高等数学定积分应用习题答案
高等数学第05章 定积分及其应用习题详解
0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
高等数学(同济大学第五版)第六章 定积分的应用
习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。
高等数学第六章《定积分的应用》
第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
定积分典型例题20例标准答案
定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。
专升本高等数学(二)-定积分计算方法及其应用
专升本高等数学(二)-定积分计算方法及其应用(总分:97.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:6,分数:13.00).(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] [*]为奇函数..(分数:2.00)填空项1:__________________ (正确答案:2)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] 令[*],先证明[*].再用定积分区间可加性合并得 [*].(分数:3.00)填空项1:__________________ (正确答案:π)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]6. 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]二、{{B}}解答题{{/B}}(总题数:6,分数:84.00)对比计算.(分数:36.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(设[*]=t,则x=t2,dx=2tdt.[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(6). 2.00)__________________________________________________________________________________________ 正确答案:(方法一凑微分法. [*] 方法二换元法,用方程思想构造等式.设[*],则dx=-dt. [*] 所以 [*])解析:(7)..(分数:2.00)__________________________________________________________________________________________ 正确答案:(令lnx=t,则x=e t,dx=e t dt.当x=1时,t=0;当x=e时,t=1.[*])解析:(8).求曲线x=acos3t,y=asin3t所围成的平面图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(星形线(见下图)是关于x和y对称的.[*] 参数t从0变到[*]正好是它在第一象限部分,所以 [*])解析:(9).[-2,2]上的定积分.(分数:2.00)__________________________________________________________________________________________ 正确答案:(在有限个点上改变被积函数的函数值,不会影响积分值.也就是说,在闭区间上有有限个第一类间断点时,还能用牛顿—莱布尼兹公式计算定积分. [*])解析:(10).设f(x)=3x2,求f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(设[*],则f(x)=3x2-A,两边积分得[*]故[*].)解析:(11).已知f(π)=-2,求f(0).(分数:2.00)正确答案:(因[*] 移项得[*][f(x)+f"(x)]sinxdx=f(0)-2=6,故f(0)=8.)解析:(12).设f(0)=1,f(2)=3,f'(2)=5.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设2x=f,则[*]当x=0时,t=0;当x=1时,t=2.[*] 因为f(0)=1,f(2)=3,f'(2)=5,所以[*]xf"(2x)dx=2.)解析:(13).试分析k,a,b 2.00)__________________________________________________________________________________________ 正确答案:([*] 所以当[*],a=0,b=8时,有[*].)解析:(14).设f(x)=e-t2dt f(x)dx.(分数:2.00)__________________________________________________________________________________________ 正确答案:(分部积分得 [*])解析:(15).求k 2.00)__________________________________________________________________________________________ 正确答案:(因为 [*] 所以 [*] 令[*],解得[*].)解析:(16).当a为何值时,抛物线y=x2与三条直线x=a,x=a+1,y=0所围成的图形面积最小,求将此图形绕x 轴旋转一周所得到的几何体的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所围面积为S(a).[*]S'(a)=(a+1)2-a2=2a+1令[*]S"(a)=2>0,所以[*]为最小的面积[*])解析:(17).设f(x) 2.00)__________________________________________________________________________________________ 正确答案:(令[*],dx=-dt. [*])解析:(18).直线x=1把圆x2+y2=4分成左、右两部分,求右面部分绕y轴旋转一周所得的旋转体体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(直线x=1与圆x2+y2=4的交点是[*],右部分绕y轴旋转一周所得几何体的体积为[*])解析:计算下列定积分.(分数:10.00)2.00)正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5).设,求 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:计算下列定积分.(分数:10.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(由于公式sin2x=[*](1-cos2x),所以[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:(证明设[*],则dx=-dt,当x=0时,[*];当[*]时,t=0. [*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设函数f(x)在区间[a,b]上连续,,求 2.00)__________________________________________________________________________________________ 正确答案:(设t=a+b-x,则dt=-dx,当x=a时,t=b;当x=b时,t=a.于是, [*] 而[*],所以 [*]) 解析:(4). 2.00)__________________________________________________________________________________________ 正确答案:(设1-x=t,则x=1-t,dx=-dt.当x=0时,t=1;当x=1时,t=0.于是 [*])解析:(5).f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:([*] 故 [*])解析:(6).设f(x)为连续函数,,且φ'(x)并讨论φ'(x)在x=0处的连续性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(f(0)=φ(0)=0,令y=xt,[*]两边对x求导得φ'(x)=[*] 由导数定义,有 [*] 故φ'(x)在x=0处连续.)解析:(7).证明:若f(x)在[-a,a] 2.00)__________________________________________________________________________________________ 正确答案:(因为f(x)在[-a,a]上连续,则[*] 对于[*],令设x=-t,则dx=-dt.当x=-a时,t=a;当x=0时,t=0.于是, [*] 从而 [*])解析:(8).当k?又为何值时发散?(分数:2.00)__________________________________________________________________________________________ 正确答案:(当k≠1时 [*] 当k=1时,[*].所以广义积分[*]当k>1时收敛,当k≤1时发散.)解析:(9).求曲线y=2lnx,过曲线上点(e,2)处的切线及y=0所围成的图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(因为[*],过点(e,2)切线斜率为[*],切线方程为[*].即[*] 切线经过原点(0,0),曲线y=2lnx(即[*])经过点(1,0)和(e,2)所围成图形面积为 [*])解析:设平面图形是由曲线y=x2和x=y2围成,试求该图形:(分数:6.00)(1).绕x轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕x轴旋转一周而形成的立体图形的体积[*])解析:(2).绕y轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕y轴旋转一周而形成的立体图形的体积[*])解析:(3).设函数f(x)=x2,求f(x)在区间[0,2]上的最大值与最小值.(分数:2.00)__________________________________________________________________________________________ 正确答案:(由于定积分[*]是一确定的实数,设[*].对f(x)的等式两边积分有 [*] 于是 [*] 由上式解得[*].令f'(x)=2x=0得驻点x=0.当x∈(0,2)时,恒有f'(x)>0,表明f(x)在区间(0,2)内严格增加,所以f(0)=[*]是函数f(x)在[0,2]的最小值,[*]是函数f(x)在[0,2]的最大值.)解析:设某产品的边际成本函数为C'(q)=4+0.25q(万元/吨),边际收入为R'(q)=80-q(万元/吨),其中q为产量.(分数:4.00)(1).求产量由10吨增加到50吨时,总成本和总收入各增加多少?(分数:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设固定成本为10万元,求总成本函数和总收入函数.(分数:2.00)__________________________________________________________________________________________ 正确答案:([*]由于固定成本为10万元,所以总成本函数为C(q)=4q+[*]q2+10又由于[*],故当q=0时无收入,即R(0)=0=C.所以总收入函数为R(q)=80q-[*]q2)解析:。
济南大学高等数学C(一)5定积分及其应用-疑难解答
第六章 定积分及其应用习题6-1 定积分的概念下列定积分:利用定积分的定义计算.1⎰21;)1(-dx x[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x.3)1(2Δn n x i =--= ).,,2,1(31n i i nx i =+-=[],所以因为中取右端点为在每个区间x x f i nx ξx x i i i i =+-==-)(.31,.210.3)31(ΔΔ)(111∑∑∑===⋅+-==ni i n i i i n i i ni n x ξx ξf .2)1(939393Δ)(212121+⋅+-=+-=+-=∑∑∑===n n n i n i n x ξf n i ni i ni i 即{})Δ(232)1(93lim Δ)(lim .31210210n i i n i ni i λx max λn n n x ξf xdx ≤≤∞→=→-==⎥⎦⎤⎢⎣⎡+⋅+-==∑⎰其中⎰10.)2(dx e x[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-,101210=<<<<<=-n n x x x x x.1Δn x i = ).,,2,1(0n i ni n i x i ==+=[],所以因为中取右端点为在每个区间x i i i i e x f ni x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===⋅==ni ni i n i ξi n i i ne x e x ξf i.1)1(1)(1Δ)(111211--⋅=++++=-=∑n nnn nn nni ni i e e e ne e e e nx ξf 即{})Δ(11)1(1lim Δ)(lim .311110100n i i n nn i ni i λxx max λe e e e n x ξf dx e ≤≤∞→=→=-=--⋅==∑⎰其中,说明下列等式:利用定积分的几何意义.2;12110⎰=x xd )( ;412102⎰=-πx d x )(⎰-=ππx sinxd ;)(03 ⎰⎰-=2022.24πππx cosxd x cosxd )(角形的面积,故表示如图所示的直角三)解:(⎰1021x xd.x xd 12121210=⋅⋅=⎰ ⎰-1024112圆的面积,故表示如图所示)(x d x.414111022⎰=⋅⋅=-ππx d x ⎰-ππx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分)(3轴下方为负面积,故x ⎰-=ππx sinxd .0⎰-2224ππx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分)(⎰⎰-=2022.2πππx cosxd x cosxd 故习题6-2 定积分的性质积分的大小:比较下列各题中的两个.2;,110421021dx x I dx x I ⎰⎰==)( ;,221422121dx x I dx x I ⎰⎰==)(;)(ln ,ln 34332431dx x I dx x I ⎰⎰==)( ;)1ln(,4102101dx x I dx x I ⎰⎰+==)(.)1(,5102101dx x I dx e I x ⎰⎰+==)( ,只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,21104102I I dx x dx x >>⎰⎰即故是连续函数,,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,21214212I I dx x dx x <<⎰⎰即故是连续函数,,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .,)(ln ln 2143343I I dx x dx x <<⎰⎰即故.,)1ln(),10()1ln(,0)0()()(10),10(111)(,)1ln()()4(211010I I dx x dx x x x x f x f x f x x xx f x x x f ><+∴≤<<+=<≤≤<<-+='-+=⎰⎰即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥⎰ba dx x f x f x fb a 则且上,若在[][].0)(,,0)(,0)(,)2(≡=≥⎰x f b a dx x f x f b a ba 上,则在且上,若在[][]).