第五章 电力系统的电压与无功功率
电力系统的电压与无功功率
沿线路各点电压的变化
我国规定的电压偏移范围
35kV及以上电压供电的负荷: ±5%
10kV及以下电压供电的负荷: ±7%
低压照明负荷:
+5%~-10%
农村电网
正常运行情况:
+7.5%~-10%
事故运行情况:
+10%~-15%
电压调整的基点-无功功率
①电压损耗近似等于电压降落的纵分量 △U; ②△U可以分解成电阻电压损耗分量PR/U和电抗 电压损耗分量QX/U ③减小无功功率的输送可降低电压损耗。
输电线路的无功损耗
输电线路的π型等值电路
2 P +2Q Q L = 2 X =
U1
P2 +Q 2 2X U2
QB =
B 2
2 (U1 +U 2 )
线路的无功总损耗为
2 P +2Q
U2 1 +U2
Q L+Q B = 2 X
B
U1
2
一般情况下,220kV系统,线路长度100km以内,呈 感性,消耗无功功率;300km左右,呈电阻性,不 消耗无功功率;大于300km时,呈容性,提供无功 功率。
在额定电压附近,电动 机的无功功率随电压的 升降而增减。
当电压明显低于额定值 时,无功功率主要由漏 抗中的无功损耗决定, 随电压下降反而具有上 升的性质。
图5-24 异步电动机的无功功率与端电压的关系
㈡发电机的无功功率―电压静态特性
定义:发电机输出的无功功率与电压变 化关系的曲线。 对于一个简单电力系统,原理图与等值 电路图如下图所示
三、电力系统的无功功率
(一)无功负荷和无功损耗功率 (二)无功电源 (三)无功功率的平衡方程
电力系统的无功功率平衡和电压调整
任务一 电力系统无功功率平衡
5.1.3无功功率平衡 电力系统无功功率平衡的基本条件:系统无功功率电源可能发出的无功 功率应该大于或至少等于负荷所需的无功功率和网络中的无功损耗,同
时为了保证运行可靠性和适应无功负荷的增长,系统必须配置一定的无 功备用容量。 当系统中某些负荷节点电压低落的原因是系统中无功电源不足时,调压 问题就与无功功率的合理供应和合理使用紧密联系。如果不从解决无功 电力不足的问题着手,而是调节电源,使发电机多发无功,是很不合理 的。因为电源与负荷间距离较远,发电机多发的功率在网络中的无功损 耗也大,不易调高末端电压。
发电机在额定状态下运行时见图5一4所示。
上一页 下一页 返回
任务一 电力系统无功功率平衡
2.同步调相机 同步调相机实质上是只发无功功率的同步发电机,它在过励磁运行时向
系统供给感性无功功率而起无功电源的作用,能提高系统电压;在欠励磁 运行时从系统吸取感性无功功率而起无功负荷作用,可降低系统电压。 由于实际运行的需要和对稳定性的要求,同步调相机在欠励磁状态下运 行时,其容量为过励磁运行时额定容量的50%一60 % }, 装有自动励磁装置的同步调相机,可以平滑地改变输出(或吸取的)无功 功率,从而平滑地调节所在地区的电压。在有强行励磁装置时,在系统 故障情况下也能调节系统电压,有利于系统稳定运行。
由上式可见,调节用户端电压U,可以采用以下措施: (1)调节发电机的端电压,称为发电机调压。 (2)调节变压器的变比k,和左2,称为变压器调压。 (3)在输电线路中串联电容器以减小X,从而减小电压损耗,称为串联补
偿调压。 (4)在负荷端并联无功补偿装置,减小经线路传输的无功功率Q,从而减
小电压损耗,称为并联补偿调压。
刘天琪电力系统分析理论第5章答案完整版
5-5、电力系统调压的基本原理是什么?电力系统有哪几种主要调压措施?当电 力系统无功不负时,是否可以只通过改变变压器的变比?为什么? 答:基本原理: 由于电力系统的结构复杂,用电设备数据极大,电力系统 运行部门对网络中各母线电压及用电设备的端电压进行监视和调整是不可能, 而
且没有必要。然而,选择一些有集中负荷的母线作为电压中枢点,运行人员监视 中枢点电压,将中枢点电压控制在允许的电压偏移范围以内。只要这些中枢点的 电压质量满足要求,系统中其它各处的电压质量也基本上满足要求。 简单一句话概况为:通过对中枢点电压控制实现电网电压调整。 电力系统的电压调整可以采用以下措施: (1)调节发电机的励磁电流以改变发电机的端电压 VG ; (2)通过适当选择变压器的变比 k 进行调压; (3)通过改变电力网络的无功功率 Q 分布进行调压; (4)通过改变输电线路参数 X 进行调压。 在系统无功功率不足的条件下, 不宜采用调整变压器分接头的办法来提高电 压。因为当某一地区的电压由于变压器分接头的改变而升高后,该地区所需的无 功功率也增大了,这就可能进一步扩大系统的无功缺额,从而导致整个系统的电 压水平更加下降。所以从全局来看,当系统无功不足时不宜采用改变变压器变比 进行调压。
