计算机视觉大纲
《计算机视觉》课程教学大纲
《计算机视觉》课程教学大纲课程名称:计算机视觉课程类别:任意选修课适用专业:电子信息工程考核方式:考查总学时、学分:24学时1.5学分一、课程性质、教学目标计算机视觉是电子信息工程专业的一门任意选修课,旨在拓宽学生的专业和学术视野,引导学生了解掌握计算机视觉领域基础知识和热点方向,为后续从事相关工作或学术研究奠定基础。
计算机视觉是一门研究用计算机来实现人类视觉功能的学科,其研究目标是使得计算机能够对目标进行分割、分类、识别、检测、跟踪和决策等。
计算机视觉是人工智能领域的重要领域,在工业界有广泛的应用前景,也是科学研究中的一个富有挑战性的研究方向,它包含领域广,综合性强,涉及图像处理、模式识别、计算机科学、统计学、神经生理学和认知科学等多门学科。
通过本课程的学习,使学生了解计算机视觉的发展和应用,掌握学科基础知识和经典算法,培养分析解决相关问题的能力,为后续从事相关工作或学术研究奠定基础。
具体课程教学目标如下:课程教学目标1:了解计算机视觉的发展历史、相关学科、应用领域和研究方向,培养学生学习兴趣,引导学生关注学科前沿和业界动态。
课程教学目标2:掌握基本的图像预处理和特征提取的原理和方法;掌握卷积神经网络的相关知识(损失函数、正则化和梯度下降优化算法等);为后续内容提供基础。
课程教学目标3:掌握图像分类、目标检测、语义分割、场景理解和图像生成等的原理和经典算法,使学生具备基本的方向知识和研究方法,并能够自主拓展学习或解决相关问题。
课程教学目标与毕业要求对应的矩阵关系二、课程教学要求因计算机视觉涉及领域广、研究方向多、发展日新月异,本课程选取前沿技术深度学习为切入点,讲授计算机视觉的基础知识和基于深度学习的图像分类、目标检测、语义分割、场景理解和图像生成等的原理和经典算法。
执行本大纲应注意的问题:1、计算机视觉基础知识中,涉及大量的数字图像处理知识,包含较多复杂公式,在教学过程中要注重原理,深入浅出;2、本课程的实践性较强,在教学过程中要突出理论与实践的联系,注重培养学生实践能力和综合解决问题的能力;3、计算机视觉涉及领域广、研究方向多,课程课时有限,在深度和广度不能全面覆盖,在教学过程中,要引导学习自主学习,探究感兴趣方向;4、计算机视觉是目前最为前沿和热门的研究方向之一,在教学过程中,要注意知识的更新和补充,并引导学生关注前沿动态、阅读相关论文、组织讨论分享,提高学生的科技素养。
计算机视觉教学大纲
计算机视觉教学大纲一、引言-计算机视觉的定义和应用领域概述-计算机视觉的历史发展和重要里程碑二、图像处理基础-图像的表示和存储-图像的滤波和增强技术-图像的变换和压缩方法-图像分割和边缘检测三、特征提取与描述-特征的定义和分类-基于灰度的特征提取方法-基于颜色的特征提取方法-基于纹理的特征提取方法-特征的描述和匹配四、目标检测与跟踪-目标检测的基本原理和方法-目标检测的常用技术和算法-目标跟踪的基本原理和方法-目标跟踪的常用技术和算法五、三维视觉-立体视觉的原理和方法-立体匹配和深度估计技术-三维重建和三维建模方法-三维物体姿态估计六、机器学习在计算机视觉中的应用-机器学习的基本概念和方法-机器学习在目标检测中的应用-机器学习在特征提取和描述中的应用-机器学习在图像分割和分类中的应用七、深度学习在计算机视觉中的应用-深度学习的基本原理和模型-深度学习在目标检测和跟踪中的应用-深度学习在图像分类和分割中的应用-深度学习在三维视觉中的应用八、计算机视觉的应用案例-视频监控和安防领域的应用-自动驾驶和无人机领域的应用-医学图像处理和诊断领域的应用-虚拟现实和增强现实领域的应用九、计算机视觉的挑战与未来发展方向-计算机视觉领域的挑战和问题-计算机视觉的未来发展趋势和方向-计算机视觉与其他领域的交叉创新十、课程设计与实践-设计计算机视觉实验和项目-使用计算机视觉工具和库进行实践-计算机视觉竞赛和挑战赛的参与该教学大纲旨在全面介绍计算机视觉的基础理论、常用方法和最新进展,培养学生对计算机视觉的理论研究和应用实践能力。
通过教学内容的学习和实践活动的开展,帮助学生掌握图像处理、目标检测与跟踪、三维视觉、机器学习和深度学习在计算机视觉中的应用等方面的关键技能,为学生未来在计算机视觉领域的研究和工作打下坚实的基础。
计算机视觉-教学大纲
《计算机视觉》教学大纲一、课程信息课程名称:计算机视觉课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分:4先修课程:无选用教材:《计算机视觉》,韩建平,周梦熊,张海平主编,2021年,电子工业出版社教材。
适用专业:本课程可供计算机科学与技术、软件工程、多媒体处理和信号处理等领域中关注计算机视觉、图像处理、模式识别及其应用的工程技术人员人员和科研教学人员学习,也可作为研究生和大学高年级学生学习的课程。
课程负责人:二、课程简介计算机视觉是目前研究最为活跃的领域之一,很多新的技术和方法在计算机视觉中得到了成功的应用。
