计量经济学-第三章

合集下载

计量经济学 第三章

计量经济学 第三章
习题答案
3-2.答:变量非线性、系数线性;变量、系数均线性;变量、系数均 线性;变量线性、系数非线性;变量、系数均为非线性;变量、系数均 为非线性;变量、系数均为线性。 3-3.答:多元线性回归模型与一元线性回归模型的区别表现在如下几 方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性 回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关
方和较大,但相对来说其AIC值最低,所以我们选择该模型为最优的模
型。
(4)随着收入的增加,我们预期住房需要会随之增加。所以可以预
期β3>0,事实上其估计值确是大于零的。同样地,随着人口的增加,
住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如
此。随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预
其中:——某天慢跑者的人数 ——该天降雨的英寸数 ——该天日照的小时数 ——该天的最高温度(按华氏温度) ——第二天需交学期论文的班级数Байду номын сангаас
请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么? (2)为什么用相同的数据去估计相同变量的系数得
到不同的符号? 3-18.对下列模型: (1)
(2) 求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二 乘估计值作比较:
(1) 检验模型A中的每一个回归系数在10%水平下是否为零(括 号中的值为双边备择p-值)。根据检验结果,你认为应该把 变量保留在模型中还是去掉?
(2) 在模型A中,在10%水平下检验联合假设H0:i =0(i=1,5,6,7)。说明被择假设,计算检验统计值,说明其 在零假设条件下的分布,拒绝或接受零假设的标准。说明你 的结论。
(3) ,你认为哪一个估计值更好? 3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭 价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千 人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营 业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无 法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括 号内为标准差):

(整理)计量经济学 第三章 多元线性回归与最小二乘估计

(整理)计量经济学  第三章  多元线性回归与最小二乘估计

第三章 多元线性回归与最小二乘估计3.1 假定条件、最小二乘估计量和高斯—马尔可夫定理1、多元线性回归模型:y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t (3.1) 其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。

对经济问题的实际意义:y t 与x t j 存在线性关系,x t j , j = 0, 1, … , k - 1, 是y t 的重要解释变量。

u t 代表众多影响y t 变化的微小因素。

使y t 的变化偏离了E( y t ) = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 决定的k 维空间平面。

当给定一个样本(y t , x t 1, x t 2 ,…, x t k -1), t = 1, 2, …, T 时, 上述模型表示为 y 1 = β0 +β1x 11 + β2x 12 +…+ βk - 1x 1 k -1 + u 1,y 2 = β0 +β1x 21 + β2x 22 +…+ βk - 1x 2 k -1 + u 2, (3.2) ………..y T = β0 +β1x T 1 + β2x T 2 +…+ βk - 1x T k -1 + u T经济意义:x t j 是y t 的重要解释变量。

代数意义:y t 与x t j 存在线性关系。

几何意义:y t 表示一个多维平面。

此时y t 与x t i 已知,βj 与 u t 未知。

)1(21)1(110)(111222111111)1(21111⨯⨯-⨯---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡T T k k k T k T TjT k j k jT T u u u x x x x x x x x x y y yβββ (3.3) Y = X β + u (3.4)2假定条件为保证得到最优估计量,回归模型(3.4)应满足如下假定条件。

学习笔记:伍德里奇《计量经济学》第五版-第三章 多元回归分析:估计

学习笔记:伍德里奇《计量经济学》第五版-第三章 多元回归分析:估计

y = b 0+ b 1x 1+ b 2x 2+ . . . b k x k + u一、多元线性回归模型1.我们可以研究控制一些变量不变的条件下,其他变量对y的影响,而不是假定他们不相关。

Cons = b 0+ b 1inc+b 2inc 2 +u2.我们还能推广变量之间的函数关系如:通过在模型中包含更多的变量,我们更好的达到了SLR.4所表达的目的E(u|x 1,x 2, …,x k ) = 0 (3.8)HYP.1一般多元回归模型的关键假定(u和所有x都不相关):( )仍然是最小化残差和:对(3.12)求k +1次偏导得一阶条件(交给计算机计算)(此时假定k +1个方程只能得到估计值得唯一解2.1 如何得到OLS 估计值例3.1分析两个系数时,可得出当我们把其中一个因素涵盖在模型中时,另外一个因素的预测就变得不有力了1.系数表示局部效应(控制其他变量不变时,对y的效应)多元回归分析给了我们在收集不到“其他条件不变”时的数据仍有同样效果的能力2.“控制其他变量不变”的含义3.同时改变不止一个自变量(只需要将效应加和)2.2 对OLS 回归方程的解释从单变量情形加以推广,得:1.残差的样本平均值为02.每个自变量和OLS 残差之间的样本协方差为0。

