高中数学数列求和的常用方法

合集下载

数列求和常见的7种方法

数列求和常见的7种方法

数列求与得基本方法与技巧一、总论:数列求与7种方法:利用等差、等比数列求与公式错位相减法求与反序相加法求与分组相加法求与裂项消去法求与分段求与法(合并法求与)利用数列通项法求与二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法,三、逆序相加法、错位相减法就是数列求与得二个基本方法。

数列就是高中代数得重要内容,又就是学习高等数学得基础。

在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、一、利用常用求与公式求与利用下列常用求与公式求与就是数列求与得最基本最重要得方法。

1、等差数列求与公式:2、等比数列求与公式:3、4、5、[例1]已知,求得前n项与。

解:由由等比数列求与公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求得最大值、解:由等差数列求与公式得, (利用常用公式)∴===∴当,即n=8时,二、错位相减法求与这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn}得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。

[例3]求与:………………………①解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积设………………………。

②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列得求与公式得:∴[例4] 求数列前n 项得与、解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积设…………………………………①………………………………② (设制错位)①—②得 (错位相减)∴三、反序相加法求与这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。

高中数学数列求和的七种方法

高中数学数列求和的七种方法

高中数学数列求和的七种方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

下面是小编给大家带来的数列求和的七种方法,希望能够帮助到大家!
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或
等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

高中数学数列求和的五种方法

高中数学数列求和的五种方法

⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。

注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。

例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。

高中数学 数列求和常见的7种方法

高中数学  数列求和常见的7种方法

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

高中数学 数列求和的常用方法

高中数学 数列求和的常用方法

数列求和的常用方法(1)公式求和法:①等差数列、等比数列求和公式②重要公式:1+2+…+n=12n(n+1);12+22+…+n2=16n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2=14n2(n+1)2;(2)裂项求和法:将数列的通项分成两个式子的代数和,即a n=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n=1(A n+B)(A n+C)=1C-B(1A n+B-1An+C);1n(n+1)=1n-1n+1;(3)错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n=b n c n,其中{b n}是等差数列,{c n}是等比数列(4)倒序相加法:S n表示从第一项依次到第n项的和,然后又将S n表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n的一种求和方法.(5)通项分解法(分组求和法):有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.a n=b n±c n(6)并项求和法:把数列的某些项放在一起先求和,然后再求S n.如:1002-992+982-972+ (22)12的和.(7)利用通项求和法:先求出数列的通项,然后进行求和数列求和的其他方法(倒序相加,错位相减,裂项相加等)•数列求和的常用方法:1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。

高中数学数列求和方法

高中数学数列求和方法

高中数学数列求和方法数列是数学中常见的概念之一,它是由一系列有序的数所构成的集合。

数列求和是数列中的重要问题之一,可分为等差数列和等比数列求和两类。

一、等差数列求和1.表达式法对于等差数列,其通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差。

若已知数列的首项、末项和项数,则可以根据求和公式Sn=n(a1+an)/2来求和,其中Sn表示数列的和。

这种方法适用于已知数列的前n项求和。

2.规律法有些等差数列存在规律,可通过分组进行求和。

例如,对于等差数列1,4,7,…,97,可将其分解为(1+97)+(4+94)+(7+91)+…+(49+49),共有25组,每组的和都是98、因此,该数列的和等于25×98=2450。

3.差分法等差数列的求和还可以利用差分法进行求解。

首先将数列的前n项依次相减得到一个新的数列,然后再对新数列进行求和,即可得到原数列的和。

例如,对于等差数列1,2,3,…,100的和,首先得到的差分数列为1,1,1,…,1,接着对差分数列进行求和,得到的和等于100。

二、等比数列求和1.通项公式法等比数列的通项公式为an=a1×q^(n-1),其中a1表示首项,q表示公比。

已知数列的首项、末项和项数时,可以利用求和公式Sn=a1(q^n-1)/(q-1)来求和。

这种方法适用于已知数列的前n项求和。

2.等比中项法对于等比数列,若首项和第三项已知,则可以求出公比q=(第3项/首项)^(1/2),从而求得数列的和。

这种方法适用于已知数列的首项和第三项求和。

3.分组求和法对于一些等比数列,可以通过合理的分组求和来得到数列的和。

例如,对于等比数列1,3,9,…,6561,可以发现这个数列可以分解为(1+3)+(3+9)+(9+27)+…+(2187+6561),共有10组,每组的和为4、因此,该数列的和等于10×4=40。

