角为π3,求实数t 的值. 18.为了丰富校园文化生活,培养学生的兴趣爱好,提高学生的综合素质,某中学举办了学校社团活动,开设的项目有4个运动类社团(篮球社、足球社、乒乓球社、羽毛球社)和2个艺术类社团(音乐社、美术社),一名学生从中随机抽取2个项目来参加活动.(1)求抽取的2个项目都是运动类社团的概率;(2)若从运动类社团和艺术类社团中各抽取1个,求这2个社团不包括篮球社但包括音乐社的概率.19.已知四棱锥P ABCD -中,,,PD AD CD AD AB ⊥⊥//1,2CD AB CD =,且2,AD CD PD PC M ====是PC 中点.(1)求证://BM 平面PAD ;(2)求三棱锥A BCM -的体积.20.某电力公司需要了解用户的用电情况(单位:度).现随机抽取了该片区100户进行调查,将数据分成6组:(](](](](](]0,100,100,200,200,300,300,400,400,500,500,600,并整理得到如下频率分布直方图(用户的用电量均不超过600度).(1)求a ;(2)若每一组住户的用电量取该组区间中点值代替,估算该片区住户平均用电量;(3)每户用电量不超过m 度的电费是0.5元/度,超出m 度的部分按1元/度收取,若该公司为了保证至少80%的住户电费都不超过0.5元/度,则m 至少应为多少(m 为整数)?21.如图,在四边形ABCD 中,ABD △是边长为2的正三角形,,2BD CD CD ⊥=.现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,点E 是AD 的中点.(1)求证:BE ⊥平面ACD ;(2)求AC 与平面BCE 所成角的正弦值.22.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小."意大利数学家托里拆利给出了解答,当ABC V 的三个内角均小于120o 时,使得120AOB BOC COA ∠=∠=∠=o 的点O 即为费马点;当ABC V 有一个内角大于或等于120o 时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知,,a b c 分别是ABC V 三个内角,,A B C 的对边,点P 为ABC V 的费马点,且()()cos22sin sin 1C A B A B ++-=.(1)求A ;(2)若6bc =,求PA PB PB PC PC PA ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r 的值;(3)若PB PC t PA +=,求实数t 的最小值.。

2022-2023学年河北省唐山市高一下学期期末数学试题【含答案】

2022-2023学年河北省唐山市高一下学期期末数学试题【含答案】

2022-2023学年河北省唐山市高一下学期期末数学试题一、单选题1.已知复数1iiz -+=-,则z =()A .1i --B .1i-+C .1i-D .1i+【答案】B【分析】根据复数代数形式的除法运算化简复数z ,即可得到其共轭复数;【详解】解:()21i ii i 1i 1i z -+-+===----,所以1i z =-+.故选:B2.化简PA PB AB -+所得的结果是()A .2ABB .2BAC .0D .PA【答案】C【分析】根据向量加,减法运算,即可化简.【详解】0PA PB AB PA AB PB P P B B -++=-=-=.故选:C3.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为()A .17B .111C .536D .112【答案】C【分析】先求出总的基本事件,列举出点数之和是6的基本事件,再由古典概率求解即可.【详解】抛掷两个质地均匀的骰子,总的基本事件有6636⨯=个,其中点数之和是6的有()()()()()1,5,2,4,3,3,4,2,5,1共5个,则“抛掷的两个骰子的点数之和是6”的概率为536.故选:C.4.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A .32B .34C .64D .62【答案】C【详解】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为2,高为1263=224⨯⨯,所以直观图的面积是1662=244⨯⨯,选C.点睛:本题考查直观图画法,考查基本求解能力.5.已知一组数据5,2,,5,8,9x ,且58x <<.若该组数据的众数是中位数的56倍,则该组数据的平均数为()A .6B .6.5C .7D .7.5【答案】A【分析】由已知可得该组数据的众数是5,以及中位数是6,利用众数是中位数的56倍列方程解出x ,进而可计算出该组数据的平均数.