()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a ba ba ≡=≤⎰⎰上,在则且上,若在[]⎰≥∴≥ba dx x f x fb a ,0)(,0)(,)1(上,在证明:,假设⎰=ba dx x f 0)(上,知在由],[)2(b a ,0)(≡x f 矛盾,这与0)(≡/x f .0)(⎰>∴ba dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间包含ξ∴,],[],[21b a c c ⊆ ,可设0)(>x f ],[21c c x ∈,易知:⎰>210)(c c dx x f , ,,而⎰⎰≥≥120)(0)(c abc dx x f dx x f ⎰⎰⎰⎰>++=∴ba c a c c bc dx x f dx x f dx x f dx x f 1212.0)()()()(矛盾,这与⎰=ba dx x f 0)([].0)(,≡∴x f b a 上,假设不成立,即在,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F,且⎰⎰⎰=-=b a b a ba dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由).()(x f x g ≡即习题6-3 微积分的基本公式计算下列各导数:.1;11302dt t dx d x ⎰+)( ;112422dt t dx d x x ⎰+)( ⎰x x dt t πdx d cos sin 2)cos()3( ;1331162223x x x x +=⋅+=)()原式解:(⎥⎦⎤⎢⎣⎡+-+=⎰⎰420022112x x t dt t dt dx d )原式( ⎰⎰+-+=24020211x x t dt dx d t dt dx d x x x x 2)(114)(1122324⋅+-⋅+= ;1214483xx x x +-+= []⎰⎰-=x x dt t πdt t πdxd cos 0sin 022)cos()cos()3(原式 ⎰⎰-=x x dt t πdxd dt t πdx d sin 02cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2a ax x dx x x 02302|)21()3(1-=-⎰)(2321a a -=821|)3131()1(221334212=-=+-⎰x x dx x x )( 67|)2132()()1(30122301211-=+=+=+⎰⎰x x dx x x dx x x )(⎰⎰⎰-+=ππππdx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=πππx x 617|31|)21()(122131022010212=+=+=⎰⎰⎰x x dx x xdx dx x f )( :3求下列极限.;lim )1(02x dt e x t x ⎰→ .sin )sin (lim )2(0320220⎰⎰→x x x dtt t dt t;11lim )1(002===→e ex x 原式解: 320220320220sin 2lim sin sin sin 2lim )2(xx x dt t xx x dt t xx xx ⋅⋅=⋅=⎰⎰→→原式3020sin 2lim xdtt xx ⎰→=.323sin 2lim 22==→x x x .)(0cos 500dxdyx y y dt t dt e .xyt的导数所确定的隐函数求由方程==+⎰⎰求导,得对解:原方程左、右两边x0cos =+x dx dy e y .1sin cos cos -=-=∴x x e x dx dy y.)(602的极值求函数⎰-=xt dt te x f .2)(x xex f -='解: ,令02=-x xe0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数[](),证明函数内可导且上连续,在在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=⎰x F b a dt t f ax x F xa内的一阶导数在 2)()())(()(a x dtt f a x x f x F xa ---='⎰证明:)()())(())((2x ξa a x a x ξf a x x f ≤≤----= )())(()()(x ηξax ξx ηf a x ξf x f <<--'=--=,0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F习题6-4 定积分的换元积分法计算下列定积分:.1;02121)3cos()3sin()1(33=-=+-=+⎰πππππx dx πx 解:;16921)49(81)49()49(41)49()2(122123123=+-=++=+-----⎰⎰x x d x x dx ;31cos 31cos cos cos sin )3(203202202=-=-=⎰⎰πππφφd φφd φφ;2)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θππππ=-=-==-⎰⎰⎰;232)2(31)2(2212)5(202322202202=--=---=-⎰⎰x x d x dx x x;1)6(2102dx x x -⎰,cos ),20(sin tdt dx πt t x =≤≤=令.164sin 41812141241cos cos cos 20202202202202πt t dtt os4c dt t sin tdt t sin tdt t t sin πππππ=-=-===⋅⋅=⎰⎰⎰⎰)()(原式;45)7(11⎰--xxdx;2,45,452dt tdx t x t x -=-==-则令;61)53(8185)2(45133131322=-=-=--=⎰⎰t t dt t dt t tt 原式;1)8(41⎰+xdx,2,,2tdt dx t x t x ===则令;23ln 22)1ln (2)111(212212121-=+-=+-=+=⎰⎰t t dt t t tdt 原式;2121)]21([)(21)9(11021010222---=-=--=⎰⎰--e e t d e dt te tt t;212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(212121212121-+=+=++=+=+⎰⎰⎰-x x d x xxd x x dx .41arctan )2arctan(1)2(54)11(12122122πx x dx x x dx ==+=++=++------⎰⎰ ;32)31(31)sin 3sin 31(21)cos 3(cos 212cos cos )12(222222=--=+=+=---⎰⎰ππππππx x dx x x xdx x .34)(cos 32)(cos 32cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(202302232002200222222223=-=-=⋅+-==-⋅=-------⎰⎰⎰⎰⎰⎰⎰ππππππππππππx x xd x x d x xdx x dx x x dxx x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2202200020=-=-===+⎰⎰⎰⎰⎰πππππππππx x dx x dx x dxx dx x dx x 列定积分:利用函数奇偶性计算下.2;1arcsin 1212122dx xx ⎰--)()(.12sin )2(552432dx x x x x ⎰-++ 为偶函数,故)(解:221arcsin )()1(xx x f -=;324arcsin 32arcsin 21arcsin 232103210221022πx x arcsin d x dx xx ===-=⎰⎰)()()(原式.012sin )()2(2432=++=为奇函数,故原式x x x x x f 证明下列各题:.3;)0(11)1(11212⎰⎰>+=+xx x xdx x dx ;)1()1()2(1010dx x x dx x x mnnm⎰⎰-=-.cos 2cos )3(2010010dx x dx x ππ⎰⎰=右边;左边令证明:=+=+=+-=-==⎰⎰⎰xx x x dx t dt t dt t dt t dx t x 1121121122211111,1,1)1( 右边;左边,则令=-=-=--=-=-==-⎰⎰⎰dx x x dt t t dt t t dt dx t x t x nmnmnm101001)1()1()()1(,,11)2(,cos cos cos )3(2102010010xdx xdx xdx ππππ⎰⎰⎰+=则令,,dt dx t πx -=-=,cos cos )(cos cos 201020100210210xdx tdt dt t xdx πππππ⎰⎰⎰⎰==-= .cos 2cos cos cos 201020102010010xdx xdx xdx xdx ππππ⎰⎰⎰⎰=+=故习题6-5 定积分的分部积分法计算下列定积分:.1);1(414121121ln 21)21(ln ln )2(21221212121+=-=⋅-==⎰⎰⎰e xe dx x x x x x xd xdx x e e e ee;2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x πππππ-=+-=---=-=⎰⎰⎰;2ln 33cos ln 33cos cos 133cos sin 33tan tan tan sec cos )4(303030303030302302-=+=+=-=-===⎰⎰⎰⎰⎰⎰πx πx d x πdx x x πdx x x x x d x dx x x dx xx ππππππππ;ln )5(41dx xx ⎰,2,2tdt dx t x t x ===,则令;42ln 8)22ln 4(2)214ln 2(2)ln ln (2ln 22ln 212221212212212-=-=⋅⋅-=-===⎰⎰⎰⎰dt t tt t d t t t dt t tdt t t 原式.214)arctan (218)111(2181121arctan 21)21()6(10102102210210210-=--=+--=+⋅-==⎰⎰⎰⎰πx x πdx x πdx x x x x x arctamxd xarctamxdx ).2(51cos ,2cos 5cos 42)2cos cos (2)cos (22sin sin sin cos )7(202202202202202202202202202202-=∴-=--=⋅-+=--=⋅-==⎰⎰⎰⎰⎰⎰⎰⎰ππx ππxπx ππx πxππxππx πxπxπxe xdx e e xdx e xdxe e dx e x x e e x d e e dxe x x e x d e xdx e 故;)sin(ln )8(1⎰edx x,,dt e dx e x t x ln t t ===,则令,sin 11cos 1sin )sin cos (1sin cos 1sin cos sin sin sin )sin(ln 101010101110101dt e t e e dt e t t e e tde e dt e t t e tde dt e t dx x t tt t tttte⎰⎰⎰⎰⎰⎰⎰⋅-+-=⋅+-=-=⋅-==⋅=.21)1cos 1(sin sin )sin(ln ,1)1cos 1(sin sin 210110+-=⋅=+-=⋅∴⎰⎰⎰e dt e t dx x e dt e t tet 故.12ln 23ln 31ln ln )1ln()9(32323221--=⋅-==+⎰⎰⎰dt t t t t tdt dx x ;sin )10(20dx x π⎰,2,2tdt dx t x t x ===,则令.2sin 22cos 2cos 2)cos (22sin 00000πtπdt t t t t d t dt t t πππππ=+=+-=-=⋅=⎰⎰⎰原式.22)1(111ln ln ln )ln (ln )11(1111111111e e e e e dxx x dx x x dx x dx x dx x eeeee e e e -=--+-+-=-++-=+-=⎰⎰⎰⎰⎰利用递推公式计算:.2.)1()2(;sin )1(299102990100100dx x J xdx x J π⎰⎰-==.212,)12(2)12()12(sin )12(sin )12(sin cos ]cos )12([sin cos sincos )cos (sin sin ,sin )1()1(22)1(222)1(2020220120120120120122022----------=∴-=---=---+=-++-=-===⎰⎰⎰⎰⎰⎰⎰m m m m mm πmπm πm 2-2m πm πm πm πm m πm m J mm J J m mJ J m J m xdxx m xdx x m xdx x dxx x sin m x x x x x x x xd x xdx sin x x J xdx x J 故则设解:.2196959897100999897100991009910011000482492492502100J J J J J J ⋅⋅⋅⋅==⋅==-==⨯⨯⨯⨯ 故.224969810013959799,22100200πJ πxdx J π⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===⎰ 故而.224969810013959799sin )sin ()(sin ,sin ]2,0[,cos )2(10020990299πdt t dt t t J tdt dx πt t x ππ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-=-=∈=⎰⎰ ,则令习题6-6 广义积分算广义积分的值:收敛性,如果收敛,计判别下列各广义积分的.1;4141)4(41)3(040404=-=--=∞+-∞+-∞+-⎰⎰xx xex d e dx e.21sin ,1sin 2,sin 1]sin sin [1sin 1cos 1cos cos )cos (sin )4(00000000000==∴-=+-=-=-=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+-∞+-∞+-∞+-∞+-∞+-∞+-+∞-+∞-+∞-+∞-dx x e dx x e dx x e dx x e x e x d e dx x e dxx e xe x d e dx x e xxxx xxxx xxx 故.)2(2)2arctan(1)2(54)5(22πππx x dx x x dx =--=+=++=++∞+∞-∞+∞-∞+∞-⎰⎰ .1]1)1([lim 1)1(21lim 1)6(21210221102=+--=---=---→→⎰⎰b x x d dx x x b b b ;1()7(203⎰-)x dx .1(1,1,1111,,11203103013103013113113发散)都发散,原式,则令⎰⎰⎰⎰⎰⎰⎰-∴+==-=-=-==-----x dx dt t dt t dt tdt t dt t dt t dt dx t x t x.1)8(21⎰-x xdx.38)3(2)1(22)1(,2,1,1110310210222=+=+=+==+==-=-⎰⎰t t dt t dt t t t tdt dx t x t x t x 原式,则令 )1()(ln 111ln ln )(ln )(ln 212≠+⋅-==-∞+⎰⎰⎰k C x k x x d x x dx k k x x dxk .k k k k 解:取得最小值?