三、求和公式的推导1.等差数列求和公式的推导我们将等差数列的前n项分别记作a1,a2,…,an。

学会数列求和的几种常用方法

学会数列求和的几种常用方法

学会数列求和的几种常用方法数列求和是高中数学的一个重要知识点,是高考的热点。

数列求和方法有很多,但在高考中离不开以下三种常用方法。

1、分解为等差数列与等比数列的前n 项和【例1】求222222)2()12(4321n n S n --++-+-=【解】)12(22)21(]2)12(4321[]2)12)][(2()12[()43)(43()21)(21(+-=+-=+-+++++-=+---+++-++-=n n nn n n n n n n S n【例2】设数列}{n a 满足:当5≤n 时,12-=n n a ,当6≥n 时,12-=n a n ,求它的前n项和n S .【解】当5≤n 时,122121222112-=--=++++=-n n n n S ;当6≥n 时,由于前5项成等比数列,从第6项起成等差数列,故)12()172()162()12(5-++-⨯+-⨯+-=n S n62)5)(12162()12(25+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)6(6)5(122n n n S n n 【例3】求)1()1()1(1122-+++++++++++=n n a a a a a a S【解】当1≠a 时,aa a a a n a a a a a a a a S nn n -+++--=--++--+--+--=1111111111232 即21)1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)1(2)1()1()1(121a n n a a a a a n S n n2、裂项相消法【例4】求∑=-=nk n kS 12141【解】由于)121121(211412+--=-k k k ,所以 12)1211(21)]121121()5131()311[(2114112+=+-=+--++-+-=-=∑=n n n n n k S nk n 【例5】求∑=-+=nk n k k S 122391【解】由于)231131(3123912+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(31239112+=+-=+--++-+-=-+=∑=n nn n n k k S nk n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=nk k k n a a S 111与∑=+=nk k k n a a S 121的求和问题都是用裂项求和法。

高中数学:求数列前n项和的七种方法和技巧

高中数学:求数列前n项和的七种方法和技巧

高中数学:求数列前n项和的七种方法和技巧我们不要关心求数列n项和的问题会不会在高考题或有关考试题中出现,当然出现的机会确是很高的。

关键的是通过学习和探讨求数列前n项和的方法去领悟学习和思考的方法。

几种求和的方法把数学变形和分析、归纳总结、化繁为简、化难为易等思想融合在一起,使思维得到一次系统的训练和提高。

头脑的开化和思维的提升才是学习的主要目的。

求数列前n项的和,通常有下列七种方法和技巧。

一、利用等差数列和等比数列的求和公式例1、求数列例2、求数列5, 55,555,5555,…,,……的前项和。

解:∵∴二、用倒序相加法推导等差数列的前n项和公式的方法是倒序相加法。

这个方法可以类推到一般,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。

例3、已知是等差数列,求和。

解:∵①即②由①+②,得:∵∴由等差数列的性质,易得:故于是三、利用错位相减法错位相减法是一种常用的数列求和方法,主要应用于等比数列与等差数列相乘的形式。

形如,其中为等差数列,为等比数列,公比为q;列出,再把所有式子同时乘以等比数列的公比,即;然后错一位,两式相减即可。

例4、求数列的前n求和(x≠0,x≠1)。

解:设①则②由①-②,得:于是四、用化差相减法适用于分式形式的通项公式,基本原理是把一项拆成两个或多个的差的形式,即,然后累加时中间的许多项可以抵消。

裂项凑错位相加特征,注意前后式子相等,如果不相等就要乘以一个系数。

常用公式:,,,(a≠0),例5、求数列的前n求和。

解:例6、求数列。

解:∵∴基本原理点拨:代数式变形凑相消特征:,由此可联想求更高次方幂的n项和。

如:至此,一般规律就出现了,通过变形整理便可求出的n 项的和,以此类推,求n次方幂的问题就能彻底解决。

从而五、利用组合数求和公式法利用这个组合数公式,求某些特殊数列的前n和颇为方便。

因为,则。

例7、求数列解:∵,∴例8、求数列。

解:∵。

∴,六、用数学归纳法例9、求数列的前n项和。

高中数列求和方法大全

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+- 的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x Sn x x x x x x nn 2)111()(242242++++++++= (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