因此OLS 拟合值和OLS 残差之间的样本协方差也为03.点总位于OLS 回归线上(性质1. 2.由一阶条件得,性质3.由1.可得2.3 OLS 的拟合值和残差( )其中 是x1对其他变量回归后的残差(即排除其他变量对x1的影响,类似矢量正交)2.4 对“排除其他变量影响”的解释( )(是 对 简单回归的斜率1.样本中x2对y的偏效应为0,即2.x1和x 2不相关,即(1. 2.可解释、 的差异由(3.23)知,在两种情况下利用矢量正交的理解考虑简单回归和两个自变量的回归:2.5简单回归和多元回归估计值比较可以证明,R2的另一种理解是 的实际值与其拟合值 的相关系数的平方,其中2.6 拟合优度(与简单回归大致相同)二、普通最小二乘法(多元线性回归模型的代数特征和对方程的解释)使用提示:1.该笔记是对伍德里奇《计量经济学》第五版第三章学习过程中的内容梳理2.由于本人水平有限,单独看该笔记估计会很吃力,且很可能出现错误,建议结合书本进行理解3.希望能够对想学习计量经济学的人起到一点点帮助第三章多元回归分析:估计2020年3月19日10:47由于定义下增加解释变量不会降低R2,所以判断一个解释变量是否应该放入模型的依据应该是该解释变量在总体中对y的偏效应是否非02.7 过原点的回归1.之前推导的性质不再成立,特别是OLS残差的样本平均值不再是02.计算R2没有特定的规则3.当截距项b0不等于0,斜率参数OLS估计量将有偏误;当截距项b0=0,估计带截距项方程的代价是,OLS斜率估计量的方差会更大2.8 OLS估计量的期望值MLR.1(线性于参数)MLR.2(随机抽样)MLR.3(不存在完全共线性,允许一定程度的相关)(在定义函数时要小心不要违背了MLR.3MLR.4(条件均值为0)(内生解释变量:解释变量可能与误差项相关定理3.1 OLS的无偏性()2.9 过度设定和设定不足(多了无关变量和少了解释变量)2.9.1过度设定(不影响OLS估计量的无偏性,但影响OLS估计量的方差)2.9.2设定不足1.简单情形:从一个斜率参数到两个斜率参数由(3.23):取均值得偏误为:(因此偏误的方向取决于两个符号,偏误的大小取决于两者之积,在应用中可以通过常识来判断偏误方向2.扩展情形:从两个斜率参数到三个斜率参数当你假设和不相关时,就可以证明和的关系和简单情形一样2.10 OLS估计量的方差MLR.5(同方差性,不仅可以简化公式,还得到了有效性)定理3.2 OLS斜率估计量的抽样方差在MLR.1-5下,以自变量的样本值为条件,有()(是的总样本波动,则是对所有其他自变量(并包含一个截距项)回归所得到的由(3.51)可知,估计量的抽样方差由三个要素决定:1.误差方差(噪声越大,越难估计)2.的总样本波动(越分散,越容易估计)3.自变量之间的线性关系(和其他自变量相关性越高,越不利于估计(很高的并不一定有问题,抽样方差的大小还要取决于剩下两个因素,可以通过收集更多的数据来削减多重共线性(当考虑某一个自变量 的方差时,若 和其他自变量均无关,那么其他自变量间的关系是不造成影响的,某些经济学家为了分离特定变量的因果效应,而在模型中包括许多控制因素,但这并不影响因果效应的证实( )当含有两个解释变量时:( )当含有一个解释变量时:((3.54)和(3.55)表明除非样本中x1和x2不相关,否则 <1.当 =0时,两个都无偏,但 < ,所以前者更好2.当不等于0时,不放x 2进去会导致有偏,放了x 2进去会导致方差增加,但我们喜欢把x2放进去的理由是:不放进去的偏误不会随着样本容量扩大而缩减,而放进去增加的方差却会随着样本容量的扩大逐渐缩小至0所以有两个结论:2.10.1 过度设定的方差(建立在过度设定无偏讨论的基础上)( )2.10.2 OLS 估计量的标准误(与简单回归相同)在假定MLR.1-5下,有(MLR .5若不满足(即异方差),会使标准误失效(第二种表达清楚说明了随着样本容量的扩大,在其他三项( 、 、 )都趋于常数的时候,估计量标准误是如何变小的因此得估计量的标准误:定理3.3 的无偏估计OLS 估计量是最优线性无偏估计量(如(3.22)所示的线性、无偏误、在线性无偏估计量中方差最小在MLR.1-5下,得定理3.4 高斯-马尔科夫定理2.11 对OLS 估计的一个正确认识。

计量经济学第三章-一元线性回归模型PPT课件

计量经济学第三章-一元线性回归模型PPT课件
21500
2150
Yi 594 638 1122 1155 1408 1595 1969 2078 2585 2530
15674
1567.4
xi
-1350 -1050
-750 -450 -150 150 450 750 1050
1350
yi
-973.4 -929.4 -445.4 -412.4 -159.4
X 594 638 1122 1155 1408 1595 1969 2078 2585 2530
回答:能
.
13
该样本的散点图(scatter diagram):
样本散点图近似于一条直线,画一条直线以尽好地拟 合该散点图,由于样本取自总体,可以该线近似地代表总体 回归线。该线称为样本回归线(sample regression lines)。
总体回归函数说明在相同的播种面积Xi下,农户 平均的粮食产量。
但对某个别的农户,其粮食产量可能与该平均水平 有偏差。
记 i Y iE (Y|Xi)
称i为观察值Yi围绕它的期望
值E(Y|Xi)的随机干扰项 (stochastic disturbance)或
随机误差项(stochastic
error),是一个不可观测的
假设3:(同方差性)
Var(i)2,i1,2LLn
Var(Yi)2.,i1,2LLn
21
同方差示意图
条件概率密度函数值
.
22
异方差示意图
条件概率密度函数值
.
23
假设4:( 无序列相关性)
Cov(i,j)0,ij且 i,j1,2LLn
Cov(Yi,Yj)0
假设5:(解释变量与随机干扰项不相关)