本课程以计算机视觉相关技术和模型为主线,讨论当前这个领域的传统技术和方法。
本课程叙述了计算机视觉相关的一些基本理论和技术,主要包括人类视觉系统的建模、则D模型和显著性模型、图像的形成过程及相关的坐标交换、图像的底层特征提取与检测、图像中物体运动与关联分析等。
三、课程教学要求体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”“M”或“L”。
“课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定注:此表中内容为该课程的全部考核方式及其相关信息。
六、学生学习建议(一)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.通过每个项目最后搭配的习题,巩固知识点。
3.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的智能终端产品应用相关实例,对已有技术持续进行更新。
4.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
(二)学生课外阅读参考资料《计算机视觉》,韩建平,周梦熊,张海平主编,2021年,电子工业出版社教材。
七、课程改革与建设(1)通俗易懂,方便学习,课程叙述了计算机视觉相关的一些基本理论和技术,主要包括人类视觉系统的建模、JND模型和显著性模型、图像的形成过程及相关的坐标交换、图像的底层特征提驭与检测、图像中物体运动与关联分析等。
计算机视觉_教学大纲_彭绍武
《计算机视觉》教学大纲
课程编号:155336
总学时:48理论课学时:32实验课学时:16
一、课程的性质
二、
帮助学
课程还通
三、
四、课程教学内容
1.计算机视觉理论基础与框架3学时
a)计算机视觉的基本问题
b)视觉悖论与计算机视觉的难点
c)计算机视觉框架
表达与建模,计算与求解,实现
d)计算机视觉应用
2.视觉中的局部特征6学时
a)特征检测与描述子
b)常见的形状、方向梯度和色彩纹理的特征
ShapeContext,SIFT;简介LSS,SURF,GLOH,HOG,ColorMoments等。
c)实时应用中的快速特征
FAST,BRIEF,OBR
d)3D特征简介
e)特征匹配及相关问题
野点去除;距离定义(NNDR);ROC曲线与正确/错误率;RANSAC
3.物体识别简介3学时
a)视觉模型:产生式模型,描述式模型,判别式模型
b)基于匹配的实例识别
c)
4.
a)
b)
c)
d)
e)
f)
5.
a)
b)
c)
d)
6.
a)
b)
c)
d)
e)
五、
1.
2.
3.基于PCL的点云数据处理4学时
4.基于ORB-SLAM的物体扫描4学时
5.。
计算机视觉课程教学大纲
计算机视觉课程教学大纲一、课程简介计算机视觉是计算机科学领域的一个重要分支,它致力于让计算机系统具备人类视觉系统的能力,实现对图像和视频的理解、分析和处理。
本课程将带领学生深入了解计算机视觉的基本理论和应用技术,培养学生的图像处理和模式识别能力,为他们今后在人工智能领域的发展奠定坚实的基础。
二、教学目标1. 掌握计算机视觉的基本概念和原理;2. 熟悉常用的图像处理和分析技术;3. 能够应用计算机视觉技术解决实际问题;4. 培养学生的创新和实践能力。
三、教学内容1. 计算机视觉概述- 计算机视觉的定义和历史发展- 计算机视觉的基本任务和应用领域2. 数字图像处理基础- 数字图像的表示与存储- 图像的增强和滤波- 边缘检测和图像分割3. 特征提取与描述- 图像特征的概念和分类- 霍夫变换及其在图像检测中的应用- 图像描述符和局部特征4. 目标检测与识别- 感兴趣区域检测- 目标定位和识别算法- 目标追踪和运动分析技术5. 三维计算机视觉- 立体视觉基础- 三维重建和视觉SLAM技术- 深度学习在三维视觉中的应用四、教学方法1. 理论讲授:讲解计算机视觉的基本理论和方法;2. 实践操作:开展图像处理和分析实验,提升学生的实践能力;3. 课程设计:组织学生开展计算机视觉项目设计,培养其独立思考和解决问题的能力;4. 案例分析:引导学生深入了解计算机视觉在各领域的应用案例。
五、考核方式1. 平时成绩(包括课堂参与和作业)占总成绩的30%;2. 实验及项目报告占总成绩的40%;3. 期末考试占总成绩的30%。
六、教材及参考书目教材:《计算机视觉:算法与应用》参考书目:1. Richard Szeliski, "Computer Vision: Algorithms and Applications"2. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach"七、师资力量本课程将由计算机视觉领域资深教授授课,具备丰富的理论知识和实践经验,能够为学生提供专业的指导和支持。
《计算机视觉》课程教学大纲.
