高中数学极限知识点

合集下载

数列的极限-高中数学知识点讲解

数列的极限-高中数学知识点讲解

数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。

高中数学中的极限概念是如何应用的

高中数学中的极限概念是如何应用的

高中数学中的极限概念是如何应用的在高中数学的学习中,极限概念是一个极为重要的知识点。

它不仅是数学分析的基础,还在众多领域有着广泛而深刻的应用。

首先,让我们来理解一下什么是极限。

简单来说,极限描述的是当自变量无限趋近于某个值时,函数所趋近的一个确定的值。

比如说,当 x 无限趋近于 0 时,函数 f(x) = sin(x) / x 的极限是 1 。

这就是极限的一个简单例子。

那么,极限在高中数学中有哪些具体的应用呢?在函数的研究中,极限发挥着关键作用。

通过求函数在某一点的极限,我们可以判断函数在该点的连续性。

如果函数在某点的极限值等于该点的函数值,那么函数在这一点就是连续的。

连续性是函数的一个重要性质,它对于我们理解函数的变化规律非常有帮助。

例如,对于函数 f(x) = x + 1 ,当 x 趋近于 1 时,f(x) 的极限就是2 ,而且 f(1) 也等于 2 ,所以这个函数在 x = 1 处是连续的。

极限还用于求函数的导数。

导数反映了函数在某一点的变化率。

通过极限的方法,我们可以求出函数在某一点的导数。

比如,对于函数 f(x) = x²,它在点 x 处的导数 f'(x) 可以通过极限来计算,即 f'(x) = lim (h→0) ((x + h)² x²)/ h ,经过计算可以得到 f'(x) = 2x 。

导数的应用非常广泛,它可以帮助我们解决诸如求函数的单调性、极值和最值等问题。

在数列中,极限也有着重要的地位。

对于一个数列,如果它存在极限,我们就说这个数列是收敛的;如果不存在极限,就说它是发散的。

比如,数列 1/2, 1/4, 1/8, 1/16,…… 它的通项公式是 aₙ =(1/2)ⁿ 。

当 n 趋向于无穷大时,这个数列的极限是 0 ,所以这个数列是收敛的。

而数列 1, 2, 3, 4,…… 通项公式是 aₙ = n ,当 n 趋向于无穷大时,这个数列的值也趋向于无穷大,不存在极限,所以这个数列是发散的。

高中数学极限知识点lim

高中数学极限知识点lim

高中数学极限知识点lim
嘿,朋友!说起高中数学里的极限知识点“lim”,那可真是一座充满挑战又藏着宝藏的大山呀!
你想啊,极限就像是一场追逐游戏。

想象一下,你在追一只跑得超快的兔子,你永远也追不上它,但你能越来越接近它,那个无限接近
却又碰不到的点,就是极限。

比如说,函数 y = 1 / x ,当 x 趋近于无穷大时,y 就趋近于 0 。


就好像你站在一条无限长的跑道上,越往前跑,手里的东西就变得越轻,轻到几乎感觉不到重量,那个几乎为 0 的感觉就是极限。

再看数列的极限。

就像一群小朋友排队报数,1,2,3,4……一直报下去,当报到无穷大的时候,某个和式或者乘积式会趋近于一个固
定的值,这就是数列的极限。

还有函数的极限,那简直就是数学世界里的神秘探险!比如说,f(x) = sin(x) / x ,当 x 趋近于 0 时,极限值是 1 。

这就好比是在走钢丝,越靠近那个关键的点,越要保持平衡,找到那个稳定的结果。

计算极限也有不少技巧呢!比如等价无穷小替换,这就像是找到了一把神奇的钥匙,能轻松打开难题的大门。

可别小看了极限,它在数学的各个领域都大显身手。

就像盖房子的基石,没有它,好多高楼大厦都建不起来。

在解决实际问题中,极限也能帮大忙。

比如在物理学中计算瞬时速度,不就是通过极限的思想来搞定的吗?
学极限可不能怕吃苦,得像个勇敢的探险家,不怕困难,勇往直前。

多做练习题,多思考,多总结,你就会发现,原来极限也没那么可怕,反而充满了乐趣和惊喜!
所以啊,朋友们,好好掌握极限这个知识点,让它成为你数学世界
里的得力助手,帮你攻克一个又一个难题,开启数学的奇妙之旅!。

归纳极限知识点总结高中

归纳极限知识点总结高中

归纳极限知识点总结高中一、极限的定义在介绍极限的相关知识之前,首先需要明确极限的定义。

在数学中,对于一个函数f(x),当x的取值趋于某个数a时,如果函数f(x)的取值也趋于某个数L,那么我们就说函数f(x)在x趋于a时的极限为L,记作lim(x→a)f(x)=L。

这个定义可以通过数学公式来表示,即对于任意的正实数ε,存在对应的正实数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立。

二、极限存在与不存在的判定1. 无穷极限存在的条件当x的取值趋于正无穷或负无穷时,如果函数的取值有限且有确定的值L,那么函数在无穷处的极限存在,即lim(x→+∞)f(x)=L或lim(x→-∞)f(x)=L。

2. 极限不存在的情况当x趋于某个数a时,如果函数f(x)的极限不存在,可能有以下几种情况:a) 函数f(x)在a的邻域内没有定义;b) 函数f(x)在a的邻域内存在无穷大的值;c) 函数f(x)在a的邻域内振荡或者是分段函数的情况。