数列求和方法总结

数列求和方法总结

数列求和方法总结数列求和是数学中一个非常常见且重要的问题,它出现在各个领域的数学问题中,并且在高中数学及以上的学习中经常遇到。

在解决数列求和问题时,我们可以通过多种方法,其中包括代入法、消元法、几何法、差分法、数学归纳法等等。

下面我将对这些方法进行详细的总结与说明。

1. 代入法:代入法是一种常见的求和方法。

我们可以通过代入来求和项的个数和具体数值。

首先,我们需要确定数列的通项公式,然后将要求和的项数具体代入到通项公式中,求出每一项的数值,最后再将这些数值相加即可得到所求的数列的和。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以先找到通项公式为an=2n-1,然后代入每一项的数值,得到1、3、5、7、9,最后相加得到的和为(1+9)*5/2=25。

2. 消元法:消元法是一种常用的数学方法,在求和问题中也有广泛应用。

通过对求和式进行变形,我们可以通过消除多项式的常数项、控制变量项或者引入新的变量来简化求和的步骤,从而得到更简单的表达式。

例如,要求等差数列1、2、3、4、5的前n项和,我们可以通过对求和式进行变形,得到Sn=(n+1)*n/2。

3. 几何法:几何法是一种求解数列求和的常见方法,它通常适用于等比数列求和问题。

当数列的各项之间的比值存在规律时,我们可以通过将数列的各项代入到几何模型中来计算求和的方法。

例如,要求等比数列1、2、4、8、16的前n项和,我们可以将这些数列代入等比数列的几何模型中,即1、2、2^2、2^3、2^4,可见,这是一个以2为公比的等比数列。

根据等比数列的求和公式Sn=a1*(r^n-1)/(r-1),代入数值可得到所求的和。

4. 差分法:差分法是一种通过对数列进行差分来求和的方法。

它通常适用于数列之间的差为常数或规律的数列,通过对数列进行差分可以简化求和的过程。

例如,要求等差数列1、3、5、7、9的前n项和,我们可以通过差分法来解决,即将数列进行差分得到2、2、2、2,可以发现这是一个公差为2的等差数列。

数列求和公式方法总结

数列求和公式方法总结

数列求和公式方法总结数列求和是高中数学中的重要内容之一,也是许多学生难以消化的内容。

不同的数列有不同的求和公式,本文将总结数列求和的常见方法和公式,助力学生更好地掌握数列求和的技巧。

一、等差数列的求和公式:等差数列是最常见的数列之一,其特点是每个项之间的差值是相等的。

设首项为a₁,公差为d,末项为aₙ,则等差数列的求和公式为:Sₙ=(a₁+aₙ)×n÷2Sₙ=(a₁+aₙ)×(n+1)÷2其中,Sₙ表示前n项和。

二、等比数列的求和公式:等比数列是指数列中任意两个相邻项之间的比值相等的数列。

设首项为a₁,公比为q,末项为aₙ,则等比数列的求和公式为:Sₙ=(a₁×(qₙ-1))÷(q-1)其中,Sₙ表示前n项和。

三、二次数列的求和公式:二次数列是指每个项与前一个项之间的关系满足一次方程的数列。

设首项为a₁,公差为d,末项为aₙ,则二次数列的求和公式为:Sₙ=(2a₁+(n-1)d)×n÷2Sₙ=(2a₁+d(n-1))×n÷2其中,Sₙ表示前n项和。

四、调和数列的求和公式:调和数列是指数列的倒数数列,每个项与前一个项之间的差异与常数成反比的数列。

设首项为a₁,公差为d,末项为aₙ,则调和数列的求和公式为:Sₙ=(n×(2a₁+(n-1)d))÷2其中,Sₙ表示前n项和。

五、费波纳西数列的求和公式:费波纳西数列是指数列中每个项都是前两个相邻项之和的数列。

设首项为a₁,公差为d,末项为aₙ,则费波纳西数列的求和公式为:Sₙ=(a₁+a₂)×(aₙ+aₙ₊₁)÷2Sₙ=(a₁+a₃)×(aₙ+aₙ₋₂)÷2其中,Sₙ表示前n项和。