《计算机视觉》课程教学大纲课程编号:50420031课程名称:计算机视觉英文名称:Computer Vision课程类别:专业限选课学分:2学时:40开课学期:二开课周次:11-20开课教研室:自动化系计算机控制教研室任课教师及职称:刘禾教授先修课程:图像处理与分析适用专业:模式识别与智能系统、控制理论与控制工程课程目的和基本要求:课程设置的目的使硕士研究生掌握介绍计算机视觉的基本理论和基本方法。
通过课程学习要求学生觉掌握的计算机视觉基本理论与方法以及计算机视觉的一些典型应用,了解国内外最新研究成果。
通过本课程学习使学生掌握计算机视觉的基本概念、基本理论和方法,初步具有运用相应理论解决实际问题的能力。
课程主要内容:全部课程内容分九章,各章具体内容、学时分配如下:第一章概述(2 学时)内容:计算机视觉的基本概念,Marr视觉计算理论,成像几何基础,计算机视觉的应用。
第二章人类视觉(2 学时)内容:人类视觉简介,视觉信息的多层处理。
第三章边缘检测(4 学时)内容:经典微分算子的边缘检测、LOG滤波器与马尔-希尔德累思边缘检测算子、多灰度图像的边缘聚焦法、坎尼边缘检测算子和基于梯度信息的自适应平滑滤波。
第四章明暗分析(2 学时)内容:图像辐射图,表面方向,反射图,由图像明暗恢复形状。
第五章深度分析(4 学时)内容:三维感知基本理论和方法,立体成像原理,被动立体测定技术和主动立体测定技术。
第六章标定问题(6 学时)内容:图像表征与摄像机标定,其中包括透视投影变换、摄像机的标定、摄像机的运动控制模型,双目立体标定。
第七章三维场景表示(4 学时)内容:三维空间曲面的表示,曲面分割等。
第八章二维运动图像分析(4 学时)内容:图像运动特征提取的基本方法,由局部光流恢复结构与运动参数估计,基于块的运动分析。
第九章三维运动估计(4 学时)内容:三维运动与结构估计、由运动与立体观测恢复3—D结构和基于生物视觉运动感知原理的多速度运动检测;基于CAD模型的三维机器视觉。
计算机视觉大纲
计算机视觉大纲一、计算机视觉的定义与背景计算机视觉,简单来说,就是让计算机像人类一样能够“看”懂和理解图像或视频中的内容。
它是一门涉及多个学科领域的交叉学科,融合了计算机科学、数学、物理学、生物学等知识。
在当今数字化的时代,计算机视觉的应用无处不在。
从智能手机中的人脸识别解锁,到自动驾驶汽车对道路环境的感知;从医疗领域的医学影像诊断,到工业生产中的质量检测,计算机视觉都发挥着至关重要的作用。
二、计算机视觉的工作原理计算机视觉的实现依赖于一系列复杂的技术和算法。
首先,图像或视频数据被输入到计算机系统中。
然后,通过预处理步骤,如去噪、增强对比度等,提高数据的质量。
接下来,特征提取是关键环节。
这就好比我们人类在观察事物时会关注其某些显著的特征,计算机也需要从图像中提取出有价值的信息,例如边缘、纹理、颜色等。
在特征提取之后,使用分类、检测或分割等算法对图像中的对象进行识别和理解。
这些算法会根据提取的特征,判断图像中包含的物体类别、位置和形状等。
三、计算机视觉的关键技术1、图像分类图像分类是指将图像归为不同的类别。
例如,判断一张图片是猫还是狗,是汽车还是飞机。
这需要计算机学习大量的图像样本,从而能够准确地对新的图像进行分类。
2、目标检测目标检测不仅要识别出图像中的物体类别,还要确定物体的位置和大小。
比如在一张城市街道的图片中,检测出汽车、行人、交通信号灯等,并给出它们在图像中的坐标范围。
3、图像分割图像分割则是将图像划分成不同的区域,每个区域具有相似的特征。
这在医学影像处理中非常有用,比如将肿瘤从正常组织中分割出来。
4、深度学习技术深度学习,特别是卷积神经网络(CNN),在计算机视觉中取得了巨大的成功。
CNN 能够自动学习图像的特征,大大提高了计算机视觉任务的准确性。
四、计算机视觉的应用领域1、安防监控通过实时分析监控摄像头拍摄的图像或视频,计算机视觉可以实现人员识别、行为分析、异常检测等功能,提高安全性。
计算机视觉课程设计
计算机视觉课程设计一、教学目标本课程旨在通过学习计算机视觉的基本概念、技术和应用,使学生掌握计算机视觉的基本原理和方法,提高学生对计算机视觉问题的分析和解决能力。
具体的教学目标如下:1.理解计算机视觉的基本概念和原理;2.掌握常用的计算机视觉算法和技术;3.了解计算机视觉在实际应用中的案例。
4.能够运用计算机视觉算法进行图像和视频分析;5.能够使用相关软件和工具进行计算机视觉实验;6.能够独立思考和解决计算机视觉问题。
情感态度价值观目标:1.培养学生的创新意识和团队合作精神;2.使学生认识到计算机视觉技术在现实生活中的重要性和应用前景;3.培养学生的科学态度和严谨精神。
二、教学内容本课程的教学内容主要包括计算机视觉的基本概念、常用算法和技术以及在实际应用中的案例。