三、极限的性质1. 唯一性如果函数f(x)在x趋于a时的极限存在,并且是唯一的,那么就可以说函数f(x)在x趋于a时的极限存在。

如果函数在x趋于a时的极限不存在或者不唯一,那么就可以说函数在x趋于a时的极限不存在。

2. 夹逼定理对于一个函数f(x)和g(x),如果它们在x趋于a时的极限存在且等于相同的值L,并且在x趋于a时,有h(x)≤f(x)≤g(x),那么函数h(x)在x趋于a时的极限也存在且等于L。

3. 有界性如果函数f(x)在x趋于a时的极限存在且为L,那么对于任意的小于L的正数ε,存在对应的正数δ,使得当0<|x-a|<δ时,就有|f(x)|<ε成立。

四、无穷小量与无穷大量1. 无穷小量在微积分中,对于一个函数f(x),如果在x趋于某个数a时,极限为零,那么我们就说函数f(x)是x趋于a时的无穷小量。

通常情况下,我们记作lim(x→a)f(x)=0。

高中数学知识点总结三角函数的导数与极限

高中数学知识点总结三角函数的导数与极限

高中数学知识点总结三角函数的导数与极限高中数学知识点总结:三角函数的导数与极限一、三角函数的极限在高中数学中,我们经常遇到三角函数的极限问题。

三角函数的极限计算是求取无穷小量与无穷大量之间的关系,下面就来总结一些三角函数的极限。

1. 正弦函数的极限lim (x→0) sin(x) / x = 1这个极限可以通过泰勒级数展开或用几何图形说明来证明。

因为sin(x)的图像在x=0处有一条切线,斜率为1,所以极限值为1。

2. 余弦函数的极限lim (x→0) (cos(x) - 1) / x = 0余弦函数的图像在x=0处有一条切线,斜率为0,所以极限值为0。

3. 正切函数的极限lim (x→0) tan(x) / x = 1正切函数在x=0时,正切线斜率为1,因此极限值为1。

4. 余切函数的极限lim (x→0) csc(x) = ∞余切函数在x=0时趋于无穷大。

5. sec(x)与cot(x)的极限lim (x→0) sec(x) = 1lim (x→0) cot(x) = ∞在x=0处,sec(x)为1,cot(x)为无穷大。

二、三角函数的导数导数是函数在某一点上的变化率,下面我们来总结一下常见三角函数的导数。

1. 正弦函数的导数d/dx sin(x) = cos(x)2. 余弦函数的导数d/dx cos(x) = -sin(x)3. 正切函数的导数d/dx tan(x) = sec^2(x)4. 余切函数的导数d/dx cot(x) = -csc^2(x)5. 正割函数的导数d/dx sec(x) = sec(x) * tan(x)6. 余割函数的导数d/dx csc(x) = -csc(x) * cot(x)三、三角函数的导数与极限的应用三角函数的导数与极限在物理、工程、计算机科学等领域有广泛的应用。

下面举几个例子说明其应用。

1. 物理学中的振动问题物理学中很多振动问题涉及到角度的变化,而角度变化与三角函数有密切关系,通过计算三角函数的导数和极限,可以得到振动过程中的速度和加速度等相关信息。

高中数学知识点大全(一)

高中数学知识点大全(一)

高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

(2)函数的表示法:解析法、表格法、图象法、分离法。

(3)函数的基本性质:单调性、奇偶性、周期性、对称性。

2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。

3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。

(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。

(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。

(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。

(5)极限存在的条件:夹逼定理、单调有界定理。

二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。

高中数学中的极限运算知识点总结

高中数学中的极限运算知识点总结

高中数学中的极限运算知识点总结极限是高中数学中重要的概念和工具之一,具有广泛的应用领域。

本文将对高中数学中的极限运算知识点进行总结,包括极限的概念、性质、计算方法以及实际应用等方面。

一、极限的概念1. 定义:当自变量趋近于某个确定值时,函数的取值趋近于某个确定值。

即极限是函数在某一点附近的局部性质。

2. 记号:用lim来表示极限,例如lim(x→a) f(x) = L,表示当x趋近于a时,函数f(x)的极限为L。

3. 无穷大与无穷小:当x趋近于无穷大时,函数的极限可能是无穷大或无穷小。

二、极限的性质1. 唯一性:函数在某一点的极限若存在,则唯一。

2. 有界性:有界函数的极限存在,且极限值在该有界区间内。

3. 局部性:极限的存在只与该点附近的函数值有关,与整体函数的取值无关。

4. 保号性:如果函数在某一点的极限存在且不为零,且函数在该点附近连续,则函数在该点附近保持与极限相同的符号。

三、极限的计算方法1. 代数运算法则:极限具有代数运算的性质,可以通过极限的加减乘除法则进行计算。

2. 数列极限法则:对于递推公式给定的数列,可以通过将递推公式的项逐项求极限来计算数列的极限。

四、常用的极限运算知识点1. 常用极限:- sinx/x的极限lim(x→0) = 1;- a^x(x趋于无穷大)的极限lim(x→∞) = ∞;- e^x(x趋于无穷大)的极限lim(x→∞) = ∞;- ln(1+x)/x的极限lim(x→0) = 1。