ΔVT min =
Pmin R + Qmin X 13 3 × 3 + 10 × 48 4 = 4.72kV V = V1min 110
最大负 负荷时发电 电机电压为 1 11kV,则分 分接头电压为
V1t max =
(120 + 7) ) × 10.5 = 12 21.23kV 11
(110 + 4.7 72) × 10.5 = 120.456kV k 10
最小负 负荷时发电 电机电压为 1 10kV,则分 分接头电压为
电力系统的无功功率和电压调整
1. 发电机
同步发电机既是有功功率电源,又是最基本的无功功率电源。
2.电容器和调相机
并联电容器只能向系统供应感性无功功率。特点有:电容器所供应的感性无功与其端电压的平方成正比,电容器分组投切,非连续可调。
调相机实质上是只能发出无功功率的发电机。
3.静止补偿器和静止调相机
作业9:
变比分别为 和 两台变压器并联运行,每台变压器归算到低压侧的电抗均为 ,其电阻和电导忽略不计。已知低压母线电压为 。负荷功率为 ,求变压器功率分布和高压侧电压。
但当电机经多级电压向负荷供电时,仅借发电机调压往往不能满足负荷对电压质量的要求。
五、借改变变压器变比调压
双绕组变压器的高压绕组和三绕组变压器的高、中压绕组往往有若干分接头可供选择,例如,可有 或 ,即可有三个或五个分接头供选择,所以合理地选择变压器地分接头也可调压。如下图:
如上图,为一降压变压器
静止补偿器和静止调相机是分别与电容器和调相机相对应而又同属“灵活交流输电系统”范畴的两种无功功率电源。
4.并联电抗器
就感性无功功率而言,并联电抗器显然不是电源而是负荷,但在某些电力系统中的确装有这种设备,用以吸取轻载或空载线路过剩的感性无功功率。而对高压远距离输电线路而言,它还有提高输送能力,降低过电压等作用。
电力系统的无功功率和电压调整
一、 无功功率负荷和无功功率损耗
无功负荷:绝大部分是异步电动机
无功损耗:1. 变压器 ;2. 输电线路。
变压器中的无功功率损耗分为两部分,即励磁支路损耗和绕组漏抗中损耗。其中,励磁支路损耗的百分值基本上等于空载电流 的百分值,约为 ;绕组漏抗中损耗,在变压器满载时,基本上等于短路电压 的百分值,约为 。因此,对一台变压器或一级变压器的网络而言,变压器中的无功功率损耗并不大,满载时约为它额定容量的百分之十几。但对多级电压网络,变压器中的无功功率损耗就相当可观。
第五章 电力系统的无功功率平衡与电压调整
u2
u2 N
U U T max S max : U 1max u2 N 1 f max
U1min U T min S min : U1 f min u2 N u2 min
u2 max
后面同降压式,对普通变要记得校验。
三. 改变无功功率分布调压 使用前提:(超)高压网络效果显著 要求:按照用户侧调压要求,选择无功补偿装 置的容量Qb(及变压器变比)。
正常情况下
10 kV : 7%
35kV : 0 ~ 10%
第5章 电力系统的无功功率平衡 与电压调整
§5-2 电力系统的无功电源和 无功平衡
一. 无功功率电源 无功电源 同步发电机、 某些情况的输电线路 : 无功补偿装置: 同步调相机、静电(并联)电容 器、静止补偿器 1. 同步发电机 唯一的有功电源,主要的无功电源。 发电机在正常运行状态下发出无功:
静电(并联)电容器 运行特点: 时,全投; 时,全切。 ① 时,根据变压器低压侧调压要求选择k 已知: 为 时用户侧电压, 为其归算 至高压侧的值
选择与 最接近的分接头电压,确定
②
时,按照调压要求确定Qb
查产品目录,选大于Qb且与其最接近电容器 。 ③ 根据所选 、 校验 和 时低压侧电 压是否满足要求。
u2 (u2C )
k :1
电源电压(恒定 )
(用户所需功率 (U 2C ) )
(无功补偿容量 (归算至高压侧 ) ) 说明:高压侧电压用大写符 k :实际变比 号,低压侧电压用小写符号, u :U 归算到高压侧的值 U u k 补偿后的参数在下标加字母 u :U 归算到高压侧的值 U u k ”c”.