具体的教学大纲如下:1.计算机视觉概述:计算机视觉的定义、发展历程和应用领域;2.图像处理基础:图像的表示、图像滤波和边缘检测;3.特征提取与匹配:特征点提取、特征匹配和描述子计算;4.目标检测与识别:基于深度学习的目标检测和识别算法;5.计算机视觉应用案例:人脸识别、图像分类和无人驾驶等。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过讲解计算机视觉的基本概念、原理和算法,使学生掌握计算机视觉的基本知识;2.讨论法:学生进行小组讨论,培养学生的思考能力和团队合作精神;3.案例分析法:分析计算机视觉在实际应用中的案例,使学生了解计算机视觉技术的应用前景;4.实验法:安排实验课程,让学生动手实践,提高学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《计算机视觉:算法与应用》;2.参考书:国内外相关论文和专著;3.多媒体资料:教学PPT、视频讲座和实验演示等;4.实验设备:计算机、图像处理软件和实验器材等。
计算机视觉课程大纲
计算机视觉(Computer Vision)是计算机科学领域中的一个重要分支,涉及到使计算机能够理解和解释视觉信息的任务。
以下是一份典型的计算机视觉课程大纲,具体内容可能因学校和教授而异,但通常包括以下主题:### 第一部分:基础概念和图像处理1. **导论**- 计算机视觉的定义和应用领域- 发展历史和里程碑2. **数字图像基础**- 像素、分辨率和颜色模型- 图像获取和表示3. **图像处理基础**- 线性滤波和非线性滤波- 图像增强和降噪技术### 第二部分:特征提取和描述4. **特征提取**- 边缘检测、角点检测- 尺度空间理论5. **特征描述**- SIFT、SURF、ORB等特征描述算法- 特征匹配方法### 第三部分:几何视觉6. **相机几何**- 相机模型- 三维几何和二维投影7. **相机标定**- 内参数和外参数- 相机标定方法### 第四部分:深度学习在计算机视觉中的应用8. **深度学习基础**- 神经网络、卷积神经网络(CNN)等- 深度学习在计算机视觉中的优势9. **目标检测和物体识别**- 目标检测算法(如YOLO、Faster R-CNN) - 物体识别任务和技术### 第五部分:图像分割和理解10. **图像分割**- 基于区域的分割- 基于边缘的分割11. **图像理解**- 图像分类和语义分割- 图像场景理解### 第六部分:高级主题12. **三维计算机视觉**- 点云处理- 三维重建13. **视觉SLAM(Simultaneous Localization and Mapping)**- 基本概念- 视觉SLAM系统### 第七部分:应用和案例研究14. **计算机视觉在实际应用中的案例**- 图像识别在医疗领域的应用- 视觉导航和无人驾驶等案例### 第八部分:最新研究和发展15. **计算机视觉领域的最新研究进展**- 强化学习在计算机视觉中的应用- 可解释性和公平性等热门主题### 实验和项目- 课程可能包括实验和项目,以帮助学生应用所学知识,并在实际问题中解决计算机视觉挑战。
计算机视觉 教学大纲
计算机视觉教学大纲
摘要:
一、计算机视觉简介
二、计算机视觉的基本原理
三、计算机视觉的应用领域
四、计算机视觉的发展历程
五、计算机视觉的未来发展趋势
正文:
计算机视觉是一门研究如何使机器能够“看”的科学。
它通过使用计算机和各种传感器来代替人眼,对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。
计算机视觉的基本原理是通过光学、电子学和数学等学科的交叉,实现对图像的获取、处理、分析和理解。
其核心是图像处理技术,包括图像预处理、图像增强、图像分割、特征提取和图像识别等。
计算机视觉的应用领域非常广泛,包括无人驾驶、智能家居、医疗健康、工业制造、安防监控等。
其中,无人驾驶是计算机视觉应用最为广泛的领域之一,通过计算机视觉技术,无人驾驶汽车可以实现自主导航、环境感知、路径规划等功能。
计算机视觉的发展历程可以追溯到上世纪50 年代,当时的主要研究集中在图像的分析和识别。
随着技术的不断进步,计算机视觉逐渐发展成为了一个
涉及多个学科的综合性学科,包括计算机科学、工程学、物理学、数学和神经科学等。
未来,计算机视觉将继续保持高速发展态势,并逐渐向更加智能化、精细化的方向发展。
例如,通过深度学习等人工智能技术,计算机视觉可以实现更加准确的目标检测和识别,以及更加精细的图像分割和分析。
此外,随着5G 技术的普及,计算机视觉的应用场景将更加丰富,例如远程医疗、智能交通等。
总之,计算机视觉是一个充满挑战和机遇的领域。