2. 极限的四则运算:- 两个函数的和(差)的极限等于各自函数的极限之和(差);- 两个函数的乘积的极限等于各自函数的极限之积;- 两个函数的商的极限等于各自函数的极限之商,其中分母函数的极限不为0。

3. 极限的复合运算:- 实数函数与数列的极限运算;- 函数的函数与数列的极限运算。

五、极限的实际应用极限在数学、物理、经济等学科中具有广泛的应用,常见应用包括:1. 利用极限的概念和性质,推导出数学中的重要定理和公式;2. 在物理学中,通过极限,可以计算出物体在某一瞬间的速度、加速度等相关信息;3. 在经济学中,通过极限,可以计算出市场需求、供应等相关指标。

高中数学函数与极限知识点总结

高中数学函数与极限知识点总结

高中数学函数与极限知识点总结函数是数学中一种非常重要的概念,具有广泛的应用。

在高中数学中,函数与极限是一项重点内容。

本文将对高中数学函数与极限的知识点进行总结和说明。

一、函数的概念及性质函数是一种表达两个变量之间关系的方法,通常用符号f(x)表示,其中x是自变量,f(x)是函数值或因变量。

函数的性质包括定义域、值域、单调性、奇偶性等。

定义域是指在函数中自变量的取值范围,值域是函数在定义域上的取值范围。

单调性用来描述函数在定义域上的增减特点,可以分为增函数和减函数。

奇偶性是指函数的对称性,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

二、常见函数1. 一次函数:y=ax+b,其中a和b为常数,a为斜率,b为截距。

一次函数的图像为直线,表示比例关系。

2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不为0。

二次函数的图像为抛物线,开口方向由a的正负决定。

3. 指数函数:y=a^x,其中a为正实数且不等于1。

指数函数的图像为曲线,呈指数增长或指数衰减。

4. 对数函数:y=loga(x),其中a为正实数且不等于1。

对数函数的图像为曲线,与指数函数相反,呈对数增长或对数衰减。

5. 三角函数:包括正弦函数、余弦函数和正切函数等。

三角函数的图像为曲线,具有周期性。

三、函数的性质与变化1. 定义域:函数的定义域是自变量的取值范围,通常由函数的表达式决定。

2. 增减性:函数的增减性描述了函数值随自变量变化的趋势。

增函数在定义域上递增,减函数在定义域上递减。

3. 最值与极值:函数在定义域上的最大值或最小值称为最值,函数的极大值或极小值称为极值。

4. 对称性:函数的对称性包括关于y轴对称、关于x轴对称和关于原点对称。

四、极限的概念与计算极限是函数与自变量无限接近某一值时,函数值趋于的稳定值。

常用的极限计算方法包括代入法、夹逼准则和无穷小量等。

1. 代入法:对于绝大多数函数,可以通过代入变量的值进行计算,得出极限值。

无穷极知识点总结高中

无穷极知识点总结高中

无穷极知识点总结高中高中数学学科中,无穷极是一个重要的概念。

无穷极包括正无穷、负无穷和无穷小,是一种特殊的数学概念,对于理解解析几何、微积分、极限等数学概念都有着重要的作用。

在高中数学中,通过学习无穷极的相关理论和应用,可以帮助学生更好地理解数学知识,提高数学分析问题的能力。

下面将从正无穷、负无穷和无穷小三个方面对无穷极知识点进行总结。

(一)正无穷1. 正无穷的定义在数轴上,当和任意给定数相比,都比这个数大的数时,称为正无穷。

正无穷用符号∞表示。

正无穷是数轴上的一个特殊点,它没有确定的数值,但在数轴上却有确切的位置,表示无限大,是一种极限情况。

在数学中,正无穷常常用来表示一些过程或变量的增长趋势。

2. 正无穷的性质正无穷的性质包括加法性、乘法性、极限性等。

(1)加法性:对于任意实数a,有a + ∞ = ∞(2)乘法性:对于任意正实数a,有a · ∞ = ∞(3)极限性:对于无穷逼近的数列或函数,如果其极限为正无穷,表示该数列或函数的增长趋势为正无穷。

3. 正无穷的应用正无穷在数学中有着广泛的应用,尤其在微积分和极限理论中更是常见。

在微积分中,正无穷经常用来表示某些函数在一定区间内的极限情况,例如在求积分时常用到正无穷的概念。

在极限理论中,正无穷是一种特殊的极限情况,它在数列、函数的极限计算中扮演着关键的角色。

正无穷的概念可以帮助我们更好地理解极限的性质和应用。

(二)负无穷1. 负无穷的定义在数轴上,当和任意给定数相比,都比这个数小的数时,称为负无穷。

负无穷用符号-∞表示。

负无穷也是数轴上的一个特殊点,它同样没有确定的数值,但在数轴上有着确切位置,表示无限小,是一种极限情况。

在数学中,负无穷常常用来表示一些过程或变量的减小趋势。

2. 负无穷的性质负无穷的性质和正无穷类似,也包括加法性、乘法性、极限性等。

(1)加法性:对于任意实数a,有a - ∞ = -∞(2)乘法性:对于任意正实数a,有a · (-∞) = -∞(3)极限性:对于无穷逼近的数列或函数,如果其极限为负无穷,表示该数列或函数的减小趋势为负无穷。