六、其他数列的求和公式:除了上述常见的数列类型外,还存在其他特殊的数列,其求和公式需要通过推导和递推等方法得到。

比如,输出数列、幂和数列、等差几何数列等。

高中数学必修五数列求和方法归纳总结

高中数学必修五数列求和方法归纳总结

数列求和方法归纳总结数列前n 项和求解的基本方法主要有:公式法,倒序相加法,分组求和法,错位相减法,裂项相消法。

1.公式法:即利用等差数列前n 项和公式或等比数列前n 项和公式求解。

例1、已知点(,)n n a 在函数()21f x x =-图像上,数列{}n a 的前n 项和为n S .求n S .2.倒序相加法:如果一个数列{}n a 首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法。

(等差数列的前n 项和即用此法推导的)例2、设4()42x x f x =+,求和:122001...200220022002S f f f ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.分组求和法:把数列的项重新组合后,可构成等差或等比数列,则利用此法求解。

例3、(1)求数列11111,3,5...,[(21)]2482n n -+的前n 项和; (2)求数列{(1)(21)}n n --的前2013项和2013S .4.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成,则用此法求解(等比数列的前n 项和即用此法推导的)。

求解时,把数列的各项均乘以等比数列的公比,并错后一项与原数列各项对应相减,即可转化为特殊数列的求和问题。

例4、已知数列{}n a 是首项11a =的等比数列,且0n a >,数列{}n b 是首项1b =的等差数列,又5321a b +=,3513a b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}2n nb a 的前n 项和为n S .5. 裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

注意:(1)在利用裂项相消法时要注意抵消后并不一定只剩下第一项和最后一项,也可能剩前面两项和后面两项;(2)将通项公式裂项后,注意调整前面的系数,使之相等。

(3)常见的拆项公式:1111()()n n k k n n k =-++;1111()(21)(21)22121n n n n =--+-+.例5、已知等比数列{}n a 的首项为113a =,公比q 满足0q >且1q ≠,又已知135,5,9a a a 成等差数列.(1)求数列{}n a 的通项公式; (2)令31log n n b a =,求12231111...n n b b b b b b ++++的值.例6、已知等差数列{}n a 满足:37a =,5726a a +=,数列{}n a 的前n 项和为n S .(1)求n a 和n S ; (2)令211n n b a =-,求数列{}n b 的前n 项和为n T .同步练习1.已知数列满足,,数列的前项和为,且数列, , , ……. ……是首项和公比都为的等比数列。

数列求和的九种方法

数列求和的九种方法
当a≠1时,S =1+3a+5a +…+(2n-1)a ……①,
两边分别乘以公比a得:
aS =a+3a +5a +…+(2n-3)a +(2n-1)a …………②
①-②得:(1-a)S =1+2a+2a +2a +…+2a -(2n-1)a
=1-(2n-1)a + ,
于是S = - +
五:裂项求和法
数列求和的九种方法
汉川二中数学组万小艳
数列是高中代数的重要内容。在高考和各种数学竞赛中都占有重要地位。数列求和是数列的重要内容之一,除了等差数和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。下面介绍求一个数列的前 n 项和的几种方法:运用公式法,倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法,通项分析法,分类讨论法,数学归纳法等。
四、错位相减法求和
这种方法主要用于数列{a ·b }的前n项和,其中{a },{b }分别是等差数列和等比数列,且{b }的公比不为1。
例4、求和:1+3a+5a +7a +…+(2n-1)a (a≠0)
解:数列{(2n-1)·a }是由等差数列{2n-1}和等比数列{a }的相应项乘积组成。
当a=1时,S =1+3+5+…+(2n-1)= = n
下面我们再来看一下并项求和法与分类讨论法
求和时,先分n为奇,偶数进行讨论,后考虑并合。
所以:
当n≤601时;
此类题需根据通项确定各项的正、负,再去掉绝对值。
上面讨论的八种方法灵活运用,多样结合就可解决常见的数列求和问题。对于数学归纳法求和,涉及到观察、猜想、归纳、证明等步骤,并且其关键在于猜想得出和式,在此就不作论述了。在数列求和过程中,根据数列的特点,采用适当的 方法,定能较快、准确的解题。