计算机视觉课程大纲
计算机视觉课程大纲
计算机视觉课程大纲主要包括以下内容:
1. 介绍计算机视觉的概念和应用领域:介绍计算机视觉的基本概念,以及计算机视觉在图像处理、模式识别、机器学习等领域中的应用。
2. 图像处理基础:介绍图像的表示和处理方法,包括灰度变换、滤波、边缘检测、图像增强等基本的图像处理算法。
3. 特征提取和描述:介绍常用的图像特征提取和描述方法,包括边缘检测、角点检测、纹理特征、颜色特征等,以及基于局部特征的描述方法。
4. 图像分割和对象识别:介绍常用的图像分割和对象识别算法,包括基于阈值、边缘、区域的分割方法,以及基于特征匹配、机器学习的对象识别方法。
5. 目标跟踪和运动分析:介绍目标跟踪和运动分析的基本概念和算法,包括基于特征点、颜色、形状的目标跟踪方法,以及基于光流、背景建模的运动分析方法。
6. 三维视觉:介绍三维视觉的基本原理和算法,包括立体匹配、深度估计、三维重建等方法。
7. 深度学习在计算机视觉中的应用:介绍深度学习在计算机视觉中的应用,包括卷积神经网络、循环神经网络等深度学习模
型在图像分类、目标检测、语义分割等任务中的应用。
8. 实践项目:开展实践项目,通过实践来巩固所学的计算机视觉算法和技术。
课程大纲根据具体情况可能会有所调整和补充,以上只是一个大致的框架。
数字图像处理与计算机视觉实验课程大纲
数字图像处理与计算机视觉实验课程大纲一、课程简介数字图像处理与计算机视觉实验课程旨在介绍数字图像处理和计算机视觉的基本概念、原理和应用。
通过该课程的学习,学生将深入了解图像处理技术的基础知识,掌握图像处理的常用算法和工具,同时还将学习计算机视觉的相关理论和实践。
本大纲将详细说明课程的教学目标、内容和考核方式。
二、教学目标1. 了解数字图像处理和计算机视觉的基本概念和发展历程;2. 掌握数字图像的获取、表示和处理方法;3. 学习数字图像处理的基础算法,如图像增强、滤波和分割等;4. 熟悉计算机视觉的相关理论和技术,如目标检测、特征提取和图像识别等;5. 能够运用所学知识解决实际图像处理和计算机视觉问题。
三、教学内容1. 数字图像处理基础1.1 数字图像的基本概念和特性;1.2 图像获取和表示方法;1.3 图像的数学变换和编码技术。
2. 图像增强与滤波2.1 灰度增强和直方图处理;2.2 空间域滤波和频域滤波;2.3 噪声抑制和锐化处理。
3. 图像分割与描述3.1 阈值分割和边缘检测;3.2 区域生长和分水岭算法;3.3 形态学图像处理。
4. 计算机视觉基础4.1 计算机视觉的基本原理和任务;4.2 特征提取和描述方法;4.3 目标检测和跟踪技术。
5. 图像识别与机器学习5.1 图像分类和识别方法;5.2 深度学习在计算机视觉中的应用;5.3 实际案例分析和应用展望。
四、教学方法本课程将采用理论讲授、实验操作和案例分析相结合的教学方法。
1. 理论讲授:通过课堂讲解,详细介绍数字图像处理和计算机视觉的基本概念、原理和算法。
2. 实验操作:安排实验环节,让学生亲自操作图像处理和计算机视觉软件,实践所学知识。
3. 案例分析:通过实际案例分析,引导学生分析和解决实际图像处理和计算机视觉问题。
五、考核方式1. 平时成绩:包括参与度、作业完成情况和实验报告等。
2. 期中考试:对数字图像处理和计算机视觉的基础知识进行考查。
《计算机视觉与空间技术》教学大纲
《计算机视觉与空间技术》教学大纲一、课程基本信息1.课程代码:211281002.课程中文名称:计算机视觉与空间技术课程英文名称:Computer vision and space technology3.面向对象:信息工程专业4.开课学院(课部)、系(中心、室):信息工程学院信息工程系5.总学时数:40讲课学时数:40,实验学时数:06.学分数:2.57.授课语种:中文,考试语种:中文8.教材:伯特霍尔德·霍恩,王亮,蒋欣兰,机器视觉,中国青年出版社2014年8月1日二、课程内容简介《计算机视觉与空间技术》是一门涉及多个交叉学科领域的课程。
本课程侧重于图像理解和计算机视觉中的基本理论,主要对图像处理、目标识别以及计算机视觉方面的理论,及基于计算机视觉的虚拟现实、空间三维重建及可视化技术的应用进行系统介绍。
三、课程的地位、作用和教学目标计算机视觉是自二十世纪六十年代中的期迅速发展起来的一门新学科。
计算机视觉是计算机及相关设备对生物视觉的一种模拟。
主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。
计算机视觉将在工农业生产,地质学,天文学,气象学,医学及军事学等等领域有着极大潜在的应用价值,所以它在国际上越来越受到重视,以及其应用前景广泛。