为何值时,这广义积分当发散?为何值时,这广义积分收敛?当为何值时,广义积分当时,当1=k ⎰x x dx ln C x xxd +==⎰ln ln ln ln⎪⎩⎪⎨⎧≠⋅-==∴∞+-+∞∞+⎰1|)(ln 1111|ln ln )(ln 2122k x k k x x x dx k k时,当1)1(=k .,原广义积分发散原式+∞= 时,当1)2(<k .,|)(ln 1121发散原式+∞=-=∞+-k x k=>时,原式当1)3(k .,)2(ln 111|)(ln 111121收敛-∞+--=⋅-k k k x k 时,当1>k 则记,)2ln 1(11)(1--=k k k f12)2(ln 1)1(1)(---='k k k f )2ln 1ln()2ln 1(111--+k k ).2ln ln 11()2(ln 1)1(11+---=-k k k ,令0)(='k f ,1>k 从而,0)2ln 1(111≠-∴-k k,02ln ln 11=+-k ,2ln ln 11-=k 即.值为唯一驻点此k时,当2ln ln 11->k 时,即02ln ln 11<+-k .0)(>'k f时,当2ln ln 11-<k .0)(该驻点是极小值点,∴<'k f时,即当1>k .)(),1(处的极小值就是最小值故唯一驻点没有边界值进行比较,时,在此区间上k f k ∞+∈习题6-7 定积分的几何应用形的面积:求由下列各曲线所围图.1 ).0(ln ,ln ,0,ln )7(;1,,)6(;2,1)5(;(8,2)4(;2,3)3(;,0,)2(;,)1(2222>>===========+==-======-a b b y a y x x y x e y e y x x y xy x y x y x y x y e y x e y x y x y x x x 与两部分都要计算).61)()1(10⎰=-=dx x x S 面积解:.1)()2(10⎰=-=dx e e S x 面积 .332)23(),6,3(),2,1(32)3(1322⎰-=--=--⇒⎩⎨⎧-==dx x x S B A x y x y 面积.342)218()4(22221⎰+=--=-πdx x x S 阴影部分的面积 .346)34282-=+-=πππS (另一部分的面积.2ln 23)1()5(21⎰-=-=dx x x S 面积.21)()6(10⎰-+=-=-ee dx e e S xx 面积.)0(,ln )7(ln ln ⎰-=-==⇒=ba yy a b dy e S e x x y 面积转的旋转体的体积:围平面图形绕指定轴旋求下列各题中的曲线所.2轴;轴绕y x x y x y ,,2,0,)1(3=== 轴;绕y y x x y ,,)2(22== 轴;绕x y x ,16)5()3(22=-+ ).0(,)4(222>>==+a b b x a y x 绕,7128)()1(2203πdx x πV x ==⎰解:,33y x x y =⇒=dy y πdy πV y ⎰⎰⋅-⋅=8023802)(2.56459632πππ=-=,)2(2y x x y =⇒=.10352)()(1022102πππdy y πdy y πV y =-=⋅-⋅=⎰⎰,165,165:16)5()3(222122x y x y y x --=-+==-+得由dx y y πdx y πdx y πV x )(22442144224421-=⋅-⋅=⎰⎰⎰---.160162102442πdx x π=-⋅=⎰-,,,:)4(22222122222y a b R y a b R y a x a y x --=-+=-±==+设得由dy R πdy R πV aa aa b ⎰⎰---=2221dy R R πaa )(2221-=⎰-dy y a b πaa 2222-⋅⋅=⎰-b a π222=.3列各题中立体的体积的立体体积公式计算下用平行截面面积为已知..)1(的正劈锥体为高底圆直径的线段为顶,的圆为底,平行且等于以半径为H R .)()2(的球缺的球体中高为半径为R H H R <.)20(1)3(2222的平面所截的劈形立体轴且与底面夹角的椭圆柱体被通过底面为椭圆πααx b y a x <<≤+ 截面的面积为:解:)1( [],,,221)(2222R R x x R h h x R x A -∈-=-⋅=:故此正劈锥体的体积为.21)(222h R πdx x R h dx x A V R R R R ⎰⎰--=-==截面的面积为:)2( [],,),()(22R H R y y R πy A -∈-=故球缺的体积为:).31()(222H R H πy d y R πV RH R -=-=⎰- 截面的面积为:)3( [],,,tan 1121)(2222ααx αax b a x b x A -∈-⋅-=故劈形立体的体积为: .tan 32tan )1(21)(2222αab dx αa x b dx x A V a a a a ⎰⎰--=-==习题6-8 定积分的经济应用.1000257)(1,求总成本函数,固定成本为已知边际成本为xx C .+=' .5071000)257(1000)()0()(00⎰⎰++=++='+=x x x x dx xdx x C C x C 解:.30202100)(.3应追加的成本数时,增加到,求当产量由已知边际成本==-='x x x x C:解:应追加的成本数为.500)2100()(30203020=-='⎰⎰dx x dx x C.0260)(430)(.4)(设固定成本为,求最大利润,边际收益为已知边际成本x x R x x C -='+=').0(230230)430()(22固定成本为解:x x C x x dx x x C +=++=+=⎰.60)260()(2C x x dx x x R +-=-=⎰,60)(,0,0)0(2x x x R C R -=∴=∴=,33023060)()()(222x x x x x x x C x R x L -=---=-=∴ ,06)(,5,0630)(<-=''==-='x L x x x L .75)5(5=-=L x 利润为时,有最大利润,最大故当 支出增加多少?费亿元时,购买冰箱的消亿元增加至,当居民收入由的函数,的变化率是居民总收入消费支出某地区居民购买冰箱的942001)()(.5xx W x x W =').(10012001)(9494亿解:=='⎰⎰dx xdx x W .1001亿增加故购买冰箱的消费支出.20)3(20)2()1(.10100106价值万元时,求收益的资本当应满足的方程);万元时,求内部利率(当本?为何值时,公司不会亏元收入年后报废,公司每年可备使用万元购买某设备,该设(连续复利)贷款某公司按利率==b b b b %.年后的总收益::年后这笔贷款的本利和解:10,10010010)1(101.0e e =⨯),1(101001)10(1.0⎰---=e eb dt e b t ),1(101001--=e eb e 若公司不亏本,则.1101--=eb 则 ,则设内部利率为ρ)2(),1(202010010100ρtρe ρdt e ---==⎰.1510ρe ρ--=即投入资金的现值收益流现值资本价值-=)3( 100201001.0-=⎰-dt e t.20010010020020011---=--=e e总习题六计算下列极限:.1.1lim 11lim )1(11111e edt e x xx x t x ==-→→⎰ .111)(1lim 21121)(lim .1)(lim )(,1)(lim )2(2220=⋅=+=⋅+==++∞→+∞→+∞→+∞→⎰x f xx xx x f t f t f x dt t f x x t xx 原式连续且其中计算下列积分:.2.22ln 2ln 2cos 1sin ,2ln )cos 1ln(cos 1)cos 1(cos 1sin ,2ln 22tan 2tan 2tan 22sec 2sec 22cos 2cos 1,cos 1sin cos 1cos 1sin )1(2020202020202020220220220202020ππdx x x x x x x d dx x x πdx x x x x d x x dx x dx x x dx x x dx x x dx x x dx x x dx x x x ππππππππππππππ=+-=++=+-=++-=+-=-=====++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰故而而 ;42)2(22⎰-+xdx.122tan 22sec 2122cos 212)cos 111(cos 1cos cos 22cos 2,cos 2]2,0[,sin 220202202202020-=-=-=-=+-=+=+==∈=⎰⎰⎰⎰⎰πt πdt t πdtt πdt t t tdt t tdt tdt dx πt t x ππππππ原式,则令).12(2)sin cos ()cos (sin )cos (sin )sin (cos cos sin )cos (sin cos sin 2cos sin 2sin 1)3(2440244020202202220-=--++=-+-=-=-=-+=-⎰⎰⎰⎰⎰⎰ππππππππππx x x x dx x x dx x x dx x x dxx x dx x x x x dx x .22)tan 2arctan(211)tan 2(tan 2211tan 2tan 1tan 2sec 1tan 21tan sin 2cos cos sin sin 1)4(202022022022222202222202πx x x d x x d dx x x dx x x x x xdx x x dx πππππππ==+=+=+=++=++=+⎰⎰⎰⎰⎰⎰ 且说明理由:指出下列计算中的错误4..01lim 1)3(;01,11)2(;2]1[arctan )1(1)1(1)1(4343112112111211112112=+=+=+∴+-=+-=-=+-=+⎰⎰⎰⎰⎰⎰⎰-+∞→∞∞---=----b bb tx xdx x x dx x x dx t dt x dx πx x x d x dx.0)1(2x x 以,故不能分子分母同除可以取为第一步到第二步错,因解:.2)4(4arctan 111112πππx x dx =--==+⎰--正确的做法: .x tx 0,1)2(就取不到因为这样不能令=.)3(是没有关系的限设法错误,因为它们第二步中定积分的上下解下列几何问题:.5;轴旋转的旋转体的体积所围图形绕求由y y x x y 0,4,)1(23===;轴旋转的旋转体的体积绕求圆盘y y x 1)2()2(22≤+- .940,1,,.0]1,0[)0,0()3(22积最小轴旋转而成的旋转体体,且使图形绕为所围图形的面积与直线的值,使抛物线试确定时,,且当过原点设抛物线x y x c bx ax y c b a y x c bx ax y ==++=≥∈++=应取何值?所围图形面积最小时,与抛物线)点,当直线过(已知直线b a x y b ax y b ax y ,1,0)4(2=+=+=.7512128)(4)1(80348023280212πdy y ππdy y πdy πV V V =-=⋅-⋅=-=⎰⎰⎰解:故旋转体的体积为,得由],1,1[121)2()2(222-∈-±==+-y y x y x.418124)12()12(211211221122112πdy y πdyy πdy y πdy y πV =-=-⋅=----+=⎰⎰⎰⎰----,896,94)(,0)3(1022=+=++==⎰b a dx bx ax bx ax y c 故,故由已知轴旋转体的体积绕x ),235()(22102abb a πdx bx ax πV ++=+=⎰)],98(12131)98(1801[),98(61222b b b b πV b a -++-=∴-=.0,35,2,0151,2,0]152151[22满足条件时,故当故=-==>⋅===-=c a b πdb V d b b πdb dV )(即由已知11)4(=+=b ax y ,即它所围面积,则两交点的横坐标为与抛物线设直线⎰-+=<=+=21)1()(,1221212x x dx x ax A x x x x x y ax y ),(31)()(23132122122x x x x x x a A ---+-=,01122=--⇒⎩⎨⎧=+=ax x xy ax y 是此方程的两根,有设21,x x ,1,2121-==+x x a x x ,44)(2)(221212212122212+=-+=-+=-a x x x x x x x x x x ,4))(()(,4212122122212+=-+=-+=-a a x x x x x x a x x 又 .)4(64)1(314421),1(4]))[((232222222221212123132+=++-+++=++=-+-=-a a a a a a A a a x x x x x x x x 故.1,0480,0,0)4(18212=====+=b a A a a a a dadA ,故有最小值时,故当则令解下列经济应用问题:.6?台的平均利润各为多少台与后台时,前售出台电视机的总利润售出试求的边际利润为已知某商场销售电视机需求出满足的方程)万元,求内部利率(只年,每年收益厂投产期万元扩建一个工厂,该某企业投资少?单位时,总成本减少多单位减少到由问当产量成本已知生产某产品的边际303060.2.401),20(10250)()3(.2020232)2(312,30183)()1(2.x xx L x x x x C ≥-='+-='.11120232)2(.756)30183()()1(202001232123ρtρeρ.6dt e ρdx x x dx x C C --⎰⎰⎰-===+-='=,解得:,则设内部利润为减少的成本解:,20250)10250()(.1)3(2C x x dx x x L +-=-=⎰,20250)(,0,0)0(2x x x L C L -=∴=∴=.9920)40(40=L 台电视机的总利润为:售出,5.24830745530)30(,7455)30(.2===L L ,5.24530)30()60(,7365)30()60(,14820)60(=-=-=L L L L L.5..5245302483060台的平均利润为,后台的平均利润为台时,前故售出(注:本资料素材和资料部分来自网络,仅供参考。