2 2 2 2
2C
2C
电力系统的无功功率和电压控制
若大于,则任何分接头都无法满足要求,需其他调压措施配合
双绕组升压变压器一般按高压侧的电压要求选择分接头
Ut1max
U1max U1max U 2max
Ut2
Ut1
U 2 U2
Ut2
U1 U1 Ut2 U2
Ut1min
U1min U1min Ut 2 U 2min
Ut1
Ut1max
发电机的端电压与发电机的无功功率输出密切相关,增加端电 压的同时也增加无功输出,反之,降低端电压也就减小无功输 出,因此发电机端电压的调节受发电机无功功率极限的限制。 发电机有功出力较小时,无功调节范围会大些,调压能力会强 些。发电机端电压的允许调节范围为0.95~1.05UN,如果端电压 低于0.95UN,输出的最大视在功率要相应减小(小于SN)
仅当系统无功功率电源容量充足时,改变变压器变比调压才有
效。当系统无功不足、电压水平偏低时,应先装设无功功率补偿
设备,使系统无功功率容量有一定的裕度。
例5.1,p191
5.2.5 应用无功功率补偿装置调节电压
常用并联电容器、同步调相机、静止补偿器等并联无功补偿装置
减小线路和变压器输送的无功,从而减小电压损耗、提高电网电
对故障后的非正常运行方式,一般允许电压偏移较正常时大5%
5.2.3 应用发电机调节电压
应用发电机调压不需要另外增加投资。根据励磁电源的不同, 同步发电机励磁系统可分为直流机励磁系统、自励半导体励磁 系统、它励半导体励磁系统 3大类。现代发电机励磁系统都有 自动调节功能,即自动励磁调节器(AER)或自动电压调节器 (AVR),通过改变励磁调节器的电压整定值,自动控制励磁 电流,即发电机空载电势,实现发电机端电压的闭环控制。
电力系统无功功率和电压调整-PPT课件
V VV
imax max
min
电力系统分析
35
例
简单电力网电压损耗
电力系统分析
36
电力系统分析
37
只满足i节点负荷时,中枢点电压VO应维持的电压为
0~ 8h
VO Vi VOi
(0.95~1.0)5VN0.0V 4N (0.99~1.0)9VN
8 ~ 24h
VO Vi VOi
电力系统分析
25
5.静止无功发生器(SVG)
SVG的优点:响应速度快,运行范围宽,谐波电 流含量少,尤其重要的是,电压较低时仍可向系 统注入较大的无功。
电力系统分析
26
5.2.3 无功功率平衡
电力系统无功功率平衡的基本要求:系统中的无功 电源可以发出的无功功率应该大于或至少等于负荷 所需的无功功率和网络中的无功损耗。
(1)大型发电厂的高压母线; (2)枢纽变电所的二次母线; (3)有大量地方性负荷的发电厂母线。
电力系统分析
32
5.3 电力系统中枢点的电压管理
例:
中枢点
中枢点
图5-16 电力系统的电压中枢点
电力系统分析
33
5.3.2 中枢点电压允许变化范围
中枢点i的电压满足Vimin≤Vi ≤ Vimax 图5-17 负荷电压与中枢点电压
电力系统分析
4
5.1 电压调整的一般概念
(5)系统电压降低,发电机定子电流将因其功率角的增大
而增大。增大到额定值后,使发电机过热,不得不降低出力。
(6)系统电压过低会使电网的电压损耗和功率损耗增加,
影响系统的经济运行;过低的电压甚至严重影响电力系统的
稳定性。
系统无功功率不足,电压 水平低下时,某些枢纽变 电所母线电压在微小扰动 下会迅速大幅度下降,产 生电压崩溃,从而导致电 厂之间失步,系统瓦解, 大面积停电的灾难性事故。
第五章 电力系统稳态分析
图10-2
向量图
当输电线路不长,首末两端的相角差不大时,近似地有: 当输电线路不长,首末两端的相角差不大时,近似地有:
Vi ≈ V j + ∆V
2 电压损耗和电压偏移 电压损耗:两点间电压绝对值之差称为电压损耗 电压损耗:两点间电压绝对值之差称为电压损耗
∆Vij = Vi − V j
电压偏移: 电压偏移:网络中某点的实际电压同该处的额定电压 之差称为电压偏移 之差称为电压偏移
一、电力网的功率损耗
1.电力线路的功率损耗: 流过线路所消耗的功率 电力线路的功率损耗: 电力线路的功率损耗
Sloss = I 2 ( R + jX ) P2 + Q2 = ( R + jX ) 2 Vj
所以
& Vi
R+ jX
j B 2
S
j B 2
& Vj
P+ jQ
i
& I
j
Ploss
Qloss
P +Q = R 2 Vj P2 + Q2 = X 2 Vj
第五章 电力系统稳态分析
主要内容 电力系统潮流计算 电力系统的频率与有功功率 电力系统的电压与无功功率 电力系统的经济运行
5.1 电力系统的潮流计算
针对具体的电力网络结构, 针对具体的电力网络结构,根据给定的负荷功率和电 源母线电压, 源母线电压,计算网络中各节点的电压和各支路中的功率 及功率损耗。 及功率损耗。