计量经济学-3章:多元线性回归模型PPT课件

计量经济学-3章:多元线性回归模型PPT课件

YXβ ˆe
Y ˆ Xβ ˆ
4/5/2021
.
17
2 模型的假定
(1) 零均值假设。随机误差项的条件期望为零,即 E(ui)=0 ( i=1,2,…,n)
其矩阵表达形式为:E(U)=0 (2)同方差假设。随机误差项有相同的方差,即
Var(ui)E(ui2) 2 (i=1,2,…,n)
(3)无自相关假设。随机误差项彼此之间不相关,即
(i=1,2,…,n)
上式为多元样本线性回归函数(方程),简称样本回归函 数(方程)(SRF, Sample Regression Function).
ˆ j (j=0,1,…,k)为根据样本数据所估计得到的参数估计量。
4/5/2021
.
13
(4)多元样本线性回归模型
对应于其样本回归函数(方程)的样本回归模型:
4/5/2021
.
3
教学内容
一、模型的建立及其假定条件 二、多元线性回归模型的参数估计:OLS 三、最小二乘估计量的统计性质 四、拟合优度检验 五、显著性检验与置信区间 六、预测 七、案例分析
4/5/2021
.
4
回顾: 一元线性回归模型
总体回归函数 E (Y i|X i)01X i
总体回归模型 Y i 01Xiui
0 0
2 0 0 2
0
0
0 0 0 2
2I n
4/5/2021
.
u1un
u2un
un2
20
(4)解释变量X1,X2,…,Xk是确定性变量,不是随机 变量,与随机误差项彼此之间不相关,即
Cov(Xji,ui)0 j=1,2…k , i=1,2,….,n

计量经济学第三章

计量经济学第三章

令Y-年薪 , X-工作年限
可建立如下模型:Y=a+bX+cD+u
a ˆ 男性就业者的平均年薪:ˆ b X
女 1 , 性 D= 男 0, 性
ˆ ˆ ˆ 女性就业者的平均年薪:( a c ) b X

ˆ c
=0 ,则不存在性别歧视,若
ˆ c
<0 , 则存在
性别歧视。
26
计量经济学 第三章
同上
例5 为了研究煤炭的销售量随季节不同而呈现明 显周期性变化问题,我们引入三个虚拟变量, 其取值分别为:
1,第二季度 D1 0,其他季度 1,第三季度 ,D2 = 0,其他季度 1,第四季度 , 3 D= 0,其他季度
Y—煤炭销售量, X—时间 (1982.1—1985.4)
15
计量经济学 第三章
同上
需要指出的是:虚拟变量主要是用来代表质的 因素,但在有些情况下也可用来代表数量因素。 如,在储蓄函数中,“年龄”是一个重要的解 释变量,虽然年龄是一个数量因素,但由于不 同的年龄组的居民有着不同的储蓄行为,可以 用虚拟变量表示各年龄组居民在储蓄行为上的 差异(如把年龄分为20-40岁,40-60岁,则 可用“1”表示第一组的年龄,“0”表示第二组 的年龄)。
29
计量经济学 第三章
同上
建立模型
:
Y 0 1X 1D 1 2 D 2 3 D 3 u OLS 法估计得: ˆ Y 2623 . 8 34 . 2 X 55 . 4 D 1 144 . 3 D 2 1292 . 9 D 3 (7.7) R
2
同上
(2.65)
2
0 . 3508

计量经济学第三章-回归模型的扩展

计量经济学第三章-回归模型的扩展
验的结果,或直接取成 1/|ei|、1/ei2
第二节 自相关性
一Байду номын сангаас自相关性的概念及其产生原因:
1.定义:随机误差项的各期值之间存在相关性 COV(t, s)0, ts
例:投资函数、生产函数
2.产生原因: 1)模型遗漏了自相关的解释变量; 2)模型函数形式的设定误差; 3)经济惯性; 4)随机因素影响; (注:自相关性更易产生于时序数据)
原理:辅助回归检验 命令:View\ResidualTest \SerialCorrelation LM
Test
四、自相关性的修正方法
1.利用广义差分变换消除自相关性:
步骤: 实质:GLS估计
2.的估计方法:
1)近似估计; 2)迭代估计;
3.Eviews软件的实现:
1)检验自相关性的阶数; 2)在LS命令中增加AR项;
二、异方差的影响
1.OLS估计不再是最佳估计量; 2.T检验可靠性降低; 3.增大预测误差; 三、异方差的检验 ★1.图形分析: (1)观察Y、X相关图:SCAT Y X (2)残差分析:观察回归方程的残差图
在方程窗口直接点击Residual按钮; 或:点击View\Actual,Fitted,Residual\Table
1. 调整季节波动
y a bx 1D1 2D2 3D3
2. 检验模型结构的稳定性(P141)
y a bx D XD
3. 混合回归
例8.教材P132
第五节 滞后变量模型
一、滞后效应与滞后变量的作用 1、产生滞后效应的原因:
1)心理因素:消费习惯、消费心理(如价格、利率) 2)技术原因:农民收入、农产品价格、天气条件 3)制度原因:

计量经济学第三章线性模型的问题和发展课件

计量经济学第三章线性模型的问题和发展课件

③构造检验统计量LM=nR20,当H0为真时,LM渐进服从χ2(p) ④对给定的显著性水平α,若LM>χ2α(p),拒绝原假设,残差存 在序列相关
检验统计量
【例3.2】
Obs*R-squared服 从自由度为1的χ2
Breus ch-Godfrey Serial Correlation LM Tes t:
F-s tatis tic Obs *R-s quared
4.111011 Prob. F(2,17) 7.171688 Prob. Chi-Square(2)
0.0350 0.0277
如果显著性水平取为0.05,则相伴 概率为p=0.0277<0.05,拒绝原假 设,随机扰动项存在二阶自相关
如果随机扰动项存在高阶自相关,则需要寻找新的解释变量,重 新设定模型。
(1)检验假设 H0:εt,不存在自相关 H1: εt,为AR(p)
AR p为:t 1t1 ... pt p t
二、序列相关的检验
(2)检验步骤
①对模型进行OLS回归,得到残差序列e1,...,en ②将et关于残差的滞后值et-1,...,et-p,X1t,...,Xkt进行回归处 理,得到可决系数
2
i 1
E
n
ei2 2
2
一、序列相关的内涵
3.序列相关产生的后果
(4)模型的统计检验失败
在扰动项存在自相关的情况下,如果仍然使用普通最小二乘法 来估计参数,则会在使用残差估计母体的方差时出现低估的情形, 从而使得参数估计的标准误差被低估。
这样的后果是t检验统计量出现过大的危险,从而夸大所估计参 数的显著性。这使得原本不重要的变量被认为是重要的变量而被保 留,导致伪回归的危险性增加。

计量经济学第三章完整

计量经济学第三章完整

Xe 0
(*)

ei 0
(**)
X ji ei 0
i
(*)或(**)是多元线性回归模型正规方程组的另一种 写法
16
⃟样本回归函数的离差形式
yi ˆ1x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
其中 :
y1
y
y2
y
n
x11
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
方程表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变量
保持不变的情况下,Xj每变化1个单位时,Y的均 值E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直接”
1
1 (YXβˆ )(YXβˆ )
e 2 2
(2
)
n 2
n
即为变量Y的或然函数
26
对数或然函数为
L* Ln(L)
nLn(
2 )
1 2 2
(Y
Xβˆ )
(Y
Xβˆ )
对对数或然函数求极大值,也就是对
(Y Xβˆ )(Y Xβˆ )
求极小值。 因此,参数的最大或然估计为
βˆ (XX)1 XY
28
E(X(Y Xβ) 0
称为原总体回归方程的一组矩条件,表明了原总 体回归方程所具有的内在特征。
1 X(Y Xβˆ ) 0 n
由此得到正规方程组
X' Xβˆ X' Y
解此正规方程组即得参数的MM估计量。
易知MM估计量与OLS、ML估计量等价。
29
矩方法是工具变量方法(Instrumental Variables,IV)和 广义矩估计方法(Generalized Moment Method, GMM) 的基础 • 在矩方法中关键是利用了

计量经济学(第三章多元线性回归)

计量经济学(第三章多元线性回归)


X
1i

X
2i
...
k
X
ki
( 2 ) 估 计 值 Y i 的 均 值 等 于 实 际 观 测 值 Y i的 均 值 ( 3 ) 剩 余 项 ( 残 差 ) e i的 均 值 为 0

( 4) 应 变 量 估 计 值 Y i 与 残 差 e i 不 相 关 ; ( 5) 解 释 变 量 X i 与 残 差 e i 不 相 关
第一节 第二节 第三节 第四节 第五节
多元线性回归模型及古典假定 多元线性回归模型的估计 多元线性回归模型的检验 多元线性回归模型的预测 实例
第一节 多元线性回归模型及 古典假定

主要介绍 1.1 多元线性回归模型及其矩阵表示 1.2 模型的古典假定
1.1.1 多元线性回归模型形式

一般形式(随机扰动形式,注意X的下 标):
j
( u i 正态 , Y 是 u i的线性函数

Y 正态,又
j
是 Y 的线性函数

j
正态)
2.4 随机扰动项方差的估计
扰动项的方差 估计:
2 2
ei
2
n k 1
其中n为样本容量,k为待估参数个数。 (比较:一元情形:
2
ei
2
n2
,待估参数有2个)
第三节 多元线性回归模型的 检验
Yi 0 1 X 1i 2 X 2 i ...... k X ki u i 模型中, ( j 1, 2, ..., k) 是 偏 回 归 系 数 : j 控制其他解释变量不变的条件下, 第 j个 解 释 变 量 的 单 位 变 动 对 应 变 量 平 均 值的影响。

