集美大学船舶结构力学(48学时)第三章 力法(1)2014(2学时)

合集下载

船舶结构力学 力法位移法能量法

船舶结构力学 力法位移法能量法
2
0
2
l/2
2A
2 2 v 2 a l v ( 0 ) 2 a l 将 及 1 1
代入可计算出
总应变能为: V 4.5EIa2l 1 (2)计算力函数。此梁的力函数包括集中力F引起U1 及分布荷重引起的U2两部分。 计算U2时,先写出分布荷重的表达式。对图示坐标 有 q( x) 2q0 x q0 , l x l 2 2 因而 l l 2q0 x 1 2 3
(4)列节点平衡方程
4 EI0 8EI 4 EI12 4 EI 1 12 2 1 0 2 l12 l12 l0 l0 2 EI23 4 EI23 6 EI0 12EI0 M 32 2 3 2 3 l23 l23 2.2l0 2.2l0 16EI0 2 EI24 4 EI24 M 42 2 4 2 l24 l24 3l0 M 21
虚位移原理等价于结构的平衡条件,因此基于虚位移 原功方法是位移法。由虚位移原理可导出位能驻值原理, 最小势能原理的计算公式。常用的计算方法是势能驻值原 理的近似法,即里兹法。 虚应力原理等价于结构的变形协调条件,因此基于虚 应力原理的方法是力法。由虚应力原理可导出余能驻值原 理。常用的计算方法是最小功原理及卡氏第二定理。
Q0l0 Q0l0 M , M 21 12 15 10 M Q2 (3l ) Q1 (3l ) 33 Q l 24 0 0 0 0 15 12 10 Q Q 21 Q0l0 M 42 2 (3l0 ) 1 (3l0 ) 10 12 5 M 23 M 32 0
位移法
计算步骤(不可动节点刚架和连续梁)
• 确定未知数(n=N-r)
• 加抗转约束,计算固端弯矩 • 强迫转动,计算转角引起的杆端断面弯矩,计 算杆端总弯矩 • 列节点平衡方程式

船舶结构力学课后题答案(上海交大版)之欧阳道创编

船舶结构力学课后题答案(上海交大版)之欧阳道创编

s目录第1章绪论1第2章单跨梁的弯曲理论2第3章杆件的扭转理论8第4章力法10第5章位移法13第6章能量法24第7章矩阵法40第9章矩形板的弯曲理论53第10章杆和板的稳定性59第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2 题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面 内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章 单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x )1)图2.133323034243()()()424()26666llll l l p x p x p x M x N xv x EI EIEIEIEI---=++++原点在跨中:3230111104()4()266ll p x M x N x v x v EI EIEI-=+++,'11'11()0()022(0)0(0)2l l v v p v N ⎧==⎪⎨⎪==⎩2)33203()32.2()266ll p x N x Mx v x x EI EIEIθ-=+++图 3)333002()22.3()666xx x ll p x N x qx dxv x x EI EIEIθ-=++-⎰图 2.2题 a)33111311131(3)(2)616444641624pp p pl pl v v v EI EI ⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦ =3512pl EIb)2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++=2220.157316206327Pl Pl Pl EI EI EI-+=⨯=2220.1410716206327Pl Pl Pl EI EI EI---=⨯=2372430pl EIc)()44475321927682304ql ql qll v EI EI EI=-=d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1 图2.2图2.32.3题 1)2)32101732418026q l Ml l l Ml lq EI EI EI EI θ⎡⎤=-++-⎢⎥⎣⎦ =3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-如图2.4, ()()0v l v l '==由得3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.4 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦,图2.5111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)图2.62.8图(剪力弯矩图如2.7)图2.72.6题.[]1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx G GA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s sd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EI qx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j jθθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆= ⎪⎝⎭令 2.8题已知:20375225,1.8,751050kgl cm t cm s cm cm σ=⨯====面积2cm 距参考轴cm面积距3cm惯性矩 4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板1).计算组合剖面要素:形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维若不计轴向力影响,则令u=0重复上述计算: 2.9.题解得:2.10题 2.11题 图2.120 2.12题1)先计算剖面参数:图2.8a2422u u P P l δδδ⎛⎫⋅⎛⎫ ⎪⋅+= ⎪⎝⎭ ⎪⎝⎭p M 图2.8b 2.13补充题剪切对弯曲影响补充题,求图示结构剪切影响下的v(x)解:可直接利用 2.14. 补充题试用静力法及破坏机构法求右图示机构的极限载荷 p ,已知梁的极限弯矩为p M (20分) (1983年华中研究生入学试题)解: 1)用静力法:(如图2.9)由对称性知首先固端和中间支座达到塑性铰,再加力u p p →,当p作用点处也形成塑性铰时结构达到极限状态。