特性仍然为G1, 系统运行在 点, 系统运行在b点 特性仍然为 系统频率为f2。 系统频率为 。 如果当系统负荷增加, 如果当系统负荷增加,综 合负荷特性变为L2时 合负荷特性变为 时,改变发 电机调速系统的设定值, 电机调速系统的设定值,等效 发电机特性变为G2, 则系统运行 发电机特性变为 在c点,系统频率回到 。 点 系统频率回3; a1 + a2 + L + an = 1
第5章-电力系统无功功率与电压调整
第五章电力系统无功功率与电压调整①电力系统电压调整概述②电力系统无功功率平衡③电力系统中枢节点电压管理④电力系统电压调整措施⑤电压调整与频率调整的关系一、电力系统电压调整概述1、电压调整的必要性电力系统运行中各种电气设备和用电设备都是按照其额定电压设置制造的只有在额定电压下运行才能取得最佳的运行效果,并保证其使用寿命。
因此,电压是电力系统正常运行的重要性能指标之一,通过电压调整,使得电力系统各节点电压保持在允许的范围是电力系统运行的基本任务。
电压偏移过大给电力系统本身以及用电设备带来不良的影响:(1)工作效率下降,寿命降低;(2)电压过低引起工业产品出现次品;(3)电压过低引起电机发热;(4)电压过低引起电压和功率损耗增加;(5)电压过高引起设备绝缘受损、缩短设备使用寿命(6)可能引起系统电压崩溃。
一、电力系统电压调整概述虽然我们期望电力系统中各节点的电压保持在额定值,但是在实际电力系统运行中是无法做到的。
2、电力系统允许的电压偏移为什么呢?(1)设备及线路压降(2)负荷随机波动(3)系统运行方式改变由此可见,严格保证所有电气设备和用电设备在任何时刻的电压都为额定值几乎是不可能的。
因此,大多数设备都允许有一定的电压偏移。
电力系统一般规定一个电压偏移的最大允许范围,例如:35kV 及以上供电电压正负偏移±5%;10kV及以下在±7%以内。
(不同的电压等级,不同的用户类型,允许的电压偏移范围也不一样)二、电力系统无功功率平衡1、无功功率负载和无功损耗电压是衡量电能质量的重要指标。
电力系统的运行电压水平取决于无功功率的平衡。
系统中各种无功电源的无功出力应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值。
•异步电动机电压下降,转差增大,定子电流增大。
在额定电压附近,电动机的无功功率随电压升降而增减;而当电压明显低于额定值时,无功功率主要由漏抗无功损耗决定,随着电压下降反而上升。
电力系统无功功率和电压的关系
电力系统无功功率和电压控制孙兵指导老师石砦论文摘要:探讨电力系统无功功率与电压稳定性的关系,无功功率的产生和吸收,无功功率的补偿,电压和频率是衡量电能质量的重要指标,无功功率是直接影响电压质量的因素。
关键词:电力系统;无功功率;电压控制0 引言电力系统能够有效和可靠的运行,就要求电压和无功功率的控制满足以下面条件:0.1系统中有所有装置的在端电压应在可接受的限制内。
0.2为保证最大限度利用输电系统,应加强系统稳定性。
0.3应使无功功率传输最小。
1 无功功率的产生和吸收电力系统的无功功率的产生除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这四种装置又称为无功补偿装置。
除电容器外,其余几种既能吸收容性无功又能吸收感性无功。
同步发电机可以产生或吸收无功功率,这取决于其励磁情况。
当过励时产生无功功率,当欠励时吸收无功功率。
架空线路产生或吸收无功功率取决于负荷电流。
当负荷低于自然负荷,线路产生纯无功功率;当高于自然负荷时,线路吸收无功功率。
地下电缆,由于它们对地电容较大,因此具有较高的自然负荷。
它们通常工作在低于自然负荷情形下,因此在所有运行条件下总发生无功功率。
变压器不管其负载如何,总是吸收无功功率。
空载时,起主要作用的是并联激励电抗;满载时,起主要作用的是串联漏抗。
负荷通常吸收无功功率。
由电力系统的供电的典型负荷节点由许多装置所组成。
这种组成随日期、随季节和气候的变化而不同。
通常负荷节点的负荷特性是吸收无功功率的,复合负荷的有功功率和无功功率都是电压幅值的函数。
具有低的滞后功率因数的负荷使传输网络有大的电压降落,因而供电也不经济,对于工业用户,无功功率通常和有功功率一样要计费,这就鼓励企业通过使用并联电容器来提高负荷功率因数。
2 无功功率的补偿2.1 无功功率不足的危害:交流电力系统需要两部分能量:一部分将用于做功而被消耗掉,这部分称为“有功功率”;另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有做功,称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立磁场,电动机,变压器等设备就不能运转。
无功功率调整和AVC系统
B、负荷的无功电压关系
异步电动机负荷在电力系统无功负荷中占很大的比重, 故电力系统的无功负荷与电压的静态特性主要由异步电 动机决定。异步电动机的无功消耗为