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。

在高中数学中,数列极限的性质和计算方法是一个重要的考点。

本文将详细解析数列极限的性质和计算方法,并通过具体题目进行举例,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

一、数列极限的性质1. 有界性:如果数列{an}存在有界的上界和下界,那么该数列必定收敛。

例如,考虑数列{an} = (-1)^n,该数列的值在-1和1之间,因此数列{an}是有界的,且极限为0。

2. 单调性:如果数列{an}单调递增且有上界,或者单调递减且有下界,那么该数列必定收敛。

例如,考虑数列{an} = 1/n,该数列单调递减且有下界0,因此数列{an}是收敛的,且极限为0。

3. 夹逼定理:如果数列{an}满足an≤bn≤cn,并且lim an = lim cn = L,那么数列{bn}也收敛,并且极限为L。

例如,考虑数列{an} = 1/n,{bn} = (1 + 1/n)^n,{cn}= (1 + 1/n)^(n+1),显然有an≤bn≤cn,并且lim an = lim cn = 0,因此数列{bn}也收敛,且极限为0。

二、数列极限的计算方法1. 基本四则运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{an + bn}的极限为A + B,数列{an - bn}的极限为A - B,数列{an * bn}的极限为A * B,数列{an / bn}的极限为A / B(其中B ≠ 0)。

2. 极限的乘法法则:如果数列{an}的极限为A,数列{bn}的极限为B,那么数列{an * bn}的极限为A * B。

例如,考虑数列{an} = 1/n,{bn} = n,显然lim an = 0,lim bn = ∞,但是lim (an * bn) = 1。

3. 极限的倒数法则:如果数列{an}的极限为A(A ≠ 0),那么数列{1/an}的极限为1/A。

高中常见极限知识点总结

高中常见极限知识点总结

高中常见极限知识点总结极限是数学分析中一个非常重要的概念,它是研究函数和数列的性质的基础。

在高中数学课程中,极限是一个重要的内容,学生需要深入理解和掌握它,因为它不仅是数学的基础,还在物理、工程、经济学等其他学科中有着广泛的应用。

本文将对高中常见的极限知识点进行总结,希望可以帮助学生更好地理解和掌握这一重要的数学概念。

一、极限的概念1. 定义:对于函数f(x),当x趋于某一数a时,如果当x充分靠近a时,函数值f(x)无限接近于一个定值L,则称L为函数f(x)当x趋于a时的极限,记作lim(x→a)f(x)=L。

2. 极限存在的条件:极限存在的条件是当x充分靠近a时,函数值能够无限接近于一个定值L。

也就是说,对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。

3. 极限的表示:极限可以用符号lim表示,写成lim(x→a)f(x)=L,其中x→a表示x趋于a的过程,f(x)表示函数值,L表示极限的定值。

可以理解为,当x趋于a时,函数值f(x)趋于L。

二、极限的性质1. 唯一性:如果函数f(x)当x趋于a的时候极限存在,那么这个极限是唯一的。

2. 有界性:如果函数f(x)当x趋于a的时候极限存在,那么函数f(x)在x趋于a的邻域内有界。

3. 保序性:如果函数f(x)和g(x)当x趋于a的时候极限存在,且有f(x)≤g(x),那么极限也有lim(x→a)f(x)≤lim(x→a)g(x)。

4. 乘法性:如果函数f(x)和g(x)当x趋于a的时候极限存在,那么函数f(x)g(x)当x趋于a 的时候极限也存在,且有lim(x→a)f(x)g(x)=lim(x→a)f(x)·lim(x→a)g(x)。

5. 加法性:如果函数f(x)和g(x)当x趋于a的时候极限存在,那么函数f(x)+g(x)当x趋于a的时候极限也存在,且有lim(x→a)(f(x)+g(x))=lim(x→a)f(x)+lim(x→a)g(x)。