高等数学第五章课后习题答案
班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。
(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。
(完整版)定积分应用题附答案
《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。
故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。
(完整版)高等数学定积分应用习题答案
第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
高等数学习题详解-第6章定积分
习题6-11. 利用定积分的几何意义求定积分:利用定积分的几何意义求定积分:(1) 12xdx ò; (2) 220aa x dx -ò(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ò表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以1021xdx =ò.(2) 根据定积分的几何意义知,22aa x dx -ò表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014aa x dx a -=òπ. 2. 根据定积分的性质,比较积分值的大小:根据定积分的性质,比较积分值的大小:(1) 12x dx ò与13x dx ò; (2) 10xe dx ò与1(1)x dx +ò.解 (1) ∵当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³, 又2x3x ,所以11230x dx x dx >òò.(2) 令()1,()1x xf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>, 从而()(0)0f x f ³=,说明1xe x ³+,所以11(1)xe dx x dx >+òò.3. 估计下列各积分值的范围:估计下列各积分值的范围:(1) 421(1)x dx +ò; (2) 313arctan x xdx ò;(3) 2axae dx --ò(0a >); (4) 22xxedx -ò.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -£+£-ò, 即 4216(1)51x dx £+£ò.(2) 令()arctan f x x x =,则2()arctan 1x f x x x ¢=++,当1[,3]3x Î时,()0f x ¢>,从而()f x 在1[,3]3上是增函数,从而f (x )在1[,3]3上的最大值(3)3πM f ==,最小值1()363πm f ==,所以所以 313112(3)arctan (3)9363333x xdx =-££-=òππππ即3132arctan 93x xdx ££òππ. (3) 令2()x f x e-=,则2()2xf x xe -¢=-,令()0f x ¢=得驻点0x =,又(0)1f =, 2()()a f a f a e-=-=,a >0时, 21ae -<,故()f x 在[],a a -上的最大值1M =,最小值,最小值2ea m -=,所以所以2222aa x aa dx a---££òee . (4) 令2()x x f x e -=,则2()(21)x xf x x e -¢=-,令()0f x ¢=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以所以 2122402x xeedx e --££ò.习题6-21. 求下列导数:求下列导数:(1) 201x d t dt dx +ò; (2) 5ln 2x td te dt dx -ò; (3) cos 20cos()xd t dt dx p ò; (4) sin x d t dt dx tp ò (0x >). 解 (1) 22011xd t dt x dx +=+ò. (2)55ln 2x tx d t e dt x e dx --=ò. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxp p p ¢=×=-ò(4)sin sin sin x xdt d t x dt dt dx t dx t xp p =-=-òò. 2. 求下列极限:求下列极限:(1) 02arctan limxx tdt x ®ò; (2) ()2220020e lime x t xx t dt t dt®òò.解 (1) ()0022000021arctan arctan arctan 11(1)lim lim lim lim 222x x x x x x tdt tdt x x x x x ®®®®¢éù--ëû+====-¢òò.(2) ()()22222222222000020000220022lim lim lim lim x x x x t t t x t x x x x x x x t x t e dt e dt e dt e dt xe xe te dt te dt ®®®®¢éù×êúëû===¢éùëûòòòòòòe []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe xxe ®®®¢éùëû====+¢+×ò. 3. 求由方程e cos 0yx tdt tdt +=òò所确定的隐函数()y y x =的导数.的导数.解 方程两边对x 求导数得: cos 0e yy x ¢×+=, cosey x y ¢\=-,又由已知方程有000sin e yxtt +=,即1sin sin 00e yx -+-=, 即1sin e yx =-,于是有cos cos sin 1eyxx y x ¢=-=-.4. 计算下列定积分:计算下列定积分: (1) 41xdx ò; (2) 221d x x x --ò;(3) 设,0,2()sin ,2x x f x x x p p p 죣ïï=í;ïî,求0()f x dx p ò (4)320(2)x dx -ò.解 (1)44321121433xdx x ==ò.(2)2122222111()()()dx x x dx x x dx x x dx x x --=-+-+--òòòò012322332101111111116322332x x x x x x -æöæöæö=++=---ç÷ç÷ç÷èøèøèø.(3) ()22220022()sin 1cos 82x f x dx xdx xdxx p pp pp ppp =+=+=+-òòò(4) 33232002(2)2(2)(2)x dx xdx x dx x dx -=-=-+-òòòò232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续上连续,,在(),a b 内可导内可导,,()0f x ¢£,1()()xaF x f t dt x a =-ò;证明:在(),a b 内有()0F x ¢£.证明证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a éù¢=-+=--êúëû---òò[][][]21()()()(),(,,)()x a f x x a f a x a b x a x x =---ÎÎ-(),((,)(,))x f x a b x ax h h x -¢=ÎÎ-. 由已知条件可知结论成立.由已知条件可知结论成立.习题习题 6-3 6-31. 计算下列积分:计算下列积分: (1) 3sin()x dx pp p +3ò; (2) 32(115)dx x 1-+ò; (3) 11154dx x--ò; (4) 320sin cos d j j j pò;(5) 22cos udu p p 6ò; (6) 2e 11ln dx x x+ò;(7) 32211dx xx +ò; (8) 2202x dx -ò; (9) ln 3ln 2e e x x dx--ò; (10)3222dxx x +-ò.解 (1) 333sin()sin()()[cos()]x dx x d x x pp p pp p p p p p +=++=-+3333òò42cos cos 033p p =-+=.(2) 123322211(511)151(511)(115)5(511)10512dxd x x x x 11---+==-=+++òò(3)1111111111(54)154425454dx d x x x x---=--=-=---òò.(4)233422011sin cos cos cos cos 44d d p ppj j j j j j=-==-òò.(5)222221cos 211cos cos 2(2)224u udu du du ud u pp p p ppp p 6666+==+òòòò26131sin 2268264up p p p p æö=+=--ç÷èø. (6) 222111(ln 1)22(31)1ln 1ln 1ln e e e dx d x x x x x+===-+++òò. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t p =;当3x =时,3t p =;于是于是 333222144cos 2123sin 3sin 1dx t dt t t x x p p p p==-=-+òò. (8) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p=;于是2222220122cos (1cos 2)(sin 2)22x dx tdt t dt tt pppp-==+==+òòò.(9) 令xe t =,则1ln ,d x t x dt t ==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是于是3ln3332ln 22221113111(ln ln)12222111x xdxdt t dt e e t t t t --æö====-ç÷---++èøòòò.(10)333222211111()ln 231232dx x dx x x x x x -=-=+--++òò 1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分:计算下列定积分: (1) 10e x x dx -ò; (2)e1ln x xdx ò;(3) 41ln x dx x ò; (4) 324sin xdx xpp ò; (5) 220e cos x xdx p ò; (6) 221log x xdx ò;(7)π20(sin )x x dx ò; (8) e1sin(ln )x dx ò.解 (1) (1)111100xxxxxedx xdexee dx ----=-=-+òòò1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e ee x xdx xdx x x xdx e x e ==-=-=+òòò. (3) 4444411111ln 12ln 2ln 28ln 24x dx xd x x x x dx x x x ==-×=-òòò 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x p p p pp p p p =-=-+òòò34π131ln ln sin 492249x ppp p 3æö3=-+=+-ç÷èø. (5) 222222220cos sin sin 2sin xx x x exdx e d x e x e xdx p p p p ==-òòò222222002cos 2cos 4cos xxxe e d x e e xe xdx pp ppp=+=+-òò220e 24cos x e xdx pp =--ò于是于是221cos (2)5x e xdx e pp =-ò. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-æö=-ç÷ç÷èøòòò 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x pp p p =-=-òòò 33200011(sin 22sin2)cos26464x x x xdx xd x p p p p p =--=-òò 3001(cos 2cos2)64x x xdx p p p =--ò 3301sin 264864x p p p p p=-+=-.(8)111sin(ln )sin(ln )cos(ln )eee x dx x x x dx =-òò11sin1cos(ln )sin(ln )ee e x x x dx =--ò1sin1cos11sin(ln )e e e x dx =-+-ò所以所以11sin(ln )(sin1cos11)2ex dx e e =-+ò.3. 利用被积函数的奇偶性计算下列积分:利用被积函数的奇偶性计算下列积分:(1) 121ln(1)x x dx -++ò ; (2)1212sin 1xdx x -++ò (3) 2222(4)x x dx -+-ò; (4) 4224cos d q q pp -ò.解 (1) 2ln(1)x x ++ 是奇函数,是奇函数, 121ln(1)0x x dx -\++=ò.(2) 2sin 1x x+ 是奇函数,121sin 01x dx x -\=+ò, 因此因此 111221112sin 22arctan 11x dx dx x x x p ---+===++òò. (3) 222222222(4)(424)416x x dx x x dx dx ---+-=+-==òòò. (4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d q q q q q qq q qp p pp p p -p+æö==ç÷èø=++=×××=òòòò.4. 证明下列等式:证明下列等式:(1) 证明:1100(1)(1)mnn m x x dx x x dx -=-òò;(2) 证明:1122111xx dx dx x x=++òò (0x >); (3) 设()f x 是定义在区间(,)-¥+¥上的周期为T 的连续函数,则对任意(,)a Î-¥+¥,有()()a TTaf x dx f x dx +=òò.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是于是1111(1)(1)()(1)(1)m n m n n m n mx x dx t t dt t t dt x x dx -=--=-=-òòòò,即11(1)(1)m n n m x x dx x x dx -=-òò.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t x x t tdx dt t dt dx x t t x t tæö=×=-×==-ç÷++++èø+òòòòòd ,即1122111xxdxdxx x =++òò.