QL
Qm
Q
U2 Xm
I2X
Qm— 异步电动机激磁功率,与异步电动机的电压平方成 正比 Qσ—异步电动机漏抗Xσ的无功损耗,与负荷电流平方成 正比。
• 随着电力市场的逐步推进,供电企业角色的转变,不 仅要连续供电,而且要供好电,用户对供电质量的要 求越来越高,电能质量也将逐步成为供、用电双方合 同内容的一部分,而电压是电能质量最重要的指标之 一。
(3)我国电力系统电压合格指标
35kV及以上电压供电的负荷:+5% -5%
10kV及以下电压供电的负荷:+7% -7%
2、励磁系统和励磁控制系统
(1)励磁系统的定义和基本组成
定义:给同步发电机的励磁绕组提供励磁电流 的设备总体称为励磁系统。
组成:励磁系统=励磁功率单元+励磁调节器
励磁功率单元:给同步发电机的励磁绕 组提供励磁电流的主回路及其设备;
励磁调节器:按照运行需要控制励磁电 流大小的自动装置。
(2)励磁控制系统:
B、运行电压分析
说明:
•曲线1、2的交点确定了节点 的电压值UA,电力系统在此 电压水平下达到无功功率平 衡。
•无功负荷功率增加,使曲线1 转移至1’,曲线交点变为A’, 电 压 下 降 ; 若 提 高 UG , 则 使 曲线2转移至2’,达到新平衡 点为C。与A相比,新平衡点 电压相同,但是发电机无功 出力增加,机端电压升高。
励磁控制系统是影响发电机机端电压 的最主要因素,本章的目的就是分析励磁 系统对发电机端电压和无功功率输出的影 响。
电力系统的无功功率与电压调整
2. 改变变压器分接头进行调压
双绕组变压器高压侧 三绕组变压器高、中压侧
装有3-5个分接头
6300KVA以下三个分接头 UN ± 5% 8000KVA以上五个分接头 UN ± 2.5%
解:接头
选分接头 1校1验0K:V
2) 普通三绕组变压器分接头的选择
高、中压侧有分接头,低压侧没有 高、低压侧——确定高压绕组的分接头(低压侧要求) 高、中压侧——确定中压绕组的分接头
例题:P233,例8-3
3) 有载调压变压器调整分接头
带电调整,允许最大、最小负荷时分设不同抽头
调整范围大15%以 上
➢ QC的确定应满足调压要求,设低压母线调压要求电压 为 U’ic,则Uic=kU’ic。存在QC与k的选择配合问题
最小负荷时:将电容器全部切除,选变压器分接头 UtI=UiminUNi/U’imin,从而k= UtI /UNi
最大负荷时:全部投入电容
➢ 同步调相机
最大负荷时:发额定容量的无功
最小负荷时:吸收(50%-60%) QNC
规程规定不低于0.9,可按此取QL
3) 损耗: ΔQΣ = ΔQT + ΔQX + ΔQb 变压器 线路电抗 线路电纳
4) 无功备用:为最大无功负荷的7%--8%
系统中无功率平衡的前提是系统的电压水平正常 注意:
无功不足时应就地补偿
第二节电力系统无功功率的经济分布
无功电源的最优分布—等网损微增率 无功经济分布 无功负荷的最优补偿—无功经济当量
适应:线路不长,负荷变化不大
电力系统无功功率以及电压调整
随着科技的进步,电力系统无功功率与电压调整技术也在不断发展。未来技术发展的趋势包括:采用先进的传感 技术和智能算法实现无功功率和电压的快速、准确检测与控制;发展基于电力电子技术的动态无功补偿装置和有 源滤波器;利用大数据和云计算技术实现电网无功功率与电压的优化调度等。
THANKS FOR WATCHING
通过投切无功补偿设备, 如并联电容器、静止无功 补偿器等,来调整系统无 功功率,进而稳定电压。
有载调压
通过调整变压器分接头档 位来改变电压,以满足系 统电压要求。
串联电容器补偿
通过在输电线路中串联电 容器来补偿线路的感抗, 提高线路的电压水平。
电压调整的优化目标与原则
经济性
电压调整应尽量降低系统运行 成本,提高经济效益。
实施效果
无功补偿装置的应用显著减少了该工业园区在生产高峰期的无功功率 消耗,稳定了电压,降低了电能损耗,提高了生产效率。
05 结论与展望
电力系统无功功率与电压调整的重要性和挑战
重要性
电力系统无功功率与电压调整是保障电力系统的稳定运行和电能质量的关键环节。通过合理的无功功 率补偿和电压调整,可以有效降低线路损耗、提高设备利用率、增强系统稳定性,满足用户对电能质 量的需求。
挑战
随着电力系统的规模不断扩大和运行方式的复杂化,无功功率与电压调整面临诸多挑战。例如,无功 功率的合理分布和补偿、电压波动与闪变的抑制、动态无功补偿装置的性能优化等,需要不断研究和 改进。
未来研究方向与技术发展
研究方向
未来电力系统无功功率与电压调整的研究方向将主要集中在以下几个方面:一是无功功率补偿与电压调节的协调 优化;二是智能电网下的无功功率与电压控制策略;三是新能源并网对电力系统无功功率与电压的影响及其应对 措施。
电力系统的无功功率和电压调整
电压调整的措施-变压器变比
(3)三绕组变压器
❖ 分接头选定:
高压绕组分接头 中压绕组分接头
❖ 步骤:
根据电压母线的要求选定高压绕组分接头 由选定高压绕组分接头和中压母线的要求选定中压
范围较大等场合。
中枢点的调压方式
ห้องสมุดไป่ตู้2. 顺调压
高峰负荷,中枢点电压不低于1.025UN或某 值;
低谷负荷,中枢点电压不高于1.075UN或某 值;
适用于用户对电压要求不高或线路较短、 负荷变化不大等场合。
中枢点的调压方式
3. 常调压
高峰、低谷负荷,要求在任何负荷时中枢点 电压基本保持不变且略大于UN,例如 1.025UN或1.02~1.05UN间的某一值。
❖ 发电机端电压有由自动励磁调节装置控制,可根据运行 情况调节励磁电流来改变端电压;
❖ 发电机端电压的调节受发电机无功功率极限的限制,当 发电机输出的无功功率达到其上限或下限时,发电机就 不能继续进行调压;
❖ 由发电机直接供电的小系统,有可能只依靠发电机调压 满足各用户的电压要求。对于大系统,尤其是线路很长 且多级电压的电力网,单靠发电机调压就无法满足系统 中各点的电压要求,必须与其他调压方法相配合。
•超高压线路
无功功率与电压的关系
无功功率对节点电压有效值起决定性影响
•超高压线路
第三节 电力系统的电压调整
二、电压波动和电压管理
❖ 电压波动由冲击性或间歇性负荷引起; ❖ 习惯上所谓的电压调整仅针对周期长、波及面大,主要
由生产、生活和气象变化引起的负荷和电压变动。
电压调整
中枢点电压管理(电压控制的策略)
调压的目标
电压偏移:指线路始端或末端电压与线路额定电 压的数值差。
电压与无功功率
第五章电压与无功功率光盘:电压与无功功率(25min)问题:1.什么是有功功率、无功功率、视在功率、功率因数?2.哪些电气设备消耗无功功率?3.无功功率与电网电压之间的关系?无功功率增加和减少会引起电压如何变化?4.无功补偿有何作用?有哪些无功补偿措施?第一节概述在电力系统的正常运行中,任何电压的偏移都会带来经济、安全方面的不利影响。
这是因为:1.所有的用电设备都是按运行在额定电压时效率为最高设计的、偏离额定电压必然导致效率下降,经济性较差:2.电压过高会大大缩短白炽灯一类照明灯的寿命,也会对设备的绝缘产生不利影响。
3.电压过低会大大增加恒定转矩的异步电动机的转差,由此引起工业产品出现次品、废品,转差增大的结果使异步电动机电流增加,由此引起发热、甚至损坏。
虽然电力系统的各节点电压要求能保持在额定值,但是在实际运行中是不可能实现的,其主要原因有两点:1)在正常稳态远行方式下,一个互相连结的电力系统具有同一频率。
但是,电压与频率不同,因为电力系统中每一元件都有可能产生电压降落,所以电力系统中各点电压不相同,不可能同时将所有节点保持在额定电压。
例如,一条线路上接有几个负荷,如图所示,设线路各段均有电压降落。
则节点1、2、3、4的电压都不相同。
如将节点4维持在额定电压UN,则节点1的电压太高;反之,如将节点1的电压维持在额定值,则节点4的电压又太低。
2)负荷时时刻刻都在变化,负荷的变化必然导致电力系统中每一元件电压降落的变化,因而即使是在同一点上,也很难保证电压始终维持在额定电压。
鉴于以上原因,同时考虑到用电设备对电压的要求,电力系统一般规定一个电压偏移的最大允许范围,例如土5%以内。
为了实现这个要求,需要对电压进行调整。
第二节无功功率和电压的关系电力系统中的电压水平与无功功率密切相关。
这可从两方面加以说明。
1.节点电压有效值的大小对无功功率分布起决定作用正常运行时输电线路两端电压的相位角差δ比较小,可以认为cosδ≈1,这样线路中传输的无功功率大小就与线路两端电压有效值之差成正比,无功功率将从节点电压高的一端流向节点电压低的一侧,节点电压有效值的变化,也将使流经线路的无功功率随之发生变化。
电力系统的无功功率和电压调整
UL
U L k2
(UGk1
PR QX UN
)
/
k2
要改变负荷点电压: ➢改变 UG-借改变发电机机端电压调压 ➢改变k1, k2 -借改变变压器变比调压 ➢改变Q-借无功补偿设备调压 ➢改变X-借串联电容调压 ➢组合调压
29
第三节 电力系统的电压调整
调压手段之一:借改变发电机端电压调压
实施:调节发电机的励磁 方式:机端无负荷时,调节范围95%~105%;
电力系统的电压调整 保证中枢点电压偏移不越 限
22
第三节 电力系统的电压调整
中枢点电压曲线的编制
目的:确定中枢点的电压允许变动范围 编制方法:根据各负荷点的负荷曲线和电压要求,
计及中枢点到负荷点的电压损耗,从而确定对中 枢点电压的要求。
举例说明
中枢点 i
U ij U ik
负荷点
j
k 负荷点
静止调相机(Statcom)
11
第一节 电力系统中无功功率的平衡
静止补偿器
可吸可发感性无功; 只能发感性无功;
连续调节
不能连续调节
可吸可发无功; 连续调节
12
第一节 电力系统中无功功率的平衡
静止调相机
A
.