【详解】58x << ,∴这组数据为2,5,5,,8,9x ,则该组数据的众数是5,又该组数据的众数是中位数的56倍,则中位数是6,即562x +=,解得7x =,则该组数据的平均数为25578966+++++=,故选:A .6.已知a ,b 是两个互相垂直的单位向量,则向量2a b - 在向量b上的投影向量为()A .bB .2b- C .12b- D .b- 【答案】B【分析】依题意可得0a b ⋅=,根据数量积的运算律求出()2a b b -⋅ ,最后根据投影向量的定义计算可得.【详解】解:因为a ,b是两个互相垂直的单位向量,所以0a b ⋅=,且1a b ==r r ,所以()222222a b b a b b a b b -⋅=⋅-=⋅-=- ,所以向量2a b -r r在向量b 上的投影向量为()22a b b b b b b-⋅⋅=- .故选:B7.在ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若ABC 的面积为S ,且2a =,()2241S b c +=+,则ABC 外接圆的半径为()A .22B .1C .2D .22【答案】C【分析】根据三角形的面积公式、余弦定理以及正弦定理求得正确答案.【详解】依题意,()2241S b c +=+,即2214sin 12bc A b c ⎛⎫+=+ ⎪⎝⎭,222sin 4bc A b c +=+,2222sin bc A a b c +=+,222sin cos 2b c a A A bc+-==,所以tan 1A =,则A 为锐角,所以π4A =,所以ABC 外接圆的半径为1212sin 2222a A ⨯=⨯=.故选:C8.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.若2==AC BD ,且AC 与BD 所成的角为60︒,则EG 的长为()A .1B .2C .1或3D .2或3【答案】C【分析】连接,HE HG ,可得60EHG ∠=︒或120︒,求解三角形即可求出.【详解】如图,连接,HE HG ,在ABD △中,因为,H E 为中点,所以//HE BD ,1HE =,在ACD 中,因为,H G 为中点,所以//HG AC ,1HG =,因为AC 与BD 所成的角为60︒,所以60EHG ∠=︒或120︒,当60EHG ∠=︒时,EHG 为等边三角形,所以1EG =,当120EHG ∠=︒,由余弦定理可得211121132EG ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,即3EG =,所以EG 的长为1或3.故选:C.二、多选题9.下列选项中,错误的是()A .若存在实数λ使a b λ= 成立,则a 与b共线B .若1212ae be e e +=+,则1a b ==C .若()1MA xMB x MC =+-(M 、A 、B 、C 四点不同),则A 、B 、C 三点共线D .若c b a b ⋅=⋅,则c a = 或0b = 【答案】BD【分析】由向量共线定理判断A ;根据向量的运算判断BCD.【详解】由向量共线定理可知A 正确;当120e e ==时,满足1212ae be e e +=+ ,此时,a b 可取任意实数,故B 错误;由()1MA xMB x MC =+- ,可得()MA MC x MB MC -=- ,即CA xCB =,所以A 、B 、C 三点共线,故C 正确;如下图所示,当c b ⊥ ,a b ⊥ 时,满足c b a b ⋅=⋅,但c 与a 不相等且b 不等于0 ,故D 错误;故选:BD10.在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,()()()sin sin sin a b A B c b C +-=-⋅,若4b c +=,则a 的取值可以是()A .1B .2C .3D .4【答案】BC【分析】由三角形三边关系,得到4a b c <+=,由()()()sin sin sin a b A B c b C +-=-,可得3A π=,再由余弦定理得到2a 的范围,从而得到答案.【详解】由三角形三边关系,得到4a b c <+=;因为()()()sin sin sin a b A B c b C +-=-,由正弦定理sin sin sin a b cA B C==得,()()()a b a b c b c +-=-,即222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,因为()0,A π∈,所以3A π=,且24,2b c b c bc ≤+⎛⎫+= ⎪⎝⎭所以222222cos a b c bc A b c bc=+-=+-()()221344b c bc b c +-+==≥,所以2a ≥,当且仅当2b c ==时,等号成立,故24a ≤<.