目标是使学生学习了本课程之后,对图像理解和计算机视觉的基本理论,尤其是图像处理的概念、基本原理以及解决问题的基本思想方法有一个较为全面的了解和领会;学习计算机视觉的基本理论和技术,了解各种智能图像处理与计算机视觉技术的相关应用;具备解决智能化检测与识别、控制等应用问题的初步能力,为以后从事模式识别、基于CV的空间三维重建、虚拟现实、多媒体技术等领域的研究与开发工作打下扎实的基础。
四、与本课程相联系的其他课程为了学好本课程,学生应先修:高等数学、概率论、离散数学;高级语言程序设计、面向对象程序设计、数据结构、算法与分析等课程、信号与系统、数字信号处理等课程。
计算机视觉课程教学大纲
计算机视觉课程教学大纲一、课程介绍计算机视觉课程是一门旨在介绍和教授计算机如何模仿人类视觉能力的课程。
通过该课程,学生将学习计算机视觉的基本概念、技术和应用。
本课程将通过理论讲解、实践项目和案例分析等方式,培养学生在计算机视觉领域的知识和技能。
二、课程目标本课程的目标是:1. 熟悉计算机视觉的基本概念、原理和算法;2. 掌握计算机视觉中的图像处理、特征提取和模式识别等技术;3. 理解计算机视觉在实际应用中的挑战和限制;4. 培养学生在计算机视觉领域的创新思维和问题解决能力。
三、课程内容1. 图像处理基础- 数字图像的基本概念和表示方法- 图像增强和滤波技术- 图像分割和边缘检测- 彩色图像处理2. 特征提取和表示- 兴趣点检测和描述子- 图像特征的数学表示- 主成分分析和线性判别分析3. 目标检测和识别- 模板匹配和相关性滤波- 特征匹配和目标定位- 分类器的训练与应用4. 三维视觉- 三维重建和摄像几何- 立体视觉的基本原理- 深度估计和体素表示5. 视觉跟踪和动态分析- 目标跟踪的算法和方法- 运动估计和动作分析- 视频监控和事件检测6. 高级计算机视觉应用- 人脸检测和识别- 视频内容分析和智能检索- 视觉导航和增强现实四、教学方法1. 理论讲解:通过课堂讲解,介绍计算机视觉的基本概念和算法,以及相关技术的发展和应用。
2. 实践项目:安排实践项目,让学生亲自动手实践,并在实践中掌握和应用所学的计算机视觉技术。
3. 案例分析:选取典型的计算机视觉案例进行分析,让学生理解计算机视觉在实际应用中的挑战和限制,并探讨解决方案。
五、考核方式1. 平时成绩:包括课堂参与、作业完成情况等。
2. 实践项目:完成指定的实践项目,并进行展示和评估。
3. 期末考试:对课程的理论知识进行考核。
六、参考教材1. Richard Szeliski. "Computer Vision: Algorithms and Applications." Springer, 2010.2. David Forsyth, Jean Ponce. "Computer Vision: A Modern Approach." Prentice Hall, 2002.七、备注本课程需要学生具备基本的图像处理和编程知识,建议先修习相关课程。
计算机视觉课程教学大纲
计算机视觉课程教学大纲一、课程概述计算机视觉是计算机科学领域的一个重要分支,旨在使计算机具备模仿人类视觉的能力。
本课程旨在介绍计算机视觉的基本概念、技术和应用,并提供实践机会以加强学生的实际操作能力。
二、学习目标1. 理解计算机视觉的基本原理和算法。
2. 掌握计算机视觉技术在图像处理、目标检测和识别等方面的应用。
3. 学会使用相关编程工具和库进行计算机视觉任务的开发和实现。
4. 培养创新思维和问题解决能力,能够独立进行计算机视觉项目的设计和开发。
三、课程大纲1. 图像处理基础- 像素、颜色空间和图像特征- 图像滤波、增强和去噪- 直方图均衡化和颜色转换- 图像分割和边缘检测2. 特征提取和描述- 尺度空间和兴趣点检测- 特征描述算法(SIFT、SURF等)- 特征匹配和重建3. 目标检测与识别- 目标检测的基本概念和方法- Haar特征和级联分类器- 图像分类和深度学习方法- 目标跟踪和行为分析4. 三维视觉- 三维重建和立体匹配- 摄像机标定和姿态估计- 深度传感器和点云处理5. 计算机视觉应用- 人脸检测与识别- 视频分析与视频跟踪- 视觉SLAM(同时定位与地图构建) - 医学图像处理与辅助诊断四、实践项目本课程将结合实践项目,供学生运用所学知识解决实际问题,并提供指导和反馈。
五、评估方式1. 平时表现与作业(30%):包括课堂讨论、作业完成情况等。
2. 实践项目(40%):根据项目难度、创新性、完成度等进行评估。
3. 期末考试(30%):对学生对整个课程内容的掌握情况进行考察。
六、教材与参考资料1. 主教材:- Richard Szeliski. "Computer Vision: Algorithms and Applications" (第二版),Springer出版社,2010年。