R<<X
I k:1
a
. . UA
I
jX L
逆变器
理想变 k:1
.
C
Ua
.
I
.
kUa
.
U A
电压调整的必要性 电压波动和电压管理 电压调整的手段
18
第三节 电力系统的电压调整
3.1电压调整的必要性
电压调整的含义:在正常运行状态下,随着负 荷变动及运行方式的变化,使各节点电压在允 许的偏移范围内而采取的各种技术措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)大型发电厂的高压母线; (2)枢纽变电所的二次母线; (3)有大量地方性负荷的发电厂母线。 (4)城市直降变电所的二次母线。
例:
中枢点
中枢点
图5-32 电力系统的电压中枢点
当有功功率不变时,发电机送至负荷点
的无功功率为
2
X
X
若励磁电流不变,则发电机电势E为常数 ,无功功率就是电压U的二次函数,其特性 曲线如下
(三) )无功功率平衡对电力系统电压的影响
电力系统的电压运行水平取决于发电机的
无功出力QG和综合负荷无功功率QLD (含网
络无功功率损耗)的平衡,如下图所示
结 论
定义:发电机输出的无功功率与电压变
化关系的曲线。
对于一个简单电力系统,原理图与等值
电路图如下图所示
G
~
l
U
.
E I
.
.
jXd
jXL
U
.
jX
P+jQ
P+jQ
(a) 原理图
(b) 等值电路
图 5—25 简单电力系统
电流为I,U和I间的相角为φ,则发电机 电势和系统电压间的关系将为
E =U + jIX
电压调整的措施:
PR+QX Ui = UGk1 k2 UN
(1)调节发电机励磁电流以改变发电机机端电压UG; (2)改变变压器的变比k1、k2; (3)改变功率分布P+jQ(主要是Q),使电压损耗△U 变化; (4)改变网络参数 数R+jX(主要是X),改变电压损耗 △U 。
改变发电机端电压调压——最经济、最直接
• 根据运行情况调节励磁电流来改变机端电压。适合于由孤
立发电厂不经升压直接供电的小型电力网。在大型电力系 统中,电压损耗超过±5%,发电机调压一般只作为一种辅
助性的调压措施。
15%~35%
图5-34 多级变压供电系统的电压损耗分布
缺点:
•同步调相机是旋转机械,运行维护比较复杂; •有功功率损耗较大,在满负荷时约为额定容量
的(1.5~5)%,容量越小,百分值越大;
•小容量的调相机每kVA容量的投资费用也较大。
故同步调相机宜大容量集中使用,容量小于5MVA
的一般不装设。 同步调相机常安装在枢纽变电所 。
3. 电力电容器
• 电力电容器可按三角形和星形接法连接在变电所 母线上。它供给的无功功率QC值与所在节点电压的 平方成正比,即
2.中枢点电压调整的方式
• 中枢点电压调整方式一般分为三类: 顺调压、逆调压和恒调压。 (1)顺调压 • 最大负荷时,中枢点电压不低于线路额定电压 的102.5%,即1.025UN; • 最小负荷时,中枢点电压不超过线路额定电压 的107.5%,即1.075UN。
(2) 逆调压
• 最大负荷时,中枢点电压高于线路额定电压的 5%,即1.05UN; • 最小负荷时,中枢点电压等于线路额定电压, 即1.0UN。
(3) 恒调压
• 电压保持在较线路额定电压高2%~5%的数值,即 (1.02~1.05)UN,不随负荷变化来调整中枢点的 电压。
(二)电压调整的措施
1.电压调整的基本原理
UG
G T1 T2 U
~
l
k1
R+jX
k2
P+ jQ
图5-33 电压调整原理图
PR+QX
忽略线路充电功率、变压器励磁功率和网络功率损耗
图5-22
异步电动机的简化等值电路
受载系数:实际负载和额定负载之比.