故选:BC.11.已知总体划分为三层,采用样本量比例分配的分层随机抽样,得到各层抽取的样本量、样本平均数和样本方差分别为:l ,x ,2x s ;m ,y ,2y s ;n ,z ,2z s .记总的样本平均数为ω,样本方差为2s ,则下列判断正确的是()A .1()3x y z ω=++B .l m nx y zl m n l m n l m nω=++++++++C .记第一层的每一个数据为i x (1,2,i =…l ),则有2222212()l x x x x l s x +++=+ D .()][()][(){}22222221x y z s l s x m s y n s z l m n ωωω⎡⎤=+-++-++-⎣⎦++【答案】BCD【分析】根据均值、方差的定义求解判断.【详解】l x my nz l m nx y z l m n l m n l m n l m nω++==++++++++++,A 错,B 正确.222222121()()()1(2)ll xi i i x x x x x x s x xx x l l =-+-++-==-+∑222222222211111(2)22lll llxii ii ii i i i i i ls x xx x x l x x x x l x l x x l x ======-+=+-=+-=-∑∑∑∑∑,所以2222212()x l l s x x x x +=+++ ,C 正确;2222111()()()()l m ni i i i i i l m n s x y z ωωω===++=-+-+-∑∑∑222222111111222l lm mn ni i i i i i i i i i i i x x l y y m z z n ωωωωωω=======-++-++-+∑∑∑∑∑∑222222222222x y z ls l x l x l ms my my m ns nz nz n ωωωωωω=+-+++-+++-+()()()22222][][[]x y z l s x s y s m n z ωωω+-+-++-=+,所以()][()][(){}22222221x y z s l s x m s y n s z l m n ωωω⎡⎤=+-++-++-⎣⎦++D 正确.故选:BCD .12.如图,棱长为2的正方体1111ABCD A B C D -的外接球的球心为O ,E 、F 分别为棱AB 、1CC 的中点,G 在棱BC 上,则()A .对于任意点G ,//OA 平面EFGB .存在点G ,使得平面OAD ⊥平面EFGC .直线EF 被球O 截得的弦长为10D .过直线EF 的平面截球O 所得的截面圆面积的最小值为2π【答案】BC【分析】A 选项,举出反例;B 选项,取G 为BC 的中点时,证明OD ⊥平面EFG ,再结合面面垂直的判定定理可得出结论;C 选项,求出球心到EF 的距离,利用垂径定理求解;D 选项,结合C 选项中的求解得到球心O 到截面的距离22d OM ≤=,从而求出截面面积最小值.【详解】对于A 选项,当G 与B 重合时,A ∈平面EFB ,O ∉平面EFB ,此时直线OA 与平面EFG 相交,A 错误;对于B 选项,因为四边形ABCD 为正方形,则AC BD ⊥,当G 为BC 的中点时,//EG AC ,则EG BD ⊥,1BB ⊥ 平面ABCD ,EG ⊂平面ABCD ,则1EG BB ⊥,因为1BD BB B ⋂=,则EG ⊥平面11BB D D ,因为1B D ⊂平面11BB D D ,所以1EG B D ⊥,同理,1FG B D ⊥,因为EG FG G = ,所以1B D ⊥平面EFG ,即OD ⊥平面EFG ,OD ⊂ 平面ODA ,故平面OAD ⊥平面EFG ,B 正确;对于C 选项,取EF 的中点M ,3OA OB == ,E 为AB 的中点,则OE AB ⊥,222OE OA AE ∴=-=,同理可得2OF =,则OM EF ⊥.因为1CC ⊥平面ABCD ,CE ⊂平面ABCD ,则CF CE ⊥,所以,22116222EM EF EC FC ==+=,则2222OM OE EM =-=,球O 的半径为3R =,所以直线EF 的被球O 截得的弦长为2222223102R OM ⎛⎫-=-= ⎪ ⎪⎝⎭,C 正确;设截面圆半径为r ,球心O 到截面的距离为d ,则2223r d R +==.