2. 参考资料:- Simon J. D. Prince. "Computer Vision: Models, Learning, and Inference",Cambridge出版社,2012年。
计算机视觉 课程大纲
计算机视觉课程大纲
计算机视觉课程大纲主要包括以下几个部分:
1.计算机视觉概述:介绍计算机视觉的基本概念、发展历史、相关学科、应用领域和研究方向等。
2.图像基础:介绍图像的类别、表达、显示和存储等基本知识,以及像素的概念和联系。
3.照明模型与颜色模型:介绍照明模型和颜色模型的基本原理和应用,包括RGB、HSV、Lab等颜色空间。
4.图像采集与传输:介绍图像采集的原理和设备,以及图像传输的基本技术和协议。
5.图像处理与分析:介绍图像处理和分析的基本算法和技术,包括滤波、边缘检测、直方图处理、图像分割等。
6.特征提取与描述:介绍特征提取和描述的基本方法和技术,包括SIFT、SURF、ORB等特征检测算法。
7.图像分类与目标检测:介绍图像分类和目标检测的基本算法和技术,包括支持向量机、神经网络等分类算法,以及基于特征的目标检测算法。
8.语义分割与场景理解:介绍语义分割和场景理解的基本算法和技术,包括条件随机场、深度学习等方法。
9.实践项目与综合应用:学生可以根据自己的兴趣选择实践项目,进行综合应用和实践,包括人脸识别、物体跟踪、自动驾驶等方向。
以上是计算机视觉课程大纲的简要介绍,具体的教学内容和教学方法可以根据不同的学校和教师进行适当的调整和补充。
计算机视觉与模式识别大纲
计算机视觉与模式识别大纲计算机视觉与模式识别是人工智能领域中非常重要的一个分支,它涉及到图像处理、模式识别、机器学习等多个领域。
以下是一个可能的大纲:第一部分,导论。
1.1 计算机视觉与模式识别的基本概念。
1.2 历史回顾与发展趋势。
1.3 应用领域与案例分析。
第二部分,图像处理基础。
2.1 数字图像的表示与处理。
2.2 图像增强与滤波。
2.3 图像分割与边缘检测。
2.4 形态学图像处理。
第三部分,特征提取与描述。
3.1 特征提取的基本概念。
3.2 点特征与边缘特征。
3.3 区域特征与描述符。
3.4 特征选择与降维。
第四部分,模式识别基础。
4.1 模式识别的基本概念。
4.2 统计模式识别方法。
4.3 聚类分析与分类算法。
4.4 监督学习与非监督学习。
第五部分,深度学习与卷积神经网络。
5.1 深度学习的基本原理。
5.2 卷积神经网络的结构与训练。
5.3 深度学习在计算机视觉中的应用。
第六部分,目标检测与图像识别。
6.1 目标检测的基本概念。
6.2 基于特征的目标检测方法。
6.3 基于深度学习的目标检测方法。
6.4 图像识别与分类算法。
第七部分,高级主题与应用。
7.1 三维计算机视觉与立体视觉。
7.2 视频分析与动作识别。
7.3 多模态计算机视觉。
7.4 计算机视觉在智能系统中的应用。
以上大纲涵盖了计算机视觉与模式识别的基本原理、方法和应用领域,希望能够对你有所帮助。
计算机视觉课程大纲
1、(加拿大)帕科尔 著,景丽 译,图像处理与计算机视觉算法及应用(第2版)清华大学出版社2012
参考书目
1. Dama H. Ballard, et al., Computer Vision, Prentice-Hall Inc., 1982
2. David rr, Vision, W.H. Freeman and Company, 1982
课程内容纲要
课程名称
计算机视觉
课程编号
总学时
54
学分
3
课程层次
专业基础课
授课语言
双语
开课形式
理论讲授/实验课程
适用学科
计算机科学与技术/软件工程
考试方式
考试
内容简介
计算机视觉的主要研究内容:通过场景的图像或图像序列恢复原来场景的有用信息,譬如,场景中三维物体的结构、运动,表面曲率和方向,以及物体的三维状态和场景中动作的意义。在本课程中,首先介绍计算机视觉的基本概念、理论和算法。首先,回顾图像处理的基本操作,然后讨论区域、边沿检测、立体视觉、三维运动分析、轮廓、纹理、光度学、光流场、摄像机标定、三维曲面、动态视觉等等的理论和算法。
3. Emanuele Trucco., Introductory Techniques for 3-D Computer Vision, Prentice-Hall Inc., 1998
4. 贾云得, 机器视觉,科学出版社,2000
计算机视觉 教学大纲
计算机视觉教学大纲
计算机视觉教学大纲通常包括以下几个部分:
1. 课程简介:介绍计算机视觉的基本概念、发展历程和应用领域,让学生了解课程的目的和意义。
2. 基础知识:介绍计算机视觉所需要的基本知识,如数字图像处理、矩阵运算、线性代数等。
3. 计算机视觉算法:介绍计算机视觉的基本算法,如滤波器、边缘检测、形态学处理、目标跟踪等。