高中数学数列求和方法资料

高中数学数列求和方法资料

七剑合壁破解数列求和数列求和是数列的重要内容之一,除了等差数列和等比数列有相应的求和公式外,大部分数列的求和都需要一定的技巧,下面介绍用七种办法——“七剑”,希望对同学们有所启发:第一剑——套用公式法利用下列常用求和公式求和是数列求和的最基本、最重要的方法:1.等差数列求和公式:2.等比数列求和公式:3. 4、[例1] 已知,求的前n项和.分析:从题目中可看出这是一个等比数列的求和,自然想到直接应用等比数列求和公式即可.解:由由等比数列求和公式得===第二剑——错位相减法这是类比推导等比数列的前项和公式时所用的方法,这种方法主要用于求数列的前n项和,其中分别是等差数列和等比数列.[例2] 求和:…分析:注意到式子有两个特点,单纯从系数上看,它呈等差数列,这个数列的通项是2n-1;单纯从字母上看,它呈等比数列,此数列的通项是,所以可类比推导等比数列的方法求它前n的和.解:∵………………………①设………… ②①-②得又因为再利用等比数列的求和公式得:∴第三剑——逆序相加法这是类比推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例3] 求证:(本题源自人教大纲版必修第二册下)分析:这虽然看似一道组合的证明题,本质上还是数列求和,注意组合的一个公式,所以我们用逆序相加法进行尝试.证明:设………………………….. ①把①式右边倒转过来得又由可得…………..…….. ②①+②得∴第四剑——分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例4] 求数列的前n项和:分析:可以看出该数列可分成两部分,注意到一部分等差数列,一部分成等比数列.我们使用化整为零的办法先拆开,再组合.解:设当a=1时,=当时,=第五剑——裂项相消法裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)常见的如下:(1)(2)(3)[例5] 求数列的前n项和.分析:本题符合上述的第三个公式中的情况,此时的情形.解:设则==第六剑——分段求和法.针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.,对等差数列的绝对值求和也可仿效.[例6] 数列中,求分析:题目要我们求前2008项的和,从前3项可以看出它不是等差、也不是等比,那么怎么办呢?先通过求出相应的几项可判断该数列应该是以6为一个周期的数列.解:设由可得……∵====5[例7]等差数列中,,求其前n项的绝对值的和.分析:对于等差数列的绝对值的求和,我们一般是转化为分段求和来解决.解:由已知可得,则当时.不妨设当时,当时,==∴第七剑——活用通项法先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例8] 求之和.分析:本题的数列也十分特殊,具有良好的美感.如果我们知道它的一个通项公式是,这样即可将之分成两部分,转化为上述的第四种方法来解决,可见对通项的识别尤为重要.解:由于∴====当然数列求和的方法还不止这些,但是只要同学们七剑在手,勤加修炼,做到七剑合璧,融汇贯通,定能破解这一求和问题了.本文发表于《数学周报》大纲高考版总214期。

数列求和的七种方法

数列求和的七种方法

数列求和的七种方法数列求和是数学中非常基础的概念之一,它在高中数学中被广泛讨论和应用。

在数学中,我们经常遇到需要求解数列的和的问题,这样的问题可以通过不同的方法和技巧来解决。

在这篇文章中,我们将讨论七种常见的数列求和方法,并深入探讨它们的原理和应用。

第一种方法是等差数列的求和方法。

等差数列是指一个数列中每一项与其前一项之差保持恒定的数列。

对于一个等差数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公差为d的等差数列,其前n项和可以通过公式Sn = (n/2)(2a + (n-1)d)来计算,其中n表示项数。

这种方法适用于各种等差数列,无论是正数还是负数的等差数列。

第二种方法是等比数列的求和方法。

等比数列是指一个数列中每一项与其前一项之比保持恒定的数列。

对于一个等比数列,我们可以通过使用求和公式来求解其总和。

具体来说,对于首项为a,公比为r的等比数列,其前n项和可以通过公式Sn = (a(1-r^n))/(1-r)来计算,其中n表示项数。

需要注意的是,公比不能为0或1,否则求和公式将无法使用。

第三种方法是利用等差数列的性质进行求和。

等差数列具有很多性质,其中一个重要的性质是数列的和等于首项与末项乘以项数的一半。

具体来说,对于首项为a,末项为b,项数为n的等差数列,其总和可以通过公式Sn = (a + b) * n / 2来计算。

这种方法在一些情况下更加简便和直观,特别是当我们只关注数列的总和而不关心具体的项时。

第四种方法是利用等比数列的性质进行求和。

等比数列也具有一些特殊的性质,其中一个重要的性质是当公比小于1时,数列的和可以表示为首项与末项的差除以1减去公比。

具体来说,对于首项为a,公比为r的等比数列(其中|r|<1),其总和可以通过公式Sn = (a -ar^n)/(1-r)来计算。

这种方法在一些情况下也更加简洁和有效。

第五种方法是使用递归关系进行求和。

递归关系是数列中的每一项与前一项之间存在一定规律的关系。

史上高中阶段最全的数列求和(10种)