(3) 因为因为()()()a TT a Taa f x dx f x dx f x dx ++=+òòò,而,而()()()a Taaaf x dx x t Tf t T dt f t dt +=++=òòò令 0()()()aTTaf x dx f x dx f x dx ==-òòò故()()a TTaf x dx f x dx +=òò.4. 若()f t 是连续函数且为奇函数,是连续函数且为奇函数,证明证明0()xf t dt ò是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ò是奇函数.是奇函数.证 令0()()xF x f t dt =ò.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--==òòò, 所以0()()xF x f t dt =ò是偶函数.是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--=-=-òòò, 所以0()()xF x f t dt =ò是奇函数.是奇函数.5. 利用分部积分公式证明:利用分部积分公式证明:()()()()d xxu f u x u du f x x du -=òòò.证 令0()()uF u f x dx =ò则()()F u f u ¢=, 则(())()()()xu xxxf x dx du F u du uF u uF u du ¢==-òòòò()()()()xxxxF x uf u du xf x dx uf u du =-=-òòò()()()()xxxxx f u du uf u du xf u du uf u du =-=-òòòò()()xx u f u du =-ò. 习题6-41. 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-; (7) ,xx y e y e -==与1x =;(8) sin (0)2y x x p =££与0,1x y ==.解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x Î-,面积元素22(2)dA x x dx =--,于是所求的面积为,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=ò.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e Î,面积元素ln dA ydy =;于是所求面积为;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=òò. (3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x Î-,面积元素2(4)dA x dx =-,于是所求的面积为,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=ò. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:它们所围图形面积为:1212220101(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-òòòò2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x=与2x =的交点为1(2,)2;取x 积分变量,[]1,2x Î,面积元素1()dA x dx x =-,于是所求的面积为,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-ò.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y Î-,面积元素2(2)dA y y dy =+-,于是所求的面积为,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=ò.(7) 曲线x y e =与xy e -=的交点(0,1),取x 作积分变量,[]0,1x Î,面积元素()xxdA e e dx -=-,于是所求图形的面积为,于是所求图形的面积为10)()2xxxxA e e dx e e e e--=-=+=+-ò11(.(8)取x 作积分变量,0,2x p éùÎêúëû,面积元素(1sin )dA x dx =-,于是所求的面积为,于是所求的面积为220(1sin )(cos )12A x dx x x ppp =-=+=-ò.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) ,1,4,0y x x x y ====,绕x 轴;轴; (2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴;(3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴. 解 (1)取x 作积分变量,[]1,4x Î,体积元素2()dV x dx xdx p p ==,于是所求旋转体的体积为的体积为442111522V xdx x p p p ===ò.(2)绕x 轴旋转时,取x 作积分变量,[]0,2x Î,体积元素32()x dV x dx p =,于是,于是22267012877x V x dx xp p p ===ò; 同理可求平面图形绕y 旋转所成的旋转体的体积旋转所成的旋转体的体积8582233003642()(4)55yV y dy y y pp péù=-=-=ëûò. (3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y Î,体积元素222()()dV y y dyp éù=-ëû,于是所求的旋转体的体积为,于是所求的旋转体的体积为114250113()()2510V y y dx y y p p p =-=-=ò. (4) 取y 作积分变量[]1,1y Î-,体积元素22222(51)(51)201dV y y dy y dy p p éù=+----=-ëû,于是所求的旋转体的体积为于是所求的旋转体的体积为 122120120102V y dy ppp p -=-=×=ò.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e ¢=(万元/单位),其固定成本为090C =(万元),求总成本函数.,求总成本函数. 解 总成本函数为总成本函数为0.200()()290QQQ C Q C Q dQ C e dQ ¢=+=+òò0.20.2010901080Q QQ e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q ¢=-(元/单位),试求总收益函数与需求函数.益函数与需求函数. 解 总收益函数为总收益函数为20()(152)15QR Q Q dQ Q Q =-=-ò需求函数为需求函数为()15R Q P Q Q==-.5.已知某产品产量的变化率是时间t (单位:单位:月月)的函数()25,0f t t t =+³,问:问:第一个第一个5月和第二个5月的总产量各是多少? 解 设产品总产量为()Q t ,则()()Q t f t ¢=,第一个5月的总产量月的总产量5525100()(25)(5)50Q f t dt t dt t t ==+=+=òò. 第二个5月的总产量为月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=òò.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q ¢=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q ¢=-.问:.问: (1) 生产量为多少时,总利润最大?最大利润为多少? (2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q ¢=即()()0R Q C Q ¢¢-=即7220Q --=, 2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为总利润最大,此时的总成本和总收益分别为2.52.52.5()225C C Q dQ dQ Q¢====òò2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q ¢==-=-=òò总利润11.255 6.25L R C =-=-=(万元). 即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台, 总成本3300()26C C Q dQ dQ ¢===òò,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q ¢==-=-=òò, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.万元.习题习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值:判断下列反常积分的敛散性,若收敛,则求其值:(1) 41dxx+¥ò; (2)1dx x+¥ò;(3) 0xe dx +¥-ò (a >0); (4) 0sin xdx +¥ò; (5)1211dxx--ò; (6) 222dxx x +¥-¥++ò; (7) 211xdx x -ò; (8)10ln x xdx ò; (9) e211ln dxx x-ò; (10)23(1)dxx -ò.解 (1) 14311133dx x x +¥+¥=-=ò.此反常积分收敛..此反常积分收敛. (2) 112dx x x+¥+¥==+¥ò.此反常积分发散..此反常积分发散.(3) 101x xe dx e +¥--+¥=-=ò.此反常积分收敛..此反常积分收敛.(4) 00sin cos lim cos 1x xdx x x +¥+¥®+¥=-=-+ò不存在,此反常积分发散.不存在,此反常积分发散.(5) 11121arcsin 1dx x x p --==-ò.此反常积分收敛..此反常积分收敛.(6)22(1)arctan(1)22(1)1dx d x x x x x p +¥+¥+¥-¥-¥-¥+==+=++++òò.此反常积分收敛..此反常积分收敛.(7)2322211001112lim lim (1)21113xdx x dx x x x x e e e e +++®®+-+éù==-+-êú--ëûòò320222lim 222333e e e +®æö==--ç÷èø.此反常积分收敛..此反常积分收敛. (8)1112222100111111ln limln limln limln 222424x xdxxdxx xxdx eee e e e ee e ®®®æöæö==-=--ç÷ç÷èøèøòòò, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx e e e e e e ++®®==--=-òò.此反常积分收敛..此反常积分收敛. (9) 12211ln πarcsin(ln )21(ln )1(ln )e e e dx d x x x x x ===--òò.此反常积分收敛..此反常积分收敛. (10) 212333001(1)(1)(1)dx dx dxx x x =+---òòò,因为反常积分1132001(1)(1)dx x x ==¥--ò发散,所以反常积分230(1)dxx -ò发散.发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ¥ò收敛?当k 为何值时,这反常积分发散? 解 当1k =时,时,++222ln ln(ln )ln ln dxd x x x x x¥¥+¥===+¥òò,发散发散.. 当1k ¹时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk k k k dx x k x d xx x kk -¥¥--+¥ì>ï-===í-ï+¥<îòò所以,当1k >时,此广义积分收敛;当1k £时,此广义积分发散.时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n xn I x dx ¥-=ò. 解 ++1100n x n xn xn n I x de x e n x e dx nI ¥¥----+¥-=-=-+=òò, 因为因为 +101xx xI xde xe e ¥---+¥+¥=-=--=ò,所以所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:求下列积分:(1)121tan sin 1xdx x -+ò; (2)1202x x dx -ò;(3)22204x x dx -ò; (4)ln 21x e dx -ò;(5)21220(1)x dx x +ò; (6)2211x dx x -ò;(7)120xx e dx -ò; (8) 21(ln )ex dx ò;(9) 401cos 2x dx xp+ò; (10) 20cos xe xdx p -ò; (11) 20sin 1cos x x dx x p++ò; (12) 40ln(1tan )x dx p+ò.解 (1) 因为被积函数2tan sin 1x x +是奇函数是奇函数,,所以121tan 0sin 1xdx x -=+ò. (2) 1122021(1)x x dx x dx -=--òò,令1sin x t -=,则cos dx tdt =;当0x =时,2t p=-;当1x =时,0t =;所以;所以010*******1cos 2sin 22cos 2244t t t x x dx tdt dt p p p p ---+éù-===+=êúëûòòò. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p =;所以222222222044sin 4cos 4sin 22(1cos 4)xx dx t tdt tdt t dt p pp-=×==-òòòò2012(sin 4)4t t pp =-=.(4) 令1x e t -=,则221t dx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 2112000212(arctan )2(1)14x t e dx dt t t t p -==-=-+òò. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t p=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t pp pp -===-=-+òòò.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t p=;所以22233301001tan sec tan tan (tan )3sec 3x t dx t tdt tdt t t x t p p pp -===-=-òòò. (7) 111112221000022xxxxx x e dx x dex exe dx e xde ------=-=-+=--òòòò111111000223225xxxe xee dx e e e ------=--+=--=-ò. (8) 22111111(ln )ln 2ln 2ln 22e e e e e x dx x x x x dx e x x dx e x=-×=-+=-òòò.