因为22d OM ≤=,则22532r d =-≥,所以截面圆面积252S r ππ=≥,D 错误,故选:BC.三、填空题13.已知复数z 满足()2022i 1i 3z -=+,则z =.【答案】2【分析】由复数的四则运算与模的概念求解,【详解】由题意得,()()()()202221i 21i i 321i,2i 11i 1i 1i 2z z ----+=====--∴=--+-+--.故答案为:214.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为23、34、45,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是.【答案】56【分析】分成两种情况,恰好两门科目A +,三门科目A +,根据独立事件的乘法公式计算.【详解】考生至少拿到两个A +的事件为A ,三门科目A +为事件B ,恰好两门科目A +为事件C ,由题意,A B C =+,且,B C 互斥.三门科目A +,23424()34560P B =⨯⨯=恰好两门科目A +,23423423426()11134534534560P C ⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.根据互斥事件的加法公式,24265()()()60606P A P B P C =+=+=.故答案为:5615.“丹凤朝阳敬英雄,马踏飞燕谁争锋!”2023年5月21日上午7:30分,2023唐山马拉松在唐山抗震纪念碑广场鸣枪开跑,来自国内外的20000名选手齐聚于此,在奔跑中感受唐山这座英雄城市的魅力,用不断前行的脚步挑战极限、超越自我!唐山抗震纪念碑建在纪念碑广场内,建成于1986年纪念唐山抗震10周年之际.由主碑和副碑组成.纪念碑主碑和副碑建在一个大型台基座上,台基四面有四组台阶,踏步均为4段,每段7步,共28步,象征“七·二八”这一难忘时刻(如图1).唐山二中某数学兴趣小组为测量纪念碑的高度MN ,如图2,在纪念碑的正东方向找到一座建筑物AB ,高约为16.5m ,在地面上点C 处(B C N ,,三点共线)测得建筑物顶部A ,纪念碑顶部M 的仰角分别为30°和45°,在A 处测得纪念碑顶部M 的仰角为15°,则纪念碑的高度约为米.【答案】33【分析】由题意只需求出MN 的长,在AMC 中运用正弦定理求解即可.【详解】由题意,MNC 为等腰直角三角形,设MN x =,则CN x =,2M C x=,在Rt ABC △中,33sin 30ABAC ==,在AMC 中,105ACM ∠= ,45CAM ∠= ,则30CMA ∠= ,根据正弦定理,233sin 45sin 30x =,解得33x =,即为纪念碑高度.故答案为:3316.以棱长为26的正四面体中心点O 为球心,半径为3的球面与正四面体的表面相交部分总长度为.【答案】82π【分析】求出正四面体S ABC -内切球半径即为球心到面ABC 的距离,从而得到球被平面ABC 所截得的圆的半径,再求出ABC 的内切圆的半径,此圆恰好为球被平面ABC 所截得的圆,即球面与各表面相交部分恰为三角形的内切圆,求四个内切圆的周长即可.【详解】将正四面体放入正方体中,则正方体的棱长为23,所以正四面体的体积为33211483323S ABC a V a a a -=-⨯⨯⨯==,表面积为234(26)2434S =⨯⨯=表,设正四面体的内切球半径为1r ,则11243833r ⨯⨯=,解得11r =.显然内切球心为O ,故O 到面ABC 的距离为11r =,球面与面ABC 相交部分为以22212r R r =-=的圆,设三角形ABC 的内切圆半径为3r ,圆心为,O D '为BC 的中点,则30,6O BD BD ∠'== ,故32r O D ='=,此时恰好23r r =,即球面与各表面相交部分恰为三角形的内切圆,故当3R =时,圆弧总长度为242π82πr ⨯=.故答案为:82π【点睛】方法点睛:有关平面(可以无限延展的)截球所得截面的计算时,第一步求出球心到截面的距离d ,第二步根据222R r d =+计算出截面圆的半径r ,第三步在截面(只是有限大小的平面图形)内通过计算判断所截图形是一个完整的圆还是圆的一部分,这时要根据平面几何中的数据进行计算.四、解答题17.已知:()()(),54,12,13A B C ,,λλ-三点,其中0λ<.(1)若,,A B C 三点在同一条直线上,求λ的值;(2)当AB BC ⊥时,求AC .【答案】(1)163λ=-.(2)10AC =.【分析】(1)先求出AB BC,的坐标,再根据向量共线得到λ的值;(2)根据AB BC λ⊥得到的值,再求AC .