函数f(x)的间断点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.定义

设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:

(1)在x=x0没有定义;

(2)虽在x=x0有定义,但x→x0 limf(x)不存在;

(3)虽在x=x0有定义,且x→x0 limf(x)存在,但x→x0 limf(x)≠f(x0),

则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

编辑本段2.类型

几种常见类型。

可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。(图一)

跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。(图二)

无穷间断点:函数在该点可以有定义,且左极限、右极限至少有一个为∞。如函数y=tanx 在点x=π/2处。(图三)

振荡间断点:函数在该点可以有无定义,当自变量趋于该点时,函数值在两个常数间

变动无限多次。如函数y=sin(1/x)在x=0处。(图四)

可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。

相关文档
最新文档