计量经济学第3章参考答案

计量经济学第3章参考答案

(3) = TSS
RSS 480 = = 750 2 1− R 1 − 0.36
7. 答: (1) cov( = x, y )
1 2 2 ( xt − x )( y = r σx σ y = 0.9 × 16 ×10 =11.38 ∑ t − y) n −1
∑ ( x − x )( y − y )=
即表明截距项也显著不为 0,通过了显著性检验。 (3)Yf=2.17+0.2023×45=11.2735
2 1 (x f − x ) 1 (45 − 29.3) 2 ˆ 1+ + = × × + = 4.823 t0.025 (8) × σ 1.8595 2.2336 1+ n ∑ ( x −x ) 2 10 992.1
3
2
五、综合题 1. 答: (1)建立深圳地方预算内财政收入对 GDP 的回归模型,建立 EViews 文件,利用地方预 算内财政收入(Y)和 GDP 的数据表,作散点图
可看出地方预算内财政收入(Y)和 GDP 的关系近似直线关系,可建立线性回归模型:
Yt = β1 + β 2 GDPt + u t
第 3 章参考答案
一、名词解释 1. 高斯-马尔可夫定理:在古典假定条件下,OLS 估计量是模型参数的最佳线性无偏估计 量,这一结论即是高斯-马尔可夫定理。 2. 总变差(总离差平方和) :在回归模型中,被解释变量的观测值与其均值的离差平方和。 3. 回归变差(回归平方和) :在回归模型中,因变量的估计值与其均值的离差平方和,也就 是由解释变量解释的变差。 4. 剩余变差(残差平方和) :在回归模型中,因变量的观测值与估计值之差的平方和,是不 能由解释变量所解释的部分变差。 5. 估计标准误差:在回归模型中,随机误差项方差的估计量的平方根。 6. 样本决定系数:回归平方和在总变差中所占的比重。 7. 拟合优度:样本回归直线与样本观测数据之间的拟合程度。 8. 估计量的标准差:度量一个变量变化大小的测量值。 9. 协方差:用 Cov(X,Y)表示,度量 X,Y 两个变量关联程度的统计量。 10. 显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。 11. 拟合优度检验:检验模型对样本观测值的拟合程度,用 R 2 表示,该值越接近 1,模型 对样本观测值拟合得越好。 12. t 检验:是针对每个解释变量进行的显著性检验,即构造一个 t 统计量,如果该统计量 的值落在置信区间外,就拒绝原假设。 13. 点预测:给定自变量的某一个值时,利用样本回归方程求出相应的样本拟合值,以此作 为因变量实际值均值的估计值。

计量经济学-第三章-模型检验PPT课件

计量经济学-第三章-模型检验PPT课件
•23
•24
•25
•26
例子:Eviews中的计算
•27
(4)参数的的置信区间检验
•28
•29
•30
•31
•32
•6
这是因为虽然OLS保证了残差的平方和最小, 但无论对于什么的数据都可以使用OLS求得回 归方程,可这些回归方程也许没有意义,比如 下面的三个拟合图形:
•7
•8
启示:
上述三个图形中,第二个图形的拟合程度最好, 反映在数据几乎都集中在拟合直线的附近。这 也就是说,如果对于一条拟合的直线(曲线), 数据越集中于拟合直线(曲线),拟合的程度 越好(拟合优度越好)。怎样通过一个统计数 值来反映这种集中程度呢?
判定系数检验只能说明模型对样本数据的近似 情况,但是建立计量经济模型的目的是为了描 述总体的经济关系。所谓模型的显著性检验, 就是检验模型对总体的近似程度,而且最常用 的检验方法是F检验。
•16
F检验基本思想
对于多元线性回归模型: yi=b0+b1x1i+b2x2i+…+bkxki+єi
假设H0: b1=b2=…=bk=0 若假设成立,则意味着:
在设定计量经济模型的时候,我们往往根据经 验理论和对所研究系统的经验认识,尽量找出 被解释变量的所有影响因素,这些初步选定的 影响因素中间很可能就有一些实际上并不重要
•21
或其影响可以由其他变量代替的变量。为了使 模型更加简单、合理,应该提出这些不重要的 变量,使模型中只保留有显著影响的变量。剔 除不显著的解释变量的方法,就是解释变量的 显著性检验——t检验。
•4
为什么要进行统计检验
回归分析是要通过样本所估计的参数来代替总体的真

《计量经济学》第三章 多元线性回归模型

《计量经济学》第三章 多元线性回归模型
总体回归函数也可表示为:
Yi 1 2 X 2i 3 X 3i ... k X ki ui
7
多元样本回归函数
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki

ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki ei
22
ˆ ˆ 因 2 是未知的,可用 2代替 2 去估计参数 β 的标
准误差:
ˆ ● 当为大样本时,用估计的参数标准误差对 β 作标 准化变换,所得Z统计量仍可视为服从正态分布 ˆ ●当为小样本时,用估计的参数标准误差对 β 作标
准化变换,所得的t统计量服从t分布: ˆ βk - βk t ~ t (n - k ) ^ ˆ SE( βk )
i i
i
e e 0 4.残差 ei 与 X 和
3.
i
e X
i
3i
ei X 2i 0
2i
X 3i 都不相关,即
ˆ 5.残差 ei 与 Yi 不相关,即
e Yˆ 0
i i
18
二、OLS估计式的性质-统计性质
OLS估计式(用矩阵表式) 1.线性特征:
ˆ = (X X)-1 X Y β
2 i
ˆ ei2 (Yi - Yi )2
ˆ X X ... X )]2 ˆ min e [Yi -(1 ˆ2 2i ˆ3 3i k ki
求偏导,令其为0:
( ei2 ) 0 ˆ
j
13
即 ˆ ˆ ˆ ˆ -2 Yi - (1 2 X 2i 3 X 3i ... ki X ki ) 0

计量经济学第三章 双变量线性回归模型

计量经济学第三章  双变量线性回归模型

xtYt
Y
xt
xt2
xt2
xt2
xt2
由于
xt (X t X ) X t X nX nX 0
从而
ˆ xtYt xt ( X t ut )
xt2
xt2
23
ˆ xtYt xt ( X t ut )
xt2
xt2
1 ( xt2
xt
14
残差平方和
我们的目标是使拟合出来的直线在某种意义上是最佳的, 直观地看,也就是要求估计直线尽可能地靠近各观测点,这意
味着应使残差总体上尽可能地小。要做到这一点,就必须用某
种方法将每个点相应的残差加在一起,使其达到最小。理想的 测度是残差平方和,即
et 2 (Yt Yˆt )2
15
最小二乘法
第三章 双变量线性回归模型 (简单线性回归模型)
(Simple Linear Regression Model)
2021/7/22
1
第一节 双变量线性回归模型的估计 第二节 最小二乘估计量的性质 第三节 拟合优度的测度 第四节 双变量回归中的区间估计和假
设检验 第五节 预测 第六节 有关最小二乘法的进一步讨论
9
(3)E(ut2)= 2, t=1,2,…,n 即各期扰动项的方差是一常数,也就是假定各扰
动项具有同方差性。
实际上该假设等同于:
Var( ut) = 2, t=1,2,…,n 这是因为:
Var(ut)=E{[ut-E(ut)]2}= E(ut2) ——根据假设(1)
10
(4) Xt为非随机量 即Xt的取值是确定的, 而不是随机的。 事实上,我们后面证明无偏性和时仅需要解释变量X与扰
是线性估计量。

计量经济学课件---第三章

计量经济学课件---第三章

用矩阵表示的正则方程
偏导数 ∑ei 1 ∑X2iei = X21 ... ⋮ ∑Xkiei Xk1
1 e1 0 0 X22 … X2n e2 = Xe = ′ ⋮ ⋮ ⋮ ⋮ Xk 2 … Xkn en 0 0 e X′ 1 …
求偏导,令其为 求偏导,令其为0:
∂(∑ ei2 ) =0 ˆ ∂β
j
∂ (∑ ei2 ) =0 ˆ ∂β
j
ˆ ˆ ˆ ˆ -2∑ Yi - ( β1 + β 2 X 2i + β3 X 3i + ... + β ki X ki ) = 0
ˆ ˆ ˆ ˆ -2∑ X 2i Yi -(β1 + β2 X 2i + β3 X 3i + ... + βki X ki ) = 0
个别值表现形式
引入随机扰动项 ui = Yi − E (Yi X 2i , X 3i , ⋯ X ki )
Yi = β1 + β 2 X 2i + β 3 X 3i + ... + β k X ki + ui
多元样本回归函数
条件均值表现形式
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi = β1 + β 2 X 2 i + β 3 X 3i + ... + β k X ki
偏回归系数: 偏回归系数:
控制其它解释变量不变的条件下, 控制其它解释变量不变的条件下,第j 个解释变量的 单位变动对应变量平均值的影响。 单位变动对应变量平均值的影响。
对偏回归系数的理解

计量经济学第三章

计量经济学第三章

1 0 0
2 u
0
1
0
0 0 1
2 u
I
假设4 自变量 xl 与随机误差项 ui 独立
Cov(ui , xl)=0 (i=1,2,…,n; l=1,2,…,k)
假设5 随机误差项 ui 服从正态分布
ui
~
N
(0,
2 u
)
假设6 解释变量之间不存在显著的线性相关关 系,也即自变量之间不存在多重共线性,也就是 矩阵X的秩等于参数个数:
E(βˆ )=E[(XTX)-1XTY] =(XTX)-1XTE(Y) =(XTX)-1XTE(Xβ +U) =(XTX)-1(XTX)E(β) + (XTX)-1XTE(U) =β
类似的:E( βˆ )=E[β +(XTX)-1XTU] = β
(这里利用了假设: E(XTU)=0)
三、最优性
考察一下参数估计量 βˆ 的协方差矩阵:
假设2,假设3,又称Gauss-Markov假设,将起合并 记为:
Var-Cov(U)=E(UUT)
u1
E
u2
[u1
u2
un ]
E
uu21u2 1
u1u2 u22
u1un u2un
un
unu1
unu2
un2
E(u12 ) E (u2u1 )
E(u1u2 ) E(u22 )
ˆk xki ) 0 ˆk xki )x1i 0
ˆk xki )xk i 0
整理得到关于待估参数估计值的正规方程组:
n
yi
n
n
n
nˆ0 ˆ1 x1i ˆ2 x2i ˆk xki
i1