高中求极限的方法总结

高中求极限的方法总结

高中求极限的方法总结在高中数学学习中,求极限是一个非常重要的知识点,也是学生们普遍感到困难的部分。

在这篇文档中,我将总结一些高中求极限的方法,希望能够帮助到有需要的同学们。

首先,我们来谈谈求极限的基本概念。

在数学中,极限是一个重要的概念,它描述的是一个函数在某一点附近的表现。

当自变量趋于某一特定值时,函数的取值会趋于一个确定的值,这个确定的值就是极限。

在高中数学学习中,我们通常会接触到一些基本的求极限的方法,比如利用代数运算、利用夹逼定理、利用洛必达法则等等。

其次,让我们来看看利用代数运算求极限的方法。

当我们遇到一些函数在某一点的极限时,我们可以尝试利用代数运算来简化函数,然后再求极限。

比如,我们可以利用因式分解、有理化、有理函数的分解等代数运算来化简函数,然后再求极限。

这种方法在一些简单的极限求解中非常有效。

除了代数运算,夹逼定理也是一个常用的求极限方法。

夹逼定理是利用一个中间函数夹住要求极限的函数,通过比较中间函数和要求极限的函数的大小关系来求得极限的方法。

这种方法常常用于求解一些复杂的极限,特别是当我们无法直接通过代数运算求得极限时,夹逼定理可以成为一个很好的选择。

此外,洛必达法则也是一个常用的求极限方法。

当我们遇到一些不定型的极限时,可以尝试利用洛必达法则来求解。

洛必达法则告诉我们,当我们遇到0/0或者∞/∞的形式时,可以尝试对函数求导,然后再求极限。

这种方法在处理一些特殊的不定型极限时非常有效。

综上所述,高中求极限的方法包括利用代数运算、夹逼定理、洛必达法则等多种方法。

在实际的学习中,我们可以根据具体的题目特点来选择合适的方法来求解极限。

同时,多做练习、多总结方法也是提高求极限能力的重要途径。

希望这些方法能够帮助到正在学习求极限的同学们,让大家能够更加轻松地掌握这一知识点。

高中数学知识点归纳极限基础知识

高中数学知识点归纳极限基础知识

高中数学知识点归纳极限基础知识极限是高中数学中重要的概念之一,它不仅在数学中具有重要的应用价值,也为后续学习更深层次的数学知识打下了基础。

本文将对高中数学中的极限基础知识进行归纳总结,以帮助同学们更好地理解和掌握这一概念。

1. 函数极限函数极限是极限的一种常见形式,描述了函数在某一点趋于无穷或趋于某一特定值时的性质。

在计算函数极限时,可以使用极限的定义、极限的运算法则以及洛必达法则等方法。

2. 数列极限数列极限是极限的另一种形式,它描述了数列中的元素随着自变量趋于无穷或趋于某一特定值时的变化规律。

计算数列极限时,可以使用数列极限的定义、数列极限的性质以及常用的极限运算法则等方法。

3. 极限的性质极限具有一些基本的性质,对于计算和理解极限有着重要的帮助。

其中包括唯一性、局部有界性、保号性、保序性、夹逼准则等。

这些性质在具体的计算中经常被使用,能够简化计算过程,提高效率。

4. 极限的运算法则极限的运算法则是极限计算的重要工具,它包括了函数极限和数列极限的加法、减法、乘法、除法、乘方等基本运算法则。

熟练掌握这些运算法则可以快速准确地计算各种极限,并解决一些复杂的数学问题。

5. 无穷大与无穷小在极限的计算中,会遇到一些无穷大和无穷小的概念。

无穷大是指当自变量趋于无穷时函数值也趋于无穷大的情况,可以用来描述函数的增长趋势;无穷小是指当自变量趋于某一特定值时函数值趋于零的情况,可以用来描述函数在某一点附近的性质。