(9) 444400tan tan tan 1cos 2x dx xd x x x xdx xpppp==-+òòò401ln cos ln 2442x pp p =+=-.(10) 2222000cos cos cos sin xxxxe xdx xdee x e xdx pppp----=-=--òòò22201sin 1sin cos xxxxdee x e xdx ppp ---=+=+-òò2201cos x ee xdx pp--=+-ò, 所以所以 2201cos (1)2x e xdx e p p--=+ò.(11) 22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x p p p p p +=+=-+++òòòòò2222200tantan ln(1cos )222ln cos ln(1cos )22x x x dx x x x p pp ppp=--+=--+ò20ln 22ln cos 222xp pp=++=. (12) 44440cos sin ln(1tan )lnln(cos sin )ln cos cos x x x dx dx x x dx xdx xpppp++==+-òòòò令4x u p-=,可得044041ln(cos sin )ln 2cos()(ln 2ln cos )42x x dx x dx u du p p p p éù+=-=-+êúëûòòò40ln 2ln cos 8xdx p p =+ò所以所以4ln 2ln(1tan )8x dx pp +=ò.2、设()f x 在[],a b 上连续,且()1b af x dx =ò,求()b af a b x dx +-ò.解令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以;所以 ()()()1b ababaf a b x dx f t dt f t dt +-=-==òòò.3、设()f x 为连续函数,试证明:()()(())xxtf t x t dt f u du dt -=òòò.证 用分部积分法,000(())()(())xx t tx tf u du dt tf u du td f u du =-òòòòò()()()()x x x x x f u du tf t dt xf t dt tf t dt =-=-òòòò()()xf t x t dx =-ò.4、设()u j 为连续函数,试证明:22()2()aaa x dx x dx j j -=òò.证2220()()()aa aaa x dx x dx x dx j j j --=+òòò,令x t =-,则00222200()(())()()aaa a x dx t dt t dt x dx j j j j -=--==òòòò 所以22220()()()2()aa aaaaa x dxx dx x dx x dx j j j j --=+=òòòò. 5、计算下列反常积分:、计算下列反常积分:(1)2048dx x x +¥++ò; (2)21arctan x dx x+¥ò; (3)101(1)dx x x -ò; (4)1ln e dx x x ò. 解 (1) 222000(2)12arctan 48(2)2228dx d x x x x x p +¥+¥+¥++===++++òò. (2) 221111arctan 1arctan 1arctan (1)x x dx xddx x xxx x +¥+¥+¥+¥=-=-++òòò22111ln ln 242142xx p p +¥=+=++. (3) 1110001122arcsin (1)1dx d x x x x x p éù===ëû--òò.(4) 111ln 2ln 2ln ln e eedxd xx x x x ===òò.6、求抛物线22y px =及其在点(,)2p p 处的法线所围成的平面图形的面积.处的法线所围成的平面图形的面积.解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22p p p p -;取y 作积分变量3p y p -££,所求的平面图形面积为,所求的平面图形面积为 2232333131116()()222263p pp pA p y y dy py y y p p p --=--=--=ò. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ££,体积元素2232434()(16)dy y dy y dy p p éù=-=-ëû于是,所求的旋转体的体积为于是,所求的旋转体的体积为88437303512(16)(16)77V y dy y y p p p =-=-=ò. 8、设某产品的边际成本为()2C Q Q ¢=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q ¢=-(万元/台).试求:.试求: (1) 总成本函数和总收益函数;总成本函数和总收益函数; (2) 获得最大利润时的产量;获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.台,总利润的变化. 解 (1)总成本函数201()(2)2222QC Q Q dQ C Q Q =-+=-+ò,总收益函数20()(204)202QR Q Q dQ Q Q =-=-ò. (2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q ¢=,得6Q =(台),而(6)30L ¢¢=-<,所以当产量6Q =(台)时,利润最大.时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B)1、填空题:填空题:(1) 22cos xd x t dt dx =ò . (2) (2) 设设()f x 连续,220()()x F x xf t dt =ò,则()F x ¢= .(3)2sin()xd x t dt dx-=ò.(4) (4) 设设()f x 连续,则220()xd tf x t dt dx -=ò . (5) (5) 设设20cos ()1sin x t f x dt t =+ò,则220()1()f x dx f x p¢=+ò . (6) (6) 设设()f x 连续,且10()2()f x x f x dx =+ò,,则()f x = .(7) (7) 设设()f x 连续,且()1cos xtf x t dtx -=-ò,则20()f x dx p=ò .(8)2ln e dxx x +¥=ò .解 (1) 2220002224cos (cos )cos (cos )2x xx d dx t dt x t dt t dt x x x dx dx ==+-×òòò2224cos 2cos x t dt x x =-ò.(2) 2222200()(())()()2xx d F x xf t dt f t dt x f x x dx ¢==+××òò 22220()2()x f t dt x f x =+ò.(3) (3) 令令x t u -=,则22200sin()sin ()sin xxx x t dt u du u du -=-=òòò 所以所以22200sin()sin sin xxddx t dt u du x dx dx -==òò.(4) (4)令令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---òò220011()()22x x f u du f u du =-=òò.所以.所以 2222001()()()2xx d d tf x t dt f u du xf x dx dx -=×=òò.(5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x ppp ¢==-+ò, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t pp p p =====++òò,所以220()arctan 1()4f x dx f x pp ¢=+ò (6) (6) 等式等式1()2()f x x f x dx =+ò两边在区间[]0,1积分得积分得111101()2()2()2f x dx xdx f x dx f x dx =+=+òòòò11()2f x dx =-ò, 所以所以()1f x x =-.(7) (7)令令x t u -=,则du dt =-,于是,于是00()()()xxtf x t dt x u f u du -=-òò原等式化为原等式化为()()1cos xxxf u du uf u du x -=-òò两边对x 求导求导()sin xf u du x =ò在上式中,令2x p=,得,得()1xf x dx =ò.。
高等数学习题及解答 (2)
普通班高数作业(下)第六章 定积分1、根据定积分的几何意义,说明下列各式的正确性:(第二版P186:1;第三版P155:1) (1)0sin 20=⎰πxdx (4)⎰⎰=-11142xdxdx x2、不计算积分,比较下列各积分值的大小:(第二版P186:2;第三版P155:3) (4)⎰10dx e x与⎰102dx e x(5)⎰2sin πxdx 与⎰20πxdx(6)⎰-02cos πxdx 与⎰20cos πxdx3、利用定积分性质,估计下列积分值:(第二版P186:3;第三版P155:4) (1)⎰-=22dx eI xx (5)⎰--=2295dx xx I (6)⎰=20sin πdx x x I 4、求下列极限:(第二版P186:4;第三版P160:1)(2)211)1(1ln lim -+⎰→x dt t txx (3)⎰+→xt x dt t x 010)2sin 1(1lim (4)2210lim x x t x dt e ⎪⎭⎫⎝⎛⎰+∞→ (6)x x x dt e x xt x sin arctan lim 002⋅⋅-⎰-→5、求下列导数:(第二版P186:5;第三版P161:2)(1)⎰-32x x t dt e dx d (2)⎰-x tdt x t dxd 033sin )( 6、求证方程⎰--=π02cos 1ln dx x exx 在()∞+,0内有且仅有两个不同的实根。
(第二版P186:7;第三版P161:4)7、设)(x f 在[]b a ,上连续,且0)(>x f ,令⎰⎰+=xbxadt t f dt t f x F )(1)()(。
求证:(1)2)(≥'x F ;(2))(x F 在()b a ,内有且仅有一个零点。
(第二版P186:8;第三版P161:5)8、设)(x f 为连续函数,且存在常数a ,满足(1)⎰=+3)(15x adt t f x ,求)(x f及常数a 。
高等数学 积分 (5.6.2)--定积分的应用
习题5.61. 求下列曲线所围成的图形的面积:(1) 1y x=与直线y x =及2x =; (2) 22x y y =-与直线2y x =+;(3) 1=与两坐标轴;(4) 2236x y y +=与直线y x =(两部分都要计算);(5) ln y x =与直线ln y a =,ln y b =(0b a >>)及y 轴;(6) |ln |y x =与直线1e x =,e x =及x 轴. 2. 求下列图形的面积:(1) 抛物线22y px =(0p >)及其在点,2p p ⎛⎫⎪⎝⎭处的法线所围成的图形; (2) 曲线e x y =与通过坐标原点的切线及y 轴所围成的图形.3. 求抛物线21y x =-+在(0,1)内的一条切线,使得它与两坐标轴及该抛物线所围成的图形的面积最小.4. 求下列曲线所围成的图形的面积: (1) 星形线33cos ,sin ;x a t y a t ⎧=⎨=⎩ (2) 心脏线(2cos cos 2),(2sin sin 2).x a t t y a t t =-⎧⎨=-⎩5. 设P 为曲线2cos ,2sin x t y t =⎧⎨=⎩ π02t ⎛⎫≤≤ ⎪⎝⎭上的一点,O 为坐标原点,记曲线与直线OP 及x 轴所围成的图形的面积为S .(1) 把y 表示成x 的函数,并求面积()S S x =的表达式;(2) 把S 表示成t 的函数()S t ,并求d d S t取得最大值时点P 的坐标. 6. 求下列曲线所围成的图形的面积:(1) 心脏线2(1cos )r a θ=- (0a >);(2) 双纽线22cos 2r a θ=.7. 求下列曲线所围成的图形的公共部分的面积:(1) 3cos r θ=及1cos r θ=+;(2) r θ=及2cos 2r θ=;(3) 22cos 2r θ=,2cos r θ=及1r =.8. 在双纽线24cos 2r θ=位于第一象限部分上求一点M ,使得坐标原点O 与点M 的连线OM 将双纽线所围成的位于第一象限部分的图形分为面积相等的两部分.9. 求下列各立体的体积:(1) 以椭圆域22221x y a b+≤ (0a b >>)为底面,且垂直于长轴的截面都是等边三角形的立体;(2) 由曲面222e x y z -+=与平面0x =,1x =所围成的立体.10. 求下列各旋转体的体积:(1) 抛物线2y x =与28y x =所围成的图形分别绕x 轴、y 轴旋转所得的旋转体;(2) 曲线sin y x =,cos y x = π02t ⎛⎫≤≤⎪⎝⎭与直线π2x =,0x =所围成的图形绕x 轴旋转所得的旋转体; (3) 摆线(sin )(0)(1cos )x a t t a y a t =-⎧>⎨=-⎩的第一拱(02π)t ≤≤与x 轴所围成的图形绕直线2y a =旋转所得的旋转体.11. 用“薄壳法”求下列各旋转体的体积:(1) 由曲线2(1)y x x =-与x 轴所围成的图形绕y 轴旋转所得的旋转体;(2) 由抛物线22y x x =-与直线y x =及x 轴所围成的图形绕y 轴旋转所得的旋转体.12. 求下列各旋转体的体积:(1) 抛物线y =(1,0)的切线及x 轴所围成的图形绕x 轴旋转所得的旋转体;(2) 抛物线y =(2,4)处的法线及x 轴所围成的图形绕x 轴旋转所得的旋转体.13. 设抛物线2y ax = (0,0a x >≥)与21y x =-的交点为A ,过坐标原点O 与点A 的直线与抛物线2y ax =围成一平面图形. 问a 为何值时,该图形绕x 轴旋转所得的旋转体体积最大?并求此最大体积.14. 求下列各旋转面的面积:(1) 立方抛物线3y x =介于0x =与1x =之间的一段弧绕x 轴旋转所得的旋转面;(2) 星形线222333x y a +=绕x 轴旋转所得的旋转面.15. 求抛物线y =x 轴所围成的图形绕x 轴旋转所得的旋转体的表面积.16. 计算下列各弧长:(1) 曲线2ln 42x x y =-相应于1e x ≤≤的一段弧; (2) 曲线ln(cos )y x =上从0x =到π4x =的一段弧;(3) 曲线y t =⎰的全长;(4) 曲线arctan x t =,2ln(1)2t y +=相应于01t ≤≤的一段弧; (5) 对数螺线2e r θ=上从0θ=到2πθ=的一段弧;(6) 曲线112r r θ⎛⎫=+ ⎪⎝⎭相应于13θ≤≤的一段弧. 17. 在摆线(sin )(0)(1cos )x a t t a y a t =-⎧>⎨=-⎩上求分其第一拱成1:3的点的坐标.18. 若1kg 的力能使弹簧伸长1cm ,现在要使这弹簧伸长10cm ,问需要做多少功?19. 用铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比. 在击第一次时,将铁钉击入木板1cm. 如果铁锤每次打击铁钉所做的功相等,问铁锤击第二次时,铁钉又被击入多少?20. 一蒸汽锅是旋转抛物面形状,开口朝上,口半径为R ,高为H ,其中盛满了密度为ρ的液体,问从锅中将液体全部抽出需做多少功?21. 有一水槽,其横截面为等腰梯形,两底的长分别为0.8m 和0.4m ,高为0.2m ,较长的底在上. 当盛满水时,求横截面上一侧所受的压力.22. 边长为a 和b 的矩形薄板(a b >),与液面成α角斜沉于密度为ρ的液体内,长边平行于液面而位于深h 处. 试求薄板每面所受的压力.23. 一根长为l ,质量为M 的均匀细直棒,在棒的延长线上距棒右端点a 单位处有一质量为m 的质点,若将该质点沿棒的延长线从a 处移至b 处(b a >),试求克服引力所做的功.24. 求一质量为M ,半径为R 的均匀半圆弧对位于其中心的质量为m 的质点的引力.。