【详解】(1)依题有()()4,7,4,1AB BC λλ=-=--,,,A B C 共线,()()4740λλ∴-++=,163λ∴=-.(2)由AB BC ⊥得()()4470λλ-++=,3λ∴=±.又0λ<,3λ∴=-,()()2,86,8AC λ∴=-=,10AC ∴=.【点睛】(1)本题主要考查向量的线性运算,考查向量共线和垂直的坐标表示,意在考查学生对这些基础知识的掌握能力.(2)如果a =()11,x y ,b =()22,x y ,则a ||b的充要条件是12210x y x y -=,则12120a b x x y y ⊥⇔+=.18.如图,已知直三棱柱111ABC A B C -,AC BC ⊥,1AC BC ==,12AA =,点D 为AC 的中点.(1)证明:1AB //平面1BC D ;(2)求直线1AB 与平面1BC D 的距离.【答案】(1)证明见解析(2)22121【分析】(1)利用中位线定理与线面平行的判定定理即可得证;(2)结合(1)中结论,将问题转化为点A 到平面1BC D 的距离,再利用等体积法即可求得所求.【详解】(1)连结1B C 交1BC 于O ,连接OD ,因为在直三棱柱111ABC A B C -中,侧面11BB C C 是平行四边形,所以O 是1B C 的中点,又因为D 为AC 的中点,所以1//OD AB ,又因为OD ⊂平面1BC D ,1AB ⊄平面1BC D ,故1AB //平面1BC D ;(2)由(1)知1AB //平面1BC D ,所以直线1AB 与平面1BC D 的距离等价于点A 到平面1BC D 的距离,不妨设为h ,因为AC BC ⊥,1AC BC ==,所以1122ABC S AC BC =⋅= ,1122CD AC ==,则2215142BD BC CD =+=+=,又因为D 为AC 的中点,所以1124ABD ABC S S == ,因为在直三棱柱111ABC A B C -中,1CC ⊥面ABC ,故11,CC CD CC BC ⊥⊥,所以在1Rt CC D △中,112CC AA ==,2211117442C D CC CD =+=+=,在1Rt CC B △中,2211415BC CC BC =+=+=,所以在1BDC 中,22211115175144cos 2517517222BD C D BC BDC BD C D +-+-∠===⋅⨯⨯⨯,则211221sin 1cos 517BDC BDC ∠=-∠=⨯,故1111151722121sin 22224517BDC S BD C D BDC =⋅∠=⨯⨯⨯=⨯△,所以由11C ABD A BC D V V --=得111133ABD BC D S CC S h ⋅=⋅△△,即121244h ⨯=,解得22121h =,所以直线1AB 与平面1BC D 的距离为22121.19.航天员安全返回,中国航天再创辉煌!2023年6月4日,当地时间6时30分许,神舟十五号载人飞船成功着陆,费俊龙、邓清明、张陆等航天员安全顺利地出舱,身体状况良好.这标志着神舟十五号载人飞行任务取得了圆满成功.飞行乘组在中国空间站组合体中度过了整整六个月的工作和生活,在太空见证了中国空间站正式建成的历史时刻.某学校高一年级利用高考放假期间开展组织1200名学生参加线上航天知识竞赛活动,现从中抽取200名学生,记录他们的首轮竞赛成绩并作出如图所示的频率直方图,根据图形,请回答下列问题:(1)若从成绩不高于60分的同学中按分层抽样方法抽取5人成绩,求5人中成绩不高于50分的人数;(2)以样本估计总体,利用组中值估计该校学生首轮竞赛成绩的平均数以及中位数;(3)若学校安排甲、乙两位同学参加第二轮的复赛,已知甲复赛获优秀等级的概率为23,乙复赛获优秀等级的概率为34,甲、乙是否获优秀等级互不影响,求至少有一位同学复赛获优秀等级的概率.【答案】(1)2人(2)平均数为71,中位数为2203(3)1112【分析】(1)由各个矩形面积和为1列方程求出a 的值,再利用分层抽样的定义求解即可;(2)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,直方图左右两边面积相等处横坐标表示中位数;(3)利用独立事件的概率公式以及对立事件的概率公式求解即可.【详解】(1)由()0.0050.010.0150.0150.025101a +++++⨯=,得0.03a =,因为0.011020020⨯⨯=(人),0.0151020030⨯⨯=(人).所以不高于50分的抽20522030⨯=+(人);(2)平均数450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=.