《计量经济学》第三章精选题及答案(重要)

《计量经济学》第三章精选题及答案(重要)

第三章
多元线性回归模型
第一部分 练习题
计算题 考虑以下方程(括号内为估计标准差) 1
8.5620.3640.004t t t S P P -=++ (0.080) (0.072)
n =19,2R =0.873;
其中:S =t 年的销售量
P t =年的广告费用
请回答下列问题:
(1)对销售量估计的斜率系数进行假设检验。

(2)讨论1t P -在理论上是否正确,对本模型的正确性进行讨论。

1t P -是否应从方程中删除?为什么?
第二部分 参考答案
计算题
(2)由于1t P -不显著,可以将其从方程中删去,此时由于时滞短了一年,主成分可能正确,但时滞长度不正确。

在这样的情况下,利用同样的数据检验许多不同的时滞,可能不是个好方法,但如果可以建立另外一个数据集,这样检验也许是有用的。

计量经济学 第三章

计量经济学 第三章

∑X ∑X
i 2 i
10 21500 = 21500 53650000
1 X′Y = X 1
1 X2
Y1 ⋯ 1 Y2 ∑ Yi 15674 = ⋯ X Y = 39468400 ⋯ Xn ∑ i i Y n
样本回归函数的离差形式
ˆ ˆ ˆ y i = β 1 x1i + β 2 x 2i + ⋯ + β k x ki + ei
i=1,2…n
其矩阵形式 矩阵形式为 矩阵形式
ˆ y = xβ+ e
其中 :
y1 y2 y= ⋮ yn
x11 x12 x= ⋯ x 1n x 21 x 22 ⋯ x2n ⋯ x k1 ⋯ xk 2 ⋯ ⋯ ⋯ x kn
var(µ1 ) ⋯ cov(µ1 , µ n ) σ 2 ⋯ 0 = ⋮ ⋱ ⋮ = ⋮ ⋱ ⋮ = σ 2I cov(µ , µ ) ⋯ var(µ n ) 0 ⋯ σ 2 n 1
假设3,E(XTµ)=0,即 ∑ µ ∑ E (µ ) X µ ∑ X E (µ ) ∑ = =0 E
Yi = β 0 + β 1 X 1i + β 2 X 2 i + ⋅ ⋅ ⋅ + β k X ki + µ i
也被称为总体回归函数的随机表达形式。 也被称为总体回归函数的随机表达形式。它 的 总体回归函数 非随机表达式为 非随机表达式为:
E (Yi | X 1i , X 2 i , ⋯ X ki ) = β 0 + β 1 X 1i + β 2 X 2 i + ⋅ ⋅ ⋅ + β k X ki
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章、经典单方程计量经济学模型:多元线性回归模型例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为fedu medu sibs edu 210.0131.0094.036.10++-=R 2=0.214式中,edu 为劳动力受教育年数,sibs 为该劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。

问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少? 解答:(1)预期sibs 对劳动者受教育的年数有影响。

因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。

根据多元回归模型偏回归系数的含义,sibs 前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。

(2)medu 的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。

(3)首先计算两人受教育的年数分别为 10.36+0.131⨯12+0.210⨯12=14.452 10.36+0.131⨯16+0.210⨯16=15.816因此,两人的受教育年限的差别为15.816-14.452=1.364例2.以企业研发支出(R&D )占销售额的比重为被解释变量(Y ),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099.0)046.0()22.0()37.1(05.0)log(32.0472.0221=++=R X X Y其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。

如果X1增加10%,估计Y 会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D 强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。

分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D 强度Y 是否在统计上有显著的影响? 解答:(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y 变化的单位数,即∆Y=0.32∆log(X1)≈0.32(∆X1/X1)=0.32⨯100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y 会增加0.32个百分点。

由此,如果X1增加10%,Y 会增加0.032个百分点。

这在经济上不是一个较大的影响。

(2)针对备择假设H1:01>β,检验原假设H0:01=β。

易知计算的t 统计量的值为t=0.32/0.22=1.468。

在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为1.699(单侧),计算的t 值小于该临界值,所以不拒绝原假设。

意味着R&D 强度不随销售额的增加而变化。

在10%的显著性水平下,t 分布的临界值为1.311,计算的t 值小于该值,拒绝原假设,意味着R&D 强度随销售额的增加而增加。

(3)对X2,参数估计值的t 统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y 在统计上没有显著的影响。

例3.下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。

数据为美国40个城市的数据。

模型如下:μββββββββ++++++++=statetax localtax unemp popchangincome value density g hou 76543210sin式中housing ——实际颁发的建筑许可证数量,density ——每平方英里的人口密度,value ——自由房屋的均值(单位:百美元),income ——平均家庭的收入(单位:千美元),popchang ——1980~1992年的人口增长百分比,unemp ——失业率,localtax ——人均交纳的地方税,statetax ——人均缴纳的州税(1)检验模型A 中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。