定积分习题及答案
(A层次)1. 4.7. 兀f 。
2 s in x cos3 xdx ; r xdx -1✓5-4x ,e 2dx f 1 x ✓l +I n x ;10. f 一冗九x 4s in 汕; 冗13. f f-�dx; 4 Sill X 冗16. f 。
2产co sx dx ;冗第五章定积分2. f 。
a x 2✓a 2—x 2dx; 5.「I✓x dx +l ;8. f -o 2 x 2 + d 2xx + 2 ; 冗11. f� 冗4c os 4xdx ;14. 17. 2f14 Jn X`dx ;f 。
兀(xsinx)2dx ;冗19. f� ✓cosx-cos 3 xdx;20. f 。
4 smx dx · 1 + S lll . X , 22. 4If 0 2 xln l +x dx ; l -x25. f +00dx0 (1 + x 2 XI + xa \ (B层次)23. f +oo l +x 2 dx · -oo 1 +X 4' 心(a�o )。
3. 6.9. 厂dx1 X 飞l +x2 r dx`3 斤言-1;f。
冗✓1+ c os2xdx;3· 212 fs x sm xdx · ·-5 x 4 + 2x 2 + 1' 15. f 。
1 xa rct gxdx ; 18. {es in(lnx 雇21. 24. f 。
冗xs mx dx .1 +C OS 2X 冗f 。
2 ln sin x dx ;d y 1. 求由f 。
:e r dt+f x costd t=O所确定的隐函数对x 的导数odx 2. 当x 为何值时,函数I(x)= f x t e -t 2dt有极值?。
3.d厂cos矿t。
dx si n x(}Ix+l, x�14. 设八x )�{归,X > 1'求l。
勹(x )dx 。
2f x(a rc tg t) 2d t5. lirn 。
同济大学数学系《高等数学》第7版上册课后习题(定积分的应用)【圣才出品】
同济大学数学系《高等数学》第7版上册课后习题第六章定积分的应用习题6-1定积分的元素法本部分无课后习题.习题6-2定积分在几何学上的应用1.求图6-1中各阴影部分的面积:图6-1解:(1)解方程组,得到交点坐标为(0,0)和(1,1).如果取x为积分变量,则x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有如果取y为积分变量,则y的变化范围为[0,1],相应于[0,1]上的任一小区间[y,y +dy]的窄条面积近似于高为dy、底为y-y2的窄矩形的面积,因此有(2)取x为积分变量,则易知x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为e-e x、底为dx的窄矩形的面积,因此有如果取y为积分变量,则易知y的变化范围为[1,e],相应于[1,e]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为lny的窄矩形的面积,因此有(3)解方程组,得到交点坐标为(-3,-6)和(1,2).如果取x为积分变量,则x的变化范围为[-3,1],相应于[-3,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有如果用y为积分变量,则y的变化范围为[-6,3],但是在[-6,2]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为的窄矩形的面积,在[2,3]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、宽为的窄矩形的面积,因此有由此可知以x为积分变量较易,因为图形边界曲线若分为上下两段,分别为y=2x和y=3-x2;若分为左右两段,分别为和,其中右段曲线的表示相对比较复杂,也就会导致计算形式复杂.(4)解方程组,得到交点坐标为(-1,1)和(3,9),同上,以x为积分变量计算较易.取x为积分变量,则x的变化范围为[-1,3],相应于[-1,3]上的任一小区间[x,x+dx]的窄条面积近似于高为2x+3-x2、底为dx的窄矩形的面积,则有2.求由下列各曲线所围成的图形的面积:(1)与(两部分都要计算);(2)与直线y=x及x=2;(3)与直线x=1;(4)y=lnx,y轴与直线y=lna,y=lnb(b>a>0).解:(1)图6-2中,可先计算图形D1(阴影部分)的面积,易求得与x2+y2=8的交点为(-2,2)和(2,2).取x为积分变量,则x的变化范围为[-2,2],相应于[-2,2]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图形D2的面积为图6-2(2)图6-3中,取x为积分变量,则x的变化范围为[1,2],相应于[1,2]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图6-3(3)图6-4中,取x为积分变量,则x的变化范围为[0,1],相应于[0,1]上的任一小区间[x,x+dx]的窄条面积近似于高为、底为dx的窄矩形的面积,因此有图6-4(4)图6-5中,取y为积分变量,则y的变化范围为[lna,lnb],相应于[lna,lnb]上的任一小区间[y,y+dy]的窄条面积近似于高为dy、底为e y的窄矩形的面积,因此有图6-53.求抛物线y=-x2+4x-3及其在点(0,-3)和(3,0)处的切线所围成的图形的面积.解:首先求得导数,因此抛物线在点(0,-3),(3,0)处的切线分别为y=4x-3,y=-2x+6,容易求得这两条切线交点为(见图6-6).因此所求面积为图6-64.求抛物线y2=2px及其在点处的法线所围成的图形的面积.解:利用隐函数求导方法,抛物线方程y2=2px两端分别对x求导,2yy′=2p.即得,因此法线斜率为k=-1,从而得到法线方程为(如图6-7),因此所求面积为图6-75.求由下列各曲线所围成的图形的面积:(1)ρ=2acosθ;(2)x=acos3t,y=asin3t;(3)ρ=2a(2+cosθ).解:(1)(2)由对称性可知,所求面积为第一象限部分面积的4倍,记曲线上的点为(x,y),因此(3)。
北大版高等数学第三章 积分的计算及应用答案 第三章总练习题
第三章总练习题111121221.N ew to n -L eib n iz 1(1).[1,1],.tan (2).tan (0,2)2tan2.,x x xd de d x e e d x d x x d x d x u x xf F F ππ-⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+⎰⎰为什么用公式于下列积分会得到不正确结果?无界从而不可积在的一些点不可导.证明奇连续函数的原函数为偶函数,而偶连续函数的原函数之一为奇函数.设奇连续函数的原函数为 现在证明是偶证.()().(()())()()()()0,()(),(0)(0)0.()()0.,.()().(()())()()()()0,()().(0)0,(F x f x F x F x F x F x f x f x F x F x C C F F F x F x f F F F x f x F x F x F x F x f x f x F x F x C F C F ''''=--=---=---=--==--=--=''''=-+=--+=--+=--===函数设偶连续函数的原函数为现在证明是奇函数设则3003440010100)(0)0.()()0.sin ,0,3.()()()?0,0., 0,()()()sin co s |1co s .444.sin ().sin ()s b ab b b a aaabF F x F x x x f x f x f x d x a b x x f x d x f x d x f x d x x d x xd xxax b d x t d x d xd d x t d x d xd x--=-+=≥⎧==<>⎨<⎩=+=+=-=+-++=⎰⎰⎰⎰⎰⎰⎰⎰求定积分其中求微商解解()()110001201/2221210221in ()sin (1)sin ().5.lim()(),().1lim()()().6.lim(1).(2)!!(1)co s.(21)!!2x xh x h u xh u xnn nn n n u d u x x f x h t d x f x f x f x h t d u f t d tf x hx d x n x d x td t I n I π+→+→=→∞+++=+-+='+==--===+<⎰⎰⎰⎰⎰⎰⎰试证明其中是实轴上的连续函数求极限证解12210(2)!!(21)!!1,(21)!!(22)!!1100(),lim(1)0.sin co s 7..2sin 3co s sin co s (2sin 3co s )(2sin 3co s )(2sin 3co s )(2co s 3sin )(23)sin (32)co s nn n n n n n n I n x d x x x d x x xx x A x x B x x A x x B x x A B x A B +→∞+=+++<<→→∞-=+-'+=-+-=-++=++-+⎰⎰令解,x23115,,.3211313sin co s 2sin 3co s (2sin 3co s )(2sin 3co s )2sin 3co s ln |2sin 3co s |15ln |2sin 3co s |.1313A B A B A B x xd x x x A x x B x x d xx xA xB x xC x x x C +=⎧=-=⎨-+=⎩+=-'-+-=-=+-+=-+-+⎰⎰222228.:2(1),ln (2),.22222222.(2)(2)222xxu d u x u x u d x uu d u d u x u uu u C C xex x e xd==+=+⎛⎫==- ⎪++⎝⎭⎛⎛=-+=-+ ⎝⎝=-==⎰⎰⎰⎰⎰⎰⎰⎰通过适当的有理化或变量替换求下列积分()24.2).22(3)33.(4)(11ln .2x C x C x CC d x x C ⎛⎫=+⎝=-++==-⨯=-=+-==-+⎰⎰⎰⎰⎰224444224222244sec tan(1)9..sin co s1tan11112111.21111((arctan1)arctansin co sd x xd x u d ux x x uuuu ud xx x+==++++⎛==++⎝⎛⎫⎪⎪=+⎪⎛⎛⎪++-+⎪⎝⎝⎝⎭=+++⎰⎰⎰⎰)1).110.()(,),,()()(),:()()( 3.424)11.()[,],()0.:(,),()0.,()(,),,TxbaCf x Tg x f x f x d xTh x g t d t Tf x a b f x d x a b cf cf x a b ff-+-∞+∞=-===⎰⎰⎰设函数在上连续以为周期令证明函数也以为周期.此即习题第题设函数在区间上连续且证明在内至少存在一点使若不然在没有零点由的连续性和连续函数的中间值定理在证证(,).()0,(,).,,,[,]0.()()()()()0..b c d ba a c da b f x x a b c d a c d b f c dmf x d x f x d x f x d x f x d x m d c>∈<<<>=++≥->⎰⎰⎰⎰不变号不妨设取满足则在取最小值于是矛盾22222212.[,],()0,:()0,[,].[,][,],|()||()|,[,].2|()|()()()0.2.bab ea da b f x d x f x x a bd e a bf cf x x d ef cf x d x f x d x d e=≡∈∈≠⊆>∈≥>->⎰⎰⎰设函数f在区间上连续且证明若不然,存在c[a,b],f(c)0.由f在c的连续性,存在区间矛盾证00222/200013.()(-,),(1),()();sin(2);1co s4sin1(3)(1co s sin()()()()().a aa a aaf xa f x d x f a x d xx xd xxxd xx xf x d x x a t f a t d t f a t d t f a x d xπππ∞+∞=-=+=++=-=--=-=-⎰⎰⎰⎰⎰⎰⎰⎰设在上可积证明对于任意实数有证(1)22220211022222sin ()sin ()sin sin (2),1co s 1co s 1co s 1co s sin co s arctan |.21co s 21co s 14sin sin (/2)(3)co s sin co s(/2)s x x x x x x xI d x d x d x d x I x x xx xd xd x d uI u xxux x I d x x xx ππππππππππππππππ--==-==-++++==-===+++-==+-+⎰⎰⎰⎰⎰⎰⎰/2/20222/2/2/20/2/2/2in (/2)co s co s sin ,2co s sin co s sin co s sin 1|csc(/4)co t(/4)||co s sin 11ln1ln co s s 4d xx x xx d x I d x d xx xx xx xd x d xd x x x x xππππππππππππ==++++===+-++⎡⎤⎛⎫⎢⎥ ⎪=+-⎥ ⎪⎥ ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰⎰11),in 411).I π⎛⎫⎪-= ⎪ ⎪⎝⎭=232221123222014.()(23)m /s .004m /s,(1);(2)3(1)()23,3,4,34,4,3230.()4.34(4)(1)0, 4.32(5)a t t t x v tx t t x t t C C x t t x t t C tC x t t t x t t t t t s x =-===-''''=-=-+-==--=--+'==--=--=-+===一质点作直线运动,其加速度若时且求质点改变动方向的时刻头5秒钟内质点所走的总路程.解3322543343(4)|(4)|424m.32322t t t t x x t t t t ==⎛⎫⎛⎫-+=-----=⎪⎪⎝⎭⎝⎭000200022002200215.100m ,10.2s,25m ,25m ., 0;(), 10.2., 0;()210.2./2/2253m /s .10010.2a t t t v t a t t t a tt t s t a t t C t t a t a t Ca t a a t C ≤≤⎧=⎨≤≤⎩⎧≤≤⎪=⎨⎪+≤≤⎩⎧=+⎪=≈⎨⎪=+⎩一运动员跑完共用了在跑头时以等加速度进行然后保持等速运动跑完了剩余路程.求跑头时的加速度解16.