因为在[]4070,内共有80人,则中位数位于[]7080,内,则中位数为202207010603+⨯=(3)记“至少有一位同学复赛获优秀等级”为事件A ()()1111113412P A P A =-=-⨯=答:至少有一位同学复赛获优秀等级的概率为1112.20.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件;4a =,222sin sin sin sin sin A B C B C +=+.(I )求角A 的值;(Ⅱ)求2b c -的范围.【答案】(I )3π;(Ⅱ)()4,8-.【分析】(I )利用正弦定理角化边,再利用余弦定理可得解;(Ⅱ)利用正弦定理将边转化为角,再结合三角函数恒等变换公式化简28sin 6b c B π⎛⎫-=-⎪⎝⎭,再利用正弦函数的性质求值域即可得解.【详解】(I )由222sin sin sin sin sin A B C B C +=+,利用正弦定理可得222a bc b c +=+,即222bc b c a =+-故2221cos 222b c a bc A bc bc +-===,又(0,)A π∈,3A π∴=(Ⅱ)4a = ,3A π=,利用正弦定理483sin sin sin 332a b c A B C ====故83sin 3b B =,8383sin sin()333c C B π==+8383163833122sin sin()sin cos +sin 3333322b c B B B B B π⎛⎫∴-=⨯-+=- ⎪ ⎪⎝⎭16343sin 4cos sin 43sin 4cos 8sin 336B B B B B B π⎛⎫=--=-=- ⎪⎝⎭在ABC 中,3A π=,故203B π<<662B πππ∴-<-<,1sin 126B π⎛⎫∴-<-< ⎪⎝⎭,48sin 86B π⎛⎫∴-<-< ⎪⎝⎭所以2b c -的范围是()4,8-【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,求最值可以将“边化角”利用三角函数思想求值域,考查学生的转化能力与运算能力,属于较难题.21.某中学的高二(1)班有男同学45名、女同学15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选1名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)实验结束后,第一次做实验的同学得到实验数据为68、70、71、72、74,第二次做实验的同学得到的实验数据为69、70、70、72、74,请问哪位同学的实验更稳定?并说明理由.【答案】(1)115;3男1女(2)12(3)平均数均为71,第一个学生方差4,第二个学生方差3.2,因此第二个同学更稳定【分析】(1)根据随机抽样的定义可求得概率,再结合分层抽样的定义即可求解课外兴趣小组中男、女同学的人数;(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可;(3)计算出两位同学的实验数据的平均数和方差,问题得解.【详解】(1)某同学被抽到的概率为41451515=+,课外兴趣小组中男同学的人数为44534515⨯=+,课外兴趣小组中女同学的人数为41514515⨯=+.(2)把3名男同学和1名女同学记为123,,,a a a b ,则选取两名同学的基本事件有:12(,)a a ,13(,)a a ,1(,)a b ,21(,)a a ,23(,)a a ,2(,)a b ,31(,)a a ,32(,)a a ,3(,)a b ,1(,)b a ,2(,)b a ,3(,)b a 共12种,其中恰有一名女同学的有6种,所以选出的两名同学中恰有一名女同学的概率为61122P ==.(3)16870717274715x ++++==,26970707274715x ++++==2222221(6871)(7071)(7171)(7271)(7471)45s -+-+-+-+-==,2222222(6971)(7071)(7071)(7271)(7471) 3.25s -+-+-+-+-==因2212s s >,所以第二位同学的实验更稳定.22.如图,在梯形ABCD 中,已知AB =4,AD =DC =BC =2,M 为AB 的中点.将ADM △沿DM 翻折至PDM △,连接PC ,PB .(1)证明:DM ⊥PC .(2)若二面角P -DM -C 的大小为60°,求PB 与平面ABCD 所成角的正弦值.【答案】(1)证明见解析(2)3714【分析】(1)连接AC ,交DM 于点O ,连接PO ,根据线段长度关系可得四边形AMCD 为菱形,从而得到DM ⊥AC ,再根据等腰三角形证明DM ⊥PO 即可证明DM ⊥平面PCO ,从而得到DM ⊥PC .