史上高中阶段最全的数列求和(10种)
数列的求和
2021/6/30
1
一.公式法:即 直 接 用 求 和 公 式 , 求 数 列 的 前 n 和 S n
①等差数列的前n项和公式:Snn(a12 an)na1n(n 2 1)d
②等比数列的前n项和公式 ③ 123 n1n(n1)
Sn
naa1(11(qqn1)) 1q
a1 anq(q1) 1q
把数列的每一项分成若干项,使其转化为等差或 等比数列,再求和.
四、并项求和
例如求1002-992+982-972+…+22-12的和.
五、裂项相消法求和
把数列的通项拆成两项之差、正负相消,剩下首
尾若干项.
2021/6/30
5
六。倒序相加法:
如果一个数列{an},与首末两项等距的两项之和等 于首末两项之和(都相等,为定值),可采用把正着
2021/6/30
12
例3.
已知数列1,3a,5a2,…,(2n-1)an-1(a≠0), 求其前n项和.
2021/6/30
13
错位相减法:
如果一个数列的各项是由一 个等差数列与一个等比数列 对应项乘积组成,此时求和 可采用错位相减法.
既{anbn}型
等差
2021/6/30
等比
16
变式探究
2. 设数列{an} 满足a1+3a2+32a3+…+
)
2 6n+1
因此,使得
1 (1-
1
m )<
(n∈N*)成立的m必
2 6n+1 20
须满足 1 ≤ m ,即m≥10.
2 20
故满足要求的最小正整数m为10.
2021/6/30
22
列项求和法:

高中数列求和方法总结

高中数列求和方法总结

高中数列求和方法总结
数列求和是高中数学中的重要知识点之一,下面总结几种常见的数列求和方法。

1. 等差数列求和公式:
对于等差数列$a_1, a_2, a_3, ..., a_n$,其中公差为d。

则求
和公式为:
$S_n = \frac{n}{2}(a_1 + a_n)$
其中,$S_n$表示前n项和。

2. 等比数列求和公式:
对于等比数列$a_1, a_2, a_3, ..., a_n$,其中公比为q(不为零)。

则求和公式为:
$S_n = \frac{a_1(1-q^n)}{1-q}$
其中,$S_n$表示前n项和。

3. 部分和公式:
当数列不是等差或等比数列时,可以考虑使用部分和公式。

如果数列的通项表达式为$f(n)$,则前n项和为$S_n = f(1) +
f(2) + f(3) + ... + f(n)$。

例如,对于数列$1, 4, 7, 10, ...$,通项表达式为$a_n = 3n-2$,则前n项和为$S_n = \sum_{i=1}^{n}(3i-2)$。

4. 偶数项和与奇数项和:
当数列为周期性的时候,可以考虑分别计算偶数项和与奇数
项和,然后相加得到总和。

例如,对于数列$1, -2, 3, -4, 5, -6, ...$,可以将它分为偶数项
$-2, -4, -6, ...$与奇数项$1, 3, 5, ...$,分别计算偶数项和与奇数项和,然后相加得到总和。