6. 极限的应用极限在现实世界中有广泛的应用,例如在物理学、工程学、经济学等领域。

通过对极限的研究和运用,人们可以更准确地描述和分析各种变化过程,找出规律并得出结论。

综上所述,高中数学中的极限基础知识包括函数极限、数列极限、极限的性质与运算法则、无穷大与无穷小以及极限的应用等。

掌握这些知识点,不仅可以帮助同学们理解和解决数学问题,还能为后续学习提供良好的基础。

通过不断巩固和实践,相信同学们能够更好地掌握和运用极限知识,取得优异的成绩。

高中数学知识点第十三章-极 限

高中数学知识点第十三章-极 限

高中数学第十三章-极 限考试内容:教学归纳法.数学归纳法应用.数列的极限.函数的极限.根限的四则运算.函数的连续性.考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则;会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.§13. 极 限 知识要点1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立.⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果①当0n n =(+∈N n 0)时,)(n P 成立;②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立.2. ⑴数列极限的表示方法:①a a n n =∞→lim ②当∞→n 时,a a n →.⑵几个常用极限:①C C n =∞→lim (C 为常数) ②),(01lim 是常数k N k nk n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞→n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞→∞→不存在 当1 a 时,n n a ∞→lim 不存在 ⑶数列极限的四则运算法则:如果b b a a b n n n ==∞→∞→lim ,lim ,那么 ①b a b a n n n ±=±∞→)(lim ②b a b a n n n ⋅=⋅∞→)(lim③)0(lim ≠=∞→b ba b a n n n 特别地,如果C 是常数,那么Ca a C a C n n n n n =⋅=⋅∞→∞→∞→lim lim )(lim . ⑷数列极限的应用: 求无穷数列的各项和,特别地,当1 q 时,无穷等比数列的各项和为)1(11 q q a S -=. (化循环小数为分数方法同上式)注:并不是每一个无穷数列都有极限.3. 函数极限;⑴当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限趋进于一个常数a ,就是说当x 趋近于0x 时,函数)(x f 的极限为a .记作a x f x x =→)(lim 0或当0x x →时,a x f →)(. 注:当0x x →时,)(x f 是否存在极限与)(x f 在0x 处是否定义无关,因为0x x →并不要求0x x =.(当然,)(x f 在0x 是否有定义也与)(x f 在0x 处是否存在极限无关.⇒函数)(x f 在0x 有定义是)(lim 0x f x x →存在的既不充分又不必要条件.) 如⎩⎨⎧+--=1111)( x x x x x P 在1=x 处无定义,但)(lim 1x P x →存在,因为在1=x 处左右极限均等于零.⑵函数极限的四则运算法则:如果b x g a x f x x x x ==→→)(lim ,)(lim 00,那么 ①b a x g x f x x ±=±→))()((lim 0②b a x g x f x x ⋅=⋅→))()((lim 0③)0()()(lim 0≠=→b ba x g x f x x 特别地,如果C 是常数,那么)(lim ))((lim 00x f C x f C x x x x →→=⋅. n x x n x x x f x f )](lim [)]([lim 00→→=(+∈N n ) 注:①各个函数的极限都应存在.②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限: ①01lim =∞→xn ②0lim =+∞→x x a (0<a <1);0li m =-∞→x x a (a >1) ③1sin lim 0=→x x x 1sin lim 0=⇒→x x x④e x x x =+∞→)11(lim ,e x x x =+→10)1(lim (71828183.2=e ) 4. 函数的连续性:⑴如果函数f (x ),g (x )在某一点0x x =连续,那么函数)0)(()()(),()(),()(≠⋅±x g x g x f x g x f x g x f 在点0x x =处都连续.⑵函数f (x )在点0x x =处连续必须满足三个条件: ①函数f (x )在点0x x =处有定义;②)(lim 0x f x x →存在;③函数f (x )在点0x x =处的极限值等于该点的函数值,即)()(lim 00x f x f x x =→. ⑶函数f (x )在点0x x =处不连续(间断)的判定: 如果函数f (x )在点0x x =处有下列三种情况之一时,则称0x 为函数f (x )的不连续点. ①f (x )在点0x x =处没有定义,即)(0x f 不存在;②)(lim 0x f x x →不存在;③)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→. 5. 零点定理,介值定理,夹逼定理:⑴零点定理:设函数)(x f 在闭区间],[b a 上连续,且0)()( b f a f ⋅.那么在开区间),(b a 内至少有函数)(x f 的一个零点,即至少有一点ξ(a <ξ<b )使0)(=ξf . ⑵介值定理:设函数)(x f 在闭区间],[b a 上连续,且在这区间的端点取不同函数值,B b f A a f ==)(,)(,那么对于B A ,之间任意的一个数C ,在开区间),(b a 内至少有一点ξ,使得C f =)(ξ(a <ξ<b ).⑶夹逼定理:设当δ ||00x x -时,有)(x g ≤)(x f ≤)(x h ,且A x h x g x x x x ==→→)(lim )(lim 00,则必有.)(lim 0A x f x x =→ 注:||0x x -:表示以0x 为的极限,则||0x x -就无限趋近于零.(ξ为最小整数)6. 几个常用极限: ①1,0lim q q n n =+∞→ ②)0(0!lim a n a nn =+∞→ ③k a a n n kn ,1(0lim =+∞→为常数) ④0ln lim=+∞→n n n ⑤k n n k n ,0(0)(ln limεε=+∞→为常数)。

高中数学知识点:极限

高中数学知识点:极限

高中数学知识点:极限1. 什么是极限?答:极限是一个变量趋近于某一值时(通常是无穷大或无穷小)的过程。

2. 举例说明什么是极限。

答:比如当x趋近于无穷大时,1/x的极限为0。

3. 什么是单侧极限?答:当变量趋近于某一点时,如果左右两侧的极限不相等,那么就存在单侧极限。

4. 什么是无穷小?答:当变量趋近于某一值时,如果该变量趋近于0,那么该变量被称为无穷小。

5. 无穷小与极限有何关系?答:无穷小是用来描述极限过程中变量的行为,也就是当变量趋近于某一值时的表现。

6. 极限存在的条件是什么?答:当左右两侧的极限相等时,极限才存在。

7. 极限不存在的情况有哪些?答:1)当左右两侧的极限不相等时;2)当左右两侧的极限均不存在时。

8. 极限的运算规则有哪些?答:1)极限的加减法:若lim f(x)=a,lim g(x)=b,则lim[f(x)±g(x)]=a±b;2)极限的乘法:若lim f(x)=a,lim g(x)=b,则lim [f(x)g(x)]=ab;3)极限的除法:若lim f(x)=a,lim g(x)=b(b≠0),则lim [f(x)/g(x)]=a/b。

以上规则仅在极限存在的情况下成立。

9. 什么是函数的连续性?答:函数在某一点处连续,当且仅当该点左右两侧的极限相等,且该点处的函数值等于其极限值。

10. 极限的应用有哪些?答:极限在微积分中有广泛的应用,如求导、积分等。

练习题:1. 求limx→1 (x^2-1)/(x-1)。

答:limx→1 (x^2-1)/(x-1) = limx→1 (x+1) = 2。

2. 求limx→∞ (2x+1)/(4x-2)。

答:limx→∞ (2x+1)/(4x-2) = limx→∞ (2+1/x)/(4-2/x) = 1/2。

3. 求极限limx→2 (2x+5)/|x-2|。

答:左极限:limx→2^- (2x+5)/|x-2| = -7/0^- = 无穷大;右极限:limx→2^+ (2x+5)/|x-2| = 9/0^+ = 无穷大。

怎样掌握高中数学的函数极限与连续性证明

怎样掌握高中数学的函数极限与连续性证明

怎样掌握高中数学的函数极限与连续性证明高中数学中,函数极限与连续性证明是一个重要且常见的内容,对于学生们来说,掌握这个知识点不仅能够提高数学分析与解题能力,还有助于培养逻辑思维和推理能力。