(2)以O 点为坐标原点,建立空间直角坐标系,再由(1)可得∠POC =60°,进而得到PB,再根据线面角的向量求法求解即可【详解】(1)证明:连接AC ,交DM 于点O ,连接PO .因为AB =4,AD =DC =BC =2,M 为AB 的中点,所以AM =AD =CD .又四边形ABCD 为梯形,则四边形AMCD 为菱形,所以DM ⊥AC .又PD =PM ,O 是DM 的中点,所以DM ⊥PO .因为AC ⊂平面PCO ,PO ⊂平面PCO ,AC ∩PO =O ,所以DM ⊥平面PCO 又PC ⊂平面PCO ,所以DM ⊥PC.(2)以O 点为坐标原点,建立如图所示的空间直角坐标系,因为二面角P -DM -C 的大小为60°,由(1)DM ⊥平面PCO ,所以∠POC =60°,易得∠BAD =60°,则3333(2,3,0),0,,,2,,2222B P PB ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.平面ABCD 的一个法向量(0,0,1)m =,设PB 与平面ABCD 所成的角为α,则3372sin|cos,|147PB mα===u ruur,即PB与平面ABCD所成角的正弦值为3714。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下学期期末考试
一、选择题(共60分,每题5分)
1.已知角α的终边经过点()4,3-,则cos α=( ) A.
45 B.35 C.35- D.45
- 2.已知α为第三象限角,则
2
α
所在的象限是( ) A.第一或第二象限 B.第二或第四象限 C.第一或第三象限 D.第二或第四象限角
3.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A.
2133b c + B.5233b c - C.2133b c - D.1233
b c + 4.等比数列{}n a 中,11
,28
a q =
=,则6a 等于是( ) A.4± B.4 C.14±
D.14
5.在ABC △中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( ) A.0,
3π⎛⎤ ⎥⎝⎦ B.,6ππ⎡⎫⎪⎢⎣⎭ C.,3ππ⎡⎫⎪⎢⎣⎭ D.0,6π⎛⎤
⎥⎝⎦
6.已知两个单位向量12,e e 的夹角为θ,则下列结论不正确...的是( ) A.1e 在2e 方向是的投影为cos θ B. 2
12
2e e =
C. 121e e =⋅
D.()()
1212e e e e ⊥+- 7.为了得到函数sin 23y x π⎛⎫
=-
⎪⎝

的图像,只需把函数sin 26y x π⎛⎫
=+
⎪⎝

的图像( ) A.向左平移
4π个长度单位 B. 向右平移4π
个长度单位 C. 向左平移
2π个长度单位 D. 向右平移2
π
个长度单位
8.函数()
()1cos f x x x =的最小正周期为( )
A.
2
π
B.32π
C.π
D.2π
9.如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75︒,30︒,此时气球的高度是60m ,则河流的宽度BC 等于( )
A.)120
1m B. )180
1m C. )240
1m D. )
30
1m
10.在等差数列{}n a 中,159,5170a a a =>,则在数列{}n a 的前n 项和n S 取最大值时,n 的值等于( ) A.12 B.11 C.10 D.9 11.若0,0x y >>且
19
1x y
+=,则x y +的最小值是( ) A.6 B.12 C.16 D.24
12.若将函数()sin 2cos 2f x x x =+的图像向右平移φ个单位,所得图形关于y 轴对称,则φ的最小正周期是( ) A.
8π B.38π C.4
π
D.34π
二、填空题(共20分,每题5分)
13.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-= .
14.在ABC △中,4,3,60,AB AC A D ==∠=︒是AB 的中点,则CA CD ⋅= . 15.已知向量(2,1),10,52a a b a b =⋅=+=,则b = .
16.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是 .
三、解答题(共70分)
17.(本题10分)已知函数1
()2sin ,3
6f x x x π⎛⎫=-∈ ⎪⎝⎭R .