以上是常见的数列求和方法总结。

掌握这些方法可以帮助我们更快地计算数列的和。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[点评] 分析数列是由等差数列或等比数列构成,可 直接由等差数列与等比数列的求和公式求和.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
题型二 倒序相加法
[例2]
设f(x)=
4x 4x+2
,求和S=f(
2
1 002
)+f(
2
2 002
)+…
+f(22 000012).
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
并项求和法:将原数列的项重新组合(例如两两结合, 奇偶项分别结合等),使它们成为一个或几个等差(比)数列 后再求和的方法.
总之,在求数列的前n项和时,应先考查其通项公式, 根据通项公式的特点,再来确定选用何种求和方法.数列 求和的实质就是一个代数式(或超越式)的化简问题.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
典例剖析
题型一 公式法:直接利用或者转化后利用等差或等 比数列求和公式
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[例1] 已知等差数列{an},a2=9,a5=21. (1)求{an}的通项公式; (2)令bn=2an,求数列{bn}的前n项和Sn. [分析] 由a2,a5的值列方程组可求得基本量a1和d,即 可求an;再利用等比数列前n项和公式求Sn.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
4.裂项相消法:将数列的通项分裂为两项之差,即数 列的每一项都可按此法分裂成两项之差,求和时,除首尾 若干少数项之外,其余各项相互抵消,这一求和方法称为 裂项相消法.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
5.分解求和法与并项求和法 分解求和法:把原数列的每一项拆成两(多)项之和或 差,从而将原数列分解成两(多)个数列的和或差,而这两 (多)个数列或者是等差、等比数列,或者是已知其和.求 出这两(多)个数列的和,再相加(减),得到原数列和的方法 便是分解求和法.为了便于拆项,常常从分解数列的通项 入手.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[分析] (1)先从已知条件出发,对210S30-(210+1)S20+ S10=0进行变形整理,充分利用等比数列的性质,求出公比 q,然后由等比数列的通项公式求出数列的通项;(2)由(1) 求出nSn,认真观察{nSn}的通项,可采用错位相减法.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
3.错位相减法:等比数列前n项和公式的推导方法, 即将数列中的各项乘以一个适当的数(式).然后错开一位 相减,使数列中的一些项相互抵消或形成规律,从而得出 数列的前n项和.此种方法常用于数列{an·bn}的前n项和, 其中{an}为等差数列,{bn}为等比数列.
因而an=a1qn-1=21n,n=1,2,….
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
(2)因为{an}是首项a1=12,公比q=12的等比数列, 故Sn=1211--1221n=1-21n,nSn=n-2nn, 则数列{nSn}的前n项和 Tn=(1+2+…+n)-(12+222+…+2nn)①
[分析] 本题是求函数值的和,通过对其解析式的研
究,寻找它们的规律,然后进行解决.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[解]
因为f(x)=
4x 4x+2
,所以f(1-x)=
41-x 41-x+2

4 4+2·4x
=4x+2 2,
所以f(x)+f(1-x)=1.
所以S=f(2 0102)+f(2 0202)+…+f(22 000012),①
系列丛书
(1)等差数列、等比数列的前n项和公式(注意应用等比 数列前n项和公式时应分q=1和q≠1两种情况讨论);
(2)12+22+32+…+n2=16n(n+1)(2n+1); (3)13+23+33+…+n3=14n2(n+1)2.
Байду номын сангаас
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
2.倒序相加法:等差数列前n项和公式的推导方法, 即将Sn倒写后再与Sn相加,从而达到(化多为少)求和的目 的.常用于组合数列求和.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[解] (1)由210S30-(210+1)S20+S10=0得210(S30-S20)= S20-S10,即210(a21+a22+…+a30)=a11+a12+…+a20,可 得,210·q10(a11+a12+…+a20)=a11+a12+…+a20,∵ an>0,∴210·q10=1,由题意知q>0,解得q=12,
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
[解] (1)设等差数列{an}的公差为d,依题意得方程组
a1+d=9 a1+4d=21
解得a1=5,d=4.
∴{an}的通项公式为an=4n+1.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
(2)由an=4n+1得bn=24n+1,bn+1=24(n+1)+1 ∴bbn+n 1=242n4+n+11+1=24. ∴{bn}是以b1=25为首项,公比为q=24的等比数列. 由等比数列前n项和公式得: Sn=2511--2244n=322145n-1.
S=f(22 000012)+f(22 000002)+…+f(2 0102).②
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
①+②得2S=2 001[f(2 0102)+f(22 000012)]=2 001.
所以S=2
001 2.
人教A版·数学·必修5
返回首页
第二章 专题
系列丛书
题型三 错位相减法 若在数列{an·bn}中,{an}成等差数列,{bn}成等比数 列,则可采用错位相减法求和. [例3] 设正项等比数列{an}的首项a1=12,前n项和为Sn 且210S30-(210+1)S20+S10=0. (1)求数列{an}的通项; (2)求{nSn}的前n项和Tn.
系列丛书
第二章 数列
第二章 数列
返回首页
系列丛书
专题 数列求和的常用方法
第二章 数列
返回首页
系列丛书
专题评述 数列求和的常用方法 1.公式求和法:直接应用等差数列、等比数列的求 和公式或正整数平方和、立方和公式等求和的方法. 熟记一些常见数列的前n项和公式:
人教A版·数学·必修5
返回首页
第二章 专题
相关文档
最新文档