根据检验结果,你认为应该把变量保留在模型中还是去掉? (2)在模型A 中,在10%水平下检验联合假设H 0:βi =0(i=1,5,6,7)。

说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。

说明你的结论。

(3)哪个模型是“最优的”?解释你的选择标准。

(4)说明最优模型中有哪些系数的符号是“错误的”。

说明你的预期符号并解释原因。

确认其是否为正确符号。

解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t 分布表。

根据题意,如果p-值<0.10,则我们拒绝参数为零的原假设。

由于表中所有参数的p-值都超过了10%,所以没有系数是显著不为零的。

但由此去掉所有解释变量,则会得到非常奇怪的结果。

其实正如我们所知道的,多元回去归中在省略变量时一定要谨慎,要有所选择。

本例中,value 、income 、popchang 的p-值仅比0.1稍大一点,在略掉unemp 、localtax 、statetax 的模型C 中,这些变量的系数都是显著的。

(2)针对联合假设H 0:βi =0(i=1,5,6,7)的备择假设为H1:βi =0(i=1,5,6,7) 中至少有一个不为零。

检验假设H0,实际上就是参数的约束性检验,非约束模型为模型A ,约束模型为模型D ,检验统计值为462.0)840/()7763.4()37/()7763.47038.5()1/()/()(=-+-+-+=----=e e e k n RSS k k RSS RSS F U U R U U R显然,在H0假设下,上述统计量满足F 分布,在10%的显著性水平下,自由度为(4,32)的F 分布的临界值位于2.09和2.14之间。

显然,计算的F 值小于临界值,我们不能拒绝H0,所以βi (i=1,5,6,7)是联合不显著的。

(3)模型D 中的3个解释变量全部通过显著性检验。

尽管R2与残差平方和较大,但相对来说其AIC 值最低,所以我们选择该模型为最优的模型。

(4)随着收入的增加,我们预期住房需要会随之增加。

所以可以预期β3>0,事实上其估计值确是大于零的。

同样地,随着人口的增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此。

随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预期β3估计值的符号为负,回归结果与直觉相符。

出乎预料的是,地方税与州税为不显著的。

由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。

虽然模型A 是这种情况,但它们的影响却非常微弱。

4、在经典线性模型基本假定下,对含有三个自变量的多元回归模型:μββββ++++=3322110X X X Y你想检验的虚拟假设是H0:1221=-ββ。

(1)用21ˆ,ˆββ的方差及其协方差求出)ˆ2ˆ(21ββ-Var 。

(2)写出检验H0:1221=-ββ的t 统计量。

(3)如果定义θββ=-212,写出一个涉及β0、θ、β2和β3的回归方程,以便能直接得到θ估计值θˆ及其标准误。

解答:(1)由数理统计学知识易知)ˆ(4)ˆ,ˆ(4)ˆ()ˆ2ˆ(221121ββββββVar Cov Var Var +-=- (2)由数理统计学知识易知)ˆ2ˆ(1ˆ2ˆ2121ββββ---=se t ,其中)ˆ2ˆ(21ββ-se 为)ˆ2ˆ(21ββ-的标准差。

(3)由θββ=-212知212βθβ+=,代入原模型得μββθβμβββθβ+++++=+++++=33212103322120)2()2(X X X X X X X Y这就是所需的模型,其中θ估计值θˆ及其标准误都能通过对该模型进行估计得到。

3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1) i i i X Y εββ++=3102) i i i X Y εββ++=log 10 3)i i i X Y εββ++=log log 104) i i i X Y εβββ++=)(210 5) i ii X Y εββ+=106) i i i X Y εββ+-+=)1(1107) i i i i X X Y εβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。

3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y +++++=ββββΛ22110,n i ,,2,1Λ=的正规方程组,及其推导过程。

3-16.考虑下列两个模型:Ⅰ、i i i i u x x y +++=33221βββ Ⅱ、i i i i i u x x x y '+++=-332212)(ααα要求:(1)证明:1ˆˆ22-=βα ,11ˆˆβα= ,33ˆˆβα= (2)证明:残差的最小二乘估计量相同,即:i i u u'=ˆˆ (3)在何种情况下,模型Ⅱ的拟合优度22R 会小于模型Ⅰ拟合优度21R 。

3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。

你通过整个学年收集数据,得到两个可能的解释性方程:方程A :3215.10.10.150.125ˆX X X Y +--= 75.02=R 方程B :4217.35.50.140.123ˆX X X Y-+-= 73.02=R 其中:Y ——某天慢跑者的人数1X ——该天降雨的英寸数 2X ——该天日照的小时数3X ——该天的最高温度(按华氏温度) 4X ——第二天需交学期论文的班级数请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?3-18.对下列模型:i i i i u z x y +++=2βα (1)i i i i u z x y +-+=ββα (2)求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二乘估计值作比较:(3)i i i i u z x y +-+=γβα ,你认为哪一个估计值更好?3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营业。

相关文档
最新文档