(1):利用积分的几何意义证明111111ln,1,2,111(2)1ln ,211111ln ,21,.111(3)lim 1ln E u ler 211ln |111ln (1)ln lnn n n n n n n n n nnn n n n nx n n y n n nx y n n n d x d x x n n xn n n n→∞++++<<=+=+++--=++++--⎛⎫++++- ⎪-⎝⎭=<=+++=+-=<⎰⎰令证明序列单调上升而序列单调下降证明极限存在(此极限称为常数).证 (1)1121.1111(2)1ln (1)1ln 22111ln 10((1)).111111ln (1)1ln 21211ln 10((1)).1(3)1ln 20(2)n n n n n n d x n n x x n n n n n n y y n n n n n n n y x x n ++=⎛⎫⎛⎫-=+++-+-+++- ⎪ ⎪-⎝⎭⎝⎭⎛⎫=-+> ⎪⎝⎭⎛⎫⎛⎫-=++++-+-+++- ⎪ ⎪+⎝⎭⎝⎭⎛⎫=-+< ⎪+⎝⎭>>=->>⎰由由n +1n11/22111/1/2222112.,lim .17.:0,11.111111(1/).111/118.()(,),,(2)().2,()0.(2)()n n n xxxxxay y x d t d t ttd t x u d x d t tuutf x x f x f x a f x d x f x f x →∞>=++==⨯=+++-∞+∞-=-≠=-=-⎰⎰⎰⎰⎰⎰单调下降有下界故有极限证明当时设在上连续(书上为可积,欠妥)且对一切实数均有求实数使条件证解(22220221(11)(11))()(2)(),()0.0.19.ln (1)arctan ,0 1.11,[0,1],[0,],1111ln (1)arctan ,0 1.20.(1)x x f x f x f x f x d x f u d u f u d u f x d x a x x x d t d t t x ttttx x x =+-=-+-=-=-==+≤≤≤≤∈≤+++++≤≤≤⎰⎰⎰⎰⎰⎰相当关于为奇函数取即可利用定积分的性质,证明不等式在上积分得设证()()[0,];()()2(2)a f x d x a f x a d x f x f a x =+-⎰在上可积,证明利用(1)中的公式求下列积分的值:22/2222sin ;22sin co s ()()(1)()()()()()()2()()()()()(-)1,.()()()()22a a a a a a a xx d x d xx x x xf x f a u I d x d uf x f a x f u f a u f x f a u I d x d uf x f a x f u f a u f x f a x a d x d x d x a I f x f a x f x f a x xx x π-++-==+-+--=++-+-=+===+-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰证解(2)22222/20222 2.2(2)2sin /2.sin sin (/2)24xd x d x x x xd x x x ππππ==⨯=++-==+-⎰⎰⎰tan 2sin tan tan 22sin sin tan 22222sin tan 32222sin 2()21.()(1).()(1)tan sin ,()sec co s tan sec sin co s sec co s tan sec sin co s 3sec x xx x x xx xxxd f x f x xt d td x d xf x xt d t x x x t d t d f x x x x x x x x x t d td xt x x x x x x x x =+=+=-+=-+-+=-+-+==⎰⎰⎰⎰设求解()()22233222331co s tan sec sin co s tansin 31sec (1tan )co s (1sin )tansin .3x x x x x x x x x x x x x x x x x x -+-+-=+-++-()/22/2/22/220/20/2/2022.co s 3.11co s 3(1co s 6)sin 6|.2412423.|sin co s |.|sin co s ||sin co s ||sin co s ||sin co s ||sin ()2I d I d d I x x d x x x d xx x d x x x d x x x d x t ππππππππππθθππθθθθθπ===+=+==--=-+--++⎰⎰⎰⎰⎰⎰⎰⎰求定积分的值求定积分的值解解I =22=2()()()()/20/2/20/4/2/20/4/4/2/2/40co s()|2|sin co s ||co s sin |(co s sin )(sin co s )(co s sin )2sin co s |(co s sin )|(sin co s )|t d x x x d x t t d xx x d x x x d x t t d xx x x x x x ππππππππππππ⎛⎫-+ ⎪⎝⎭=-++=-+-++=++--+-=⎰⎰⎰⎰⎰⎰221010101010100110()/224.0,.2x x x x x x x x x x x x x x I x I xxx x x x u x --<<====+⎛⎫==- ⎪⎝⎭=⎰⎰⎰⎰⎰设求定积分的值解10()/210222102()2arcsin().28x x a aux x x a u a a x x aππ--==⎡⎤=⎢⎥⎣⎦-==⎰⎰4342(2)16468 4.y x x x y x x x =++-=++-与43323242224342442432164164684,680,6840,680,(2)(4)0,2,4.{(164)(684)][(684)(164)]y x x x x x x x x x x y x x x x x x x x x S x x x x x x d xx x x x x x d x⎧=++-⎪+-=+--+=⎨=++-⎪⎩=-+=--===++--++-+++--++-⎰⎰解222212552233532325.:(1)6827.682768,278150,(3)(5)0.3, 5.(27(68))(815)4415.33y x x y x y x x x x x y x x x x x x x S x x x d x x x d xx x x =-+=-⎧=-+-=-+⎨=-⎩-+=--====---+=-+-⎛⎫=-+-=⎪⎝⎭⎰⎰求下列曲线所围图形的面积与解/2/2/4/45/45/4/2/2(4)sin ,cos /2.(sin -cos )(cos sin )|1;(sin cos )(cos sin )| 1.y x y x x S x x dx x x S x x dx x x πππππππππ=====--==-=--=⎰⎰与解/21102/211226.co s ,1/2,,.,)2arcco s 2arcsin 2(1co s 2).242arcsin arcsin y x y x x V V V x d x y y d y y yd y V x d x V y yd y yd yππσπσππππππππ===⎛⎫=-==⎪⎝⎭=-====⎰⎰⎰⎰⎰⎰设区域由曲线及所围成将绕轴旋转一周得一旋转体试用两种不同的积分表示体积并且求的值. 2解V =(1-c o s 24323222444323202(68)(68)24248.44x x x d x x x x d xx x x x x x =-++-+-⎡⎤⎡⎤=-++-+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰2222212321(3)1 3.(3)1,7100,(2)(5)0,2,5.1,2.[(3)(1)]92.322y x y x x x x x x x x y S y y d x yy y --=-=--=--+=--===-=+-+⎛⎫=-++= ⎪⎝⎭⎰与解4π2π54π112212222arcsin ()1arcsin .22244y y y xyπππππππ=-⨯⎤=-=-=⎥⎦⎰22111/21/2200213397200257025027.:(1)arcsin |.4612(2)(918055801)400.28.()[0,7],()5,()6,() 3.(1)();(2)x xxx d x f x f x d x f x d x f x d x f x d x f πππ-===-=-++====⎰⎰⎰⎰⎰⎰求下列定积分的值设在上可积且一直已知求的值求7552500277557755().(3):(5,7),()0.(1)()()()5611.(2)()()()3118.(3),()0,(5,7),()0,()80,.x d x f x f x d x f x d x f x d x f x d x f x d x f x d x f x x f x d x f x d x <=+=+==-=-=-≥∈≥=-<⎰⎰⎰⎰⎰⎰⎰⎰⎰的值证明在内至少存在一点使若不然但是矛盾解证2/23/21/2/2/2/2/232111, 2,129.()sin ,(),()2, 2.(1)()();(2)()();(3)()().(1)()()sin 0.(2)()()()()()xx f x x h x g x x x f x g x d x g x h x d x f t g t d x f x g x d x xd x g x h x d x g x h x d x g x πππππππππ----≤≤⎧===⎨<≤⎩===+⎰⎰⎰⎰⎰⎰⎰设试求下列定积分的值或表达式:解322323221212/22/2/22()12125.6sin co s ,2(3)()()sin 2sin co s 22co s ,2.xxx h x d x d x d x xxxxtd t x t x f t g t d x td t td t x x πππππ=+=--=⎧=--≤≤⎪=⎨⎪+=-<≤⎩⎰⎰⎰⎰⎰⎰⎰()()30()[,](0),()()()()()().b f b af a f x a b ag y f x f x d x b f b a f a g y d x >=--⎰⎰设函数在区间上连续,严格单调递增是的反函数,利用定积分的几何意义证明下列公式并作图解释这一公式.解11()10031.(1)()[0,),()0,0()()()()()()()(*).00(0),()a B a aa x x x a B a B x d x x d xx x x d x x d x a a B B x x ϕϕϕϕϕϕϕϕϕϕϕϕϕ---+∞→∞→+∞≥≥≤++==>=→∞→+∞⎰⎰⎰⎰⎰设函数在上连续且严格单调递增又设当+时且(0)=0.证明:对于任意实数,下列不等式成立:其中是的反函数.由题时不等式显然成立.设由于+时证30,111101100()11()1()1,0,(),[0,],,0,().,*)()().,()()()()()()()()(())(a B aBa a B a Ba a a B a a a B a a a B x d x x d x a a x d x x d xx d x x d x x d xa a x d xa a a B ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ------'>''>>===+>+=++=++≥+⎰⎰⎰⎰⎰⎰⎰⎰存在在连续根据连续函数的中间值定理存在若则由(得若则1100()()11()11()).,()()()()()()()()(())(()).11(2)(1),0,,11,M in k o w sk i.1aB a a a Ba B pqa a B a a x d x x d xx d x x d x x d xa a x d xa a a a B a B ab p q p qaba b pqp ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ------=<+=+-=-≥--=≥≥+=≤+>⎰⎰⎰⎰⎰⎰若则利用中的不等式,对于任意实数证明下列不等式不妨设证111/(1)1/(1)1/(1)1/0.(),()..1/(1)1/(1)p p pp pp p pqa b ppx x x x abababa b x d x xd x pp pp p pqϕϕ----+-==≤+=+=+=+-+-⎰⎰在中取则(1)232.0,,1,112.xa a y y x a y π>=+===设求的值使由曲线及所围成的区域绕直线旋转所得之旋转体的体积等于b22222202222220002.)2,112,22,2,18,2ln 9,44aa x aa a x x u a d x d x xe d x e d x e d u e a a ππ=====-===⎰⎰⎰⎰⎰20解(y -1) 20033.1sin 21co s 43(1sin 2)(12sin 2).22r S d d ππθθπθθθθ=+-=+=++=⎰⎰作由极坐标方程所确定的函数的图形,并求它所围区域的面积.解。
(完整版)§定积分的应用习题与答案
第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。
(完整版)高等数学定积分应用习题答案.doc
第六章定积分的应用习题6-2 (A) 1.求下列函数与x 轴所围部分的面积:(1) y x 2 6x 8, [0, 3]( 2) y 2x x2 , [ 0, 3]2.求下列各图中阴影部分的面积:1.图 6-13.求由下列各曲线围成的图形的面积:(1) y e x , y e x与x1;( 2) y ln x 与 x 0, y ln a, y ln b (b a 0) ;(3) y 2x x2与 y x , y 0 ;( 4) y 2 2 x , y 2 (x 1) ;(5) y 2 4(1 x) 与 y 2 x , y 0 ;(6) y x2 与 y x , y 2x ;(7) y 2 sin x , y sin 2x (0 x ) ;(8) y x 2,x 2 y 2 (两部分都要计算);2 84.求由曲线y ln x 与直线 y 0, x e 1 , x e 所围成的图形的面积。
5.求抛物线y x 2 4 x 3 及其在点 (0, 3) 和 (3, 0) 处的切线所围成的图形的面积。
6.求抛物线y 2 2 px 及其在点 ( p, p) 处的法线所围成的图形的面积。
27.求曲线x y a 与两坐标轴所围成的图形的面积。
x 2 y 21 所围图形的面积。
8.求椭圆2 b 2a9.求由摆线x a(t sin t), y a(1 cost ) 的一拱(0 t 2 ) 与横轴所围图形的面积。
10.求位于曲线y e x下方与由该曲线过原点的切线的左方及x 轴之间的图形的面积。
11.求由下列各方程表示的曲线围成的图形的面积:(1) 2a sin (a 0) ;( 2) 2a (2 cos ) (a 0);(3) 2 2 cos 2 (双纽线) ;12. 把抛物线y2 4ax 及直线 x x( x 0 0) 所围成的图形绕x 轴旋转,计算所得旋转抛物体的体积。
13. 由 y x 3 , x 2 , y 0 所围成的图形,分别绕x 轴及 y 轴旋转,计算所得两个旋转体的体积。
(完整版)高等数学定积分应用习题答案
第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。