本文将介绍如何有效掌握高中数学的函数极限与连续性证明,并给出相关的学习方法和技巧。

一、理解函数极限的概念函数极限是数学中十分重要的概念,它描述函数在某一点周围的变化趋势。

在掌握函数极限之前,需要理解一些基本的概念,如导数和微分等。

同时,也需要熟悉函数的图像,以便更好地理解函数极限的概念。

在理解函数极限的概念时,可以通过多做一些具体的例题来加深对其的理解。

可以选择一些典型的函数,如多项式函数、指数函数或对数函数等,并分别求它们在某一点处的极限,这样能够更好地体会函数极限的意义和计算方法。

二、掌握函数极限的计算技巧在掌握了函数极限的概念之后,需要着重掌握函数极限的计算技巧。

这些技巧包括一些基本的极限运算法则,如极限的四则运算法则、保持不等式不等式的性质等。

此外,还需要熟悉一些特殊函数的极限计算方法,如三角函数的极限、指数函数的极限等。

此外,在求函数极限时,还可以运用辅助函数、夹逼准则等方法,灵活地选择适当的方法来求解,以便更好地理解和计算函数极限。

三、掌握函数极限的证明方法函数极限的证明是高中数学中的一个重要内容,也是考试中的常见题型。

掌握函数极限的证明方法能够提高数学证明的能力,并帮助理解函数极限的概念。

在进行函数极限的证明时,可以运用数学归纳法、反证法、极限的定义等方法。

具体的证明过程通常需要逻辑推理和数学运算,并且需要注重细节的处理。

通过多做一些函数极限证明的例题,可以加深对函数极限的理解,提高数学推理能力。

四、理解函数连续性的概念函数连续性是函数极限的一个重要应用和推广,它描述了函数在整个定义域上的变化情况。

在掌握函数连续性之前,需要理解一些基本的概念,如间断点、左极限和右极限等,并通过实际的例子来加深对连续性的理解。

高中数学极限求解技巧

高中数学极限求解技巧

高中数学极限求解技巧高中数学极限求解是高中数学中的重要知识点,也是大学数学中很重要的基础知识。

下面将介绍一些高中数学极限求解的技巧。

一、基本极限1. 基本极限一:当x趋于无穷大时,a) 若a>0,则lim(x→∞)a^x=∞b) 若0<a<1,则lim(x→∞)a^x=0c) 若a=1,则lim(x→∞)a^x=1d) 若a<0,则lim(x→∞)a^x不存在2. 基本极限二:当x趋于0时,a) 若a>0,则lim(x→0)a^x=1b) 若0<a<1,则lim(x→0)a^x=1c) 若a<0,则lim(x→0)a^x不存在3. 基本极限三:当x趋于无穷大时,a) lim(x→∞)(1+x)^1/x=eb) lim(x→∞)(1+1/x)^x=ec) lim(x→∞)(1+1/(nx))^n=e二、极限的四则运算1. 若lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,则a) 若函数f(x)和g(x)在x=x0处连续,则lim(x→x0)[f(x)+g(x)]=A+Bb) 若函数f(x)和g(x)在x=x0处连续,则lim(x→x0)[f(x)-g(x)]=A-Bc) 若函数f(x)和g(x)在x=x0处连续,则lim(x→x0)[f(x)·g(x)]=A·Bd) 若函数f(x)和g(x)在x=x0处连续,并且B≠0,则lim(x→x0)[f(x)/g(x)]=A/B2. 若lim(x→x0)f(x)=A,则a) 若函数f(x)在x=x0处连续,则lim(x→x0)[c·f(x)]=c·A (其中c为常数)b) 若函数f(x)在x=x0处连续,则lim(x→x0)[f(x)^n]=A^n (其中n为整数)c) 若函数f(x)在x=x0处连续,并且A>0,则lim(x →x0)√[f(x)]=√A三、极限存在的判断方法1. 夹逼定理:若存在函数g(x)和h(x),满足lim(x→x0)g(x)=lim(x→x0)h(x)=A,并且对于x处于x0的邻域内的所有x,有g(x)≤f(x)≤h(x),则lim(x→x0)f(x)=A。

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学学问点全〔总结〕一、求导数的〔方法〕(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,假如函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

详细求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

如何学好高中数学方法1、上课仔细听、认真做笔记学习新的学问首先得通过老师的讲解,然后自己理解,这样才能通过做题稳固,不然上课不仔细听的话,下课自己做题也不会,即使自己参按例题做出来了,也会有许多地方不理解,而且自己学还很铺张时间。

所以高中的同学们肯定不能轻视了上课老师讲的内容。

再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得如今看了一眼就记住了,要知道数学的学问从高一到高三会越来越难,前面的学问相当于为后面做铺垫,尤其是高三复习的时候。