(1)求()0f 的值; (2)设106
,0,
,3,(32)2213
5
f f ππαβαβπ⎡⎤⎛
⎫∈+=+=
⎪⎢⎥⎣⎦⎝⎭,求sin()αβ+的值. 18. (本题12分))已知数列{}n a 的首项1122
,,1,2,31
n n n a a a n a +=
==+.
(Ⅰ)证明:数列11n a ⎧⎫
-⎨
⎬⎩⎭
是等比数列; (Ⅰ)求数列n n a ⎧⎫

⎬⎩⎭
的前n 项和. 20. (本题12分))已知函数()4cos sin 16f x x x π⎛⎫
=+- ⎪⎝

.
(Ⅰ)求()f x 的最小正周期及递增区间; (Ⅰ)求()f x 在区间,64ππ⎡⎤
-
⎢⎥⎣⎦
上的最大值和最小值. 21. (本题12分))已知,,a b c 分别为ABC △三个内角,,A B C 的对边长,且()2cos cos c b A a B -= (1)求角A 的大小;
(2)若2a =,求ABC △面积S 的最大值.
22.(12分)已知向量()25
cos ,sin ,(cos ,sin ),5
a b a b ααββ==-=
. (Ⅰ)求cos()αβ-的值;
(Ⅰ)若0,02
2
π
π
αβ<<
-
<<,且5
sin 13
β=-
,求sin α.
参考答案及评分标准
1-5 DBABA 6-10 CBDAC 11-12 CB
13.
4
5
;14.6;15.5;16.(()
,-∞-⋃+∞ 17.解:(1)(0)2sin 16f π⎛⎫
=-
=- ⎪⎝⎭
(2)110
32sin 32sin 232613f πππααα⎡⎤⎛

⎛⎫+
=+-== ⎪ ⎪⎢⎥⎝
⎭⎝
⎭⎣⎦,即5sin 13α= 16(32)2sin (32)2sin 3625f ππβπβπβ⎡⎤⎛
⎫+=+-=+= ⎪⎢⎥⎣⎦⎝
⎭,即3cos 5β=
∵,0,
2παβ⎡⎤
∈⎢⎥⎣⎦

∴124
cos ,sin 135
αβ==
== ∴5312463
sin()sin cos cos sin 13513565
αβαβαβ+=+=⨯+⨯= 18.解:(1)在ABC △中,
由题意知,sin A ==
. 又因为2
B A π
=+

所以sin sin cos 2B A A π⎛⎫
=+
== ⎪

⎭.
由正弦定理可得,3sin sin a B
b A
=
== (2)由2
B A π
=+
得cos cos sin 23
B A A π⎛⎫
=+
=-=- ⎪

⎭. 由A B C π++=,得()C A B π=-+, 所以sin sin()C A B =+
sin cos cos sin A B A B =+
3333
⎛=
-+⨯ ⎝⎭ 因此ABC △
的面积111sin 32232
ab C S =
=⨯⨯=. 19.解:(Ⅰ)设数列{}n a 满足
11112121111111
,..11312222n n n n n n n n n a a a a a a a a a a +++⎛⎫+==∴==+∴-=- ⎪+⎝⎭.又
11211,132a a =∴-=.故数列11n a ⎧⎫-⎨⎬⎩⎭
是以12为首项,1
2为公比的等比数列.
(Ⅰ)由(Ⅰ)知,可知:111111222
n n n a -∴
-=⋅=.即111,22n n n n n n
n a a ∴=+∴=+.
设23
123
2222n n
n
T ∴=
++++
,① 2311121222
22
n n n n n
T +-∴=+++
+,② 由①-②得
231111111111
1122112222
2222212
n n n n n n n n n n T +++⎛⎫
- ⎪⎝⎭
∴=++++-=-=---
n 11222n n
n
T -∴=-
-
.又(1)
1232
n n n +++++=
. 所以数列n n a ⎧⎫⎨⎬⎩⎭
的前n 项和为22(1)42
22222n n n n n n n n n s +++++=-+
=-.。

相关文档
最新文档