4. 图像特征提取:介绍如何从图像中提取特征,如SIFT、SURF、ORB等。
5. 图像分割和对象识别:介绍图像分割和对象识别的基本算法,如阈值分割、区域生长、支持向量机等。
6. 3D计算机视觉:介绍3D计算机视觉的基本原理和方法,如立体视觉、深度估计等。
7. 实践项目:通过实践项目,让学生将理论知识应用于实际中,提高他们的实践能力和创新思维。
8. 课程总结与展望:对本课程进行总结,并对计算机视觉未来的发展进行展望。
在教学方式上,可以采用理论授课、实验实践、小组讨论等多种形式,注重培养学生的实践能力和创新思维。
同时,还可以结合相关领域的最新研究进展,为学生提供更为全面的学习内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:计算机视觉
课程编码:M510021
课程学分:3
适用学科:信息与计算科学、数学与应用数学
计算机视觉
Computer Vision
教学大纲
一、课程性质
计算机视觉是人工智能领域的一个重要部分,它的研究目标是使计算机具有通过二维图像认知三维环境信息的能力。
计算机视觉是以图象处理技术、信号处理技术、概率统计分析、计算几何、神经网络、机器学习理论和计算机信息处理技术等为基础,通过计算机分析与处理视觉信息。
二、课程教学目的
通过计算机视觉课程的学习,使硕士研究生掌握计算机视觉基本理论与方法以及计算机视觉的一些典型应用,初步具有设计、实现计算机视觉中比较简单的算法的能力,从而为学生进一步从事该方向的学习与研究工作打下基础。
三、教学基本内容及基本要求
计算机视觉主要内容分为六部分。
基本要求与基本内容如下:
1、教学基本内容
(一)计算机视觉概述:计算机视觉的基本概念,计算机视觉的发展和应用,计
算机视觉的现状。
(二)摄像机成像原理及针孔摄像机成像模型。
(三)射影几何的基本介绍及几何元素的数学表达方法。
(四)多视几何理论,包括单视几何中的射影测量、两视几何中的外极几何的基
本概念、基本矩阵、本质矩阵的理论推导及其含义。
(五)立体视觉方法。
使用双摄像机得到的图像恢复三维物体深度信息的方法,
包括直接重建和分层重建理论。
(六)视觉系统的标定,包括3D标定模板下的Tsai标定算法、2D标定模板下的
张正友标定算法、基于圆的标定算法、1D张正友标定算法、基于Kruppa方程的自标定算法。
2、教学基本要求
通过对计算机视觉的教学活动,对学生的要求按了解、理解、掌握三个层面给出,具体要求如下:
(一)计算机视觉概述
1.理解计算机视觉的基本概念。
2.了解计算机视觉的应用前景及发展现状。
(二)摄像机成像
掌握针孔摄像机成像模型。
(三)射影几何
1.掌握二维点、线坐标的齐次表示,掌握三维点、面坐标的齐次表示。
2.掌握无穷远的概念及齐次坐标表示。
3.掌握各种变换下的不变量,如射影变换下的交比不变性、仿射变换下的无
穷远平面的不变性及相似变换下绝对二次曲线的不变。
(四)多视几何
1.掌握单视几何中的单应矩阵基本概念及其推导过程。
2.掌握二视几何中的外极几何理论。
3.了解三视几何中的三焦张量理论。
(五)立体视觉方法
1.理解进行分层重建的原理。
2.掌握射影重建理论及算法。
3.掌握仿射重建理论及算法。
4.掌握欧式重建理论及算法。
(六)视觉系统的标定
1.掌握3D标定模板下的Tsai标定算法原理及实现。
2.掌握张正友标定算法原理及实现。
3.理解基于圆的平面标定算法原理。
4.掌握摄像机自标定算法的原理及实现。
四、本课程与其它相关课程的联系与分工
学习本课程者应该具有良好的数学基础及较强的编程能力。
五、本课程课外练习的要求
经常关注视觉三大会议ICCV、CVPR、ECCV及重要杂志如PAMI、IJCV上有关的视觉算法的进展。
六、本课程的教学方法及使用现代化教学手段的要求
使用多媒体现代化教学手段。
七、本课程成绩的考查方法与评定标准
书面报告或项目编程的形式。
书面报告应该阐述某一个问题的研究背景、进行已有算法的比较、论述本人采用的方案,并具体实现一个简单的实例,最后进行实验结果的评价。
综述性论文不要求实现,但应对该领域的现状进行较为全面的论述,并给出个人的见解。
项目编程要求实现与计算机视觉相关的算法,评分与算法新颖程度、实现难度、实验结果有关(鼓励从最新的ICCV、CVPR、PAMI论文中选题)
八、教材及参考书
教材:R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, London, 2000
参考书:
《计算机视觉-计算理论与算法基础》马颂德、张正友,科学出版社,1998
大纲撰写人:张彩霞
大纲审阅人:
责任教授:
系主任:张杰
学院负责人:邹建成
制(修)订日期:2010年4月20日。