所以同学们在高一高二的时候老师讲的重点的内容肯定要整理在笔记上,不然到了高三复习的时候遗忘了又得铺张时间重新做笔记。

2、以课本为主,把握课本去理解提高数学成果主要是靠听课和做题来提高。

极限知识点高三数学

极限知识点高三数学

极限知识点高三数学在高中数学的学习过程中,极限是一个十分重要且常出现的概念。

它不仅在解题过程中起到关键作用,而且在数学的其他分支中也有广泛的应用。

本文将重点介绍高三数学中的极限知识点,帮助同学们更好地理解和掌握这一概念。

一、极限的定义极限是指当自变量趋近于某个值时,函数值的变化趋势。

一般来说,我们用符号“lim”加上一个表达式来表示极限。

例如lim(x→a)f(x)表示当自变量x趋近于a时,函数f(x)的极限。

二、常见的极限运算法则1. 有界性定理:如果一个函数在一个区间内有定义并且有界,那么它在这个区间内必有极限。

2. 四则运算法则:对于两个函数f(x)和g(x),如果lim(x→a)f(x)和lim(x→a)g(x)存在且有限,则有以下极限运算法则:(1) lim(x→a)(f(x)+g(x)) = lim(x→a)f(x) + lim(x→a)g(x)(2) lim(x→a)(f(x)-g(x)) = lim(x→a)f(x) - lim(x→a)g(x)(3) lim(x→a)(f(x)g(x)) = lim(x→a)f(x) × lim(x→a)g(x)(4) lim(x→a)(f(x)/g(x)) = lim(x→a)f(x) / lim(x→a)g(x) (前提:lim(x→a)g(x) ≠ 0)3. 复合函数极限法则:设y=f[g(x)]为由f(u)和g(x)构成的复合函数,其中lim(x→a)g(x)=b,lim(u→b)f(u)=L,则有lim(x→a)f[g(x)]=L。

4. 已知函数极限与极限运算法则可以联合使用。

例如,如果lim(x→a)f(x)=A,lim(x→a)g(x)=B,则有lim(x→a)(f(x)^g(x))=A^B。

三、例题分析为了更好地理解和掌握极限的应用,我们来看几个例题:例题1:求极限lim(x→0)(sinx/x)。

解析:由于在x→0时,sinx和x都趋近于0,我们可以利用泰勒级数展开来计算该极限。

高中数学数列及其极限知识点总结及练习题

高中数学数列及其极限知识点总结及练习题

高中数学数列及其极限知识点总结及练习题中国魏晋时期的数学家刘徽创「割圆术」﹐利用圆的内接正多边形﹐当边数愈来愈多时﹐会愈靠近圆的面积﹐从而得出了圆周率 π 的近似值。

刘徽采用的「割圆术」﹐其程序蕴含了「无穷」﹑「极限」等数学概念。

例题1 ---------------------------------------------------------------------------------------------------------------- 写出下列各数列的前 8 项。

(1)〈3n -1〉。

(2)〈(-1)n 〉。

(3)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n ﹐n 为正整数且 n ≥2。

(4)〈a n 〉﹐其中 a n =20+21+…+2n -1﹐n 为正整数。

随堂练习 ------------------------------------------------------------------------------------------------------------ 写出下列各数列的前 6 项:(1)n 1。

(2)〈2n -1〉。

(3)()211nn -+。

(4)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n 2﹐n 为正整数且 n ≥2。

------------------------------------------------------------------------------------------------------------------------将下列各数列用〈a n 〉表示: (1)等差数列:7﹐10﹐13﹐16﹐…。

(2)等比数列:1﹐-12﹐14﹐-18﹐…。

(3)平方数的倒数所成的数列:11﹐14﹐19﹐…﹐1100。

随堂练习 ------------------------------------------------------------------------------------------------------------ 将下列各数列用〈a n 〉表示:(1)等差数列:7﹐10﹐13﹐16﹐…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限
一、数列的极限:
对于数列{}n x ,如果当n 无限增大时,数列的相应项n x 无限趋近一个确定的常数A ,则称当n 趋于无穷时,数列{}n x 以A 为极限,记为
)(lim ∞→→=∞
→n A x A x n n n 或 式子中“→”读作“趋于”,这时也称数列{}n x 是收敛的,若数列{}n x 没有极限,则称数列{}n x 是发散的
二、函数的极限
1.当∞→x 时函数的极限
2.当+∞→x 或-∞→x 时函数的极限
得到一个充要条件是:A x f x =∞→)(lim 的充要条件是A x f x f x x ==-∞
→+∞→)(lim )(lim 3.当0x x →时函数的极限
4.当+→0x x 或-
→0x x 时函数的极限
得到一个充要条件是:A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 00 三、极限的运算法则
(1)极限的唯一性 如果极限)(lim 0x f x x →存在,则它只有一个极限,即若A x f x x =→)(lim 0,B x f x x =→)(lim 0,则A=B
(2)极限的运算法则
设B x v A x u ==)(lim ,)(lim 则有
(1)[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim
(2)[]B A x v x u x v x u •=•=•)(lim )(lim )()(lim
(3)当0)(lim ≠=B x v 时,B
A x v x u x v x u ==)(lim )(lim )()(lim 推论1 如果)(lim 0
x u x x →存在,c 为常数,则)(lim ))((lim 00x u c x cu x x x x →→= 推论2 如果)(lim 0x u x x →存在,N n ∈,则n x x n x x x u x u )](lim [)]([lim 0
0→→= 四、函数的间断点
间断点的分类:
1)第一类间断点
(1)可去间断点:左右极限相等,但不等于该点的函数值(2)跳跃间断点:左右极限存在,但不想等
2)第二类间断点
左右极限至少有一个不存在。

相关文档
最新文档