在额定电压附近,电动 机的无功功率随电压的 升降而增减。
当电压明显低于额定值 时,无功功率主要由漏 抗中的无功损耗决定, 随电压下降反而具有上 升的性质。
图5-24 异步电动机的无功功率与端电压的关系
㈡发电机的无功功率―电压静态特性
EU 2 2 U QG = ( ) PG X X
2
PG = 0
EU U 2 QCS = QG= X X
•在过励磁运行时,它向系统供给感性无功功率而起无功电源 的作用,能提高系统电压; •在欠励磁运行时(欠励磁最大容量只有过励磁容量的 (50% ~65%)),它从系统吸取感性无功功率而起无功负荷 作用,可降低系统电压。 •它能根据装设地点电压的数值平滑改变输出(或吸取)的无 功功率,进行电压调节。因而调节性能较好。
①造成电力系统运行电压下降的主要原因是
系统的电源无功功率不足;
②为提高电力系统的运行质量,减小电压的
偏移,必须使电力系统的无功功率在额定电
压或其允许电压偏移范围内保持平衡。
三、电力系统的无功功率
(一)无功负荷和无功损耗功率
(二)无功电源 (三)无功功率的平衡方程
(一)无功负荷和无功损耗功率
有功功率确定后,负荷的无功功率由功率因素决定 ⑴我国关于负荷功率因数的规定 ①高压供电的工业企业及装有带负荷调整电压设 备的用户,其功率因数应不低于0 于0.95;
(3)根据无功平衡的需要,增添必要的无功补偿容量,并按 无功功率就地平衡的原则进行补偿容量的分配。小容量的、 分散的无功补偿可采用静电容电器;大容量的、配置在系统 中枢点的无功补偿则宜采用同步调相机或静止补偿器。
四、电力系统的电压管理 (一)电压中枢点的调压方式
(二)电压调整的措施
(一)电压中枢点的调压方式
1 1. 发电机
发电机在额定状态下运行时,可发出无功功率: QGN = SGN sinN = P GNtgN
发电机在非额定功率因数下运行时可能发出的无功GN; ②if ≤ ifN ; ③PG ≤ PGN ;
原动机功 率约束
定子绕组 温升约束
图5-28
发电机的 Q极限 的P P-Q
向量图如下:
.
E
jIX U
.
.
.
I
(c) 相量图
发电机经输电线向系统传送的有功功率PG 和无功功率QG为
P G =UI cos G sin Q UI
=
发电机电势和系统电压间的夹角为δ时
Esin = IX cos cos
sin E
U
I
于是可得
EU sin i PG = X 2 EU cos U QG = X X
③静止补偿器的工作原理分析
三种静止补偿器的原理基本相同。系统供给 节点i的无功功率应满足下式要求
Qi = QLD +QL QC
负荷变化所引起的节点i的无功功率变化为
Qi = QLD +QL QC
如要保持Qi为常数,需要
QLD = QL
只要调节电抗器吸收的无功功率QL,使之随
说 明
①在有功备用较充裕时,可利用靠近负荷中 心的发电机降低功率因数运行,多发无功功 率以提高电力网的运行电压水平; ②远离负荷中心的发电厂不宜降低功率因数 运行。因为无功功率大量的、远距离传输, 会引起网络较大的有功和无功功率以及电压 损耗。
2. 同步调相机
•同步调相机相当于空载运行的同步电动机。
应在额定电压或额定电压所允许的电压偏移范 围内建立电力系统无功功率平衡方程式。
无功不足应采取的措施
电力系统的无功功率平衡应分别按正常运行时的最大和最小 负荷进行计算。 经过无功功率平衡计算发现无功功率不足 时,可以采取的措施有: (1)要求各类用户将负荷的功率因数提高到现行规程规定的 数值。
(2)挖掘系统的无功潜力。例如将系统中暂时闲置的发电机 改作调相机运行;动员用户的同步电动机过励磁运行等。
在额定满载下运行时,无功功率的消耗将达额定容量的13%。
如果从电源到用户需要经过好几级变压,则变压器中无功 功率损耗的数值是相当可观的。
输电线路的无功损耗
输电线路的π型等值电路
2 +Q 2 P +2 Q P Q L = 2 X = 2 X U1 U2 B 2 (U1 +U 2 ) QB = 2 2
①静止补偿器的分类
自饱和电抗器 静止补偿器 FC + TCR 可控硅控制 电抗器型 TSC+TCR
②静止补偿器工作原理简介 FC-TCR型静止补偿器
固定连接电容器加可控硅控制 的电抗器型
C为固定电容器FC;线性电抗 器Lh 和两个反极性并联的可控硅 构成TCR。
TSC-TCR型静止补偿器
TSC为可控硅控制的电
沿线路各点电压的变化
我国规定的电压偏移范围
35kV及以上电压供电的负荷: ±5% 10kV及以下电压供电的负荷: ±7% 低压照明负荷: +5%~-10% 农村电网
正常运行情况: +7.5%~-10%
事故运行情况:
+10%~-15%
电压调整的基点-无功功率
①电压损耗近似等于电压降落的纵分量 △U; ②△U可以分解成电阻电压损耗分量PR/U和电抗
励磁绕组 温升约束
(1)当发电机低于额定功率因数运行时,能增加 输出的无功功率,但发电机的视在功率因取决于 励磁电流不超过额定值的条件,将低于其额定值。 定子容量得不到充分利用; (2)当发电机高于额定功率因数运行时,励磁电 流不再是限制条件,原动机的机械功率又成了限 制条件。定子和转子容量都得不到充分利用。 (3)发电机只有在额定电压、额定电流和额定功 率因数(即运行点C)下运行时视在功率才能达到 额定值,使其容量得到最充分的利用。
容器; TCR为可控硅控制的电 抗器;
自饱和电抗器型静止补偿器
Lh为自饱和电抗器; 电压低于额定电压时,因铁 芯不饱和而呈现很大的电抗 值,基本不消耗无功功率;
电压达到或超过额定电压 时,因铁芯急剧饱和而呈现 很小的电抗值,消耗无功功 率;