船舶结构力学课程教学大纲

船舶结构力学课程教学大纲
力法原理及三弯矩方程;力法的应用、弹性固定端和弹性支座 6 课时
的实际概念;五弯矩方程;一根交叉构件板架计算。
位移法原理;位移法在杆系结构中的应用。应变能与余能;杆
5
件的应变能计算;虚功原理;虚位移原理的应用;位能驻值原 6 课时
理的近似解法。
6
矩阵位移法的基本思想;杆元的基本类型;杆件刚度矩阵;结 6 课时
(二)英文简介 Ship Structural Mechanics describes the components and subsystems deformation
and instability, like bending theory of single span beam, torsion theory of shaft parts, torsion theory for rectangle plate and Stability of shaft or board, and so on. Several methods are also presents for stress and deformation analysis. It contains not only the force method, displacement method and energy method in the classical structure mechanics, but also the finite element method and its application in ship structures. Finally the basic principles and methods for structure design of ships will be introduced together with the design standards of ships. 二、教学目标

集美大学 船舶结构力学(48学时)第二章 单跨梁(3)2014年 4学时

集美大学 船舶结构力学(48学时)第二章 单跨梁(3)2014年  4学时

3)单跨梁弯曲要素表类同 《材力》的对应表,但要 注意船舶结构力学符号法 则。 4)注意弯矩图的叠加;剪力 图的叠加(正负抵消)。
五、弯矩图与剪力图 1) 定义:载荷作用下梁 截面的弯矩和剪力沿梁轴 线的分布图形。 2)绘制目的:
a. 最为直观地描述弯曲梁的 内力分布; b. 帮助工程师预测和分析载 荷作用下结构的基本变形情 况。
3
求梁右端转角
梁右端的转角,用叠加法求 得如下:
Ml Ql Pl l 6 EI 24EI 16EI 2 Ql 32EI
2
2
画梁的弯矩图也采用
叠加法:先分别画出M、Q、 P单独作用下简支梁的弯矩、 剪力图,
P
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 16EI
六、单跨梁的弯曲要素 表及叠加原理应用
1.(普通)叠加法: 仅应用弯曲要素表及 叠加原理求静定或超静定 单跨梁特殊点的弯曲要素 并画内力图的方法。
2.单跨梁力法: 应用简支梁弯曲要素 表、叠加原理及变形协调 条件或静力平衡条件求超 静定单跨梁特殊点的弯曲 要素并画内力图的方法。
3、在应用弯曲要素表及 叠加原理解题时,应充 分了解已有的弯曲要素 表的种类、应用范围、 坐标及符号法则。
EI , l
P ql
q
EI , l
P ql
解:据叠加原理有
q
q
vq
EI , l
P
vP
P
EI , l
P
EI ,ቤተ መጻሕፍቲ ባይዱl
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 中点挠度 16EI

船舶结构力学:第三章力法

船舶结构力学:第三章力法

qi-1
qi
1 I1 2
i-1
Ii-1 i
Ii i+1
l1
li-1
li
图3-1(a)
M1
M2 Mi-1
qi-1
Mi Mi
qi
I1
Ii-1
Ii
l1
li-1 图3-1(b)
li
n-1
In-1 n
ln-1
Mi+1 Mn-1
Mn
In-1
ln-1
§ 3-3 刚性支座上连续梁与不可动节点简单刚 架计算
图(3.1a)所示的为n-1跨的刚性支座上的连续梁, 其两端刚性固定。首先判断它是一个n次超静定梁 (无轴向载荷,故无轴向约束反力),将连续梁两 端的刚性固定端改为固定铰支座,并以相应的多余 约束力(端面弯距)代替,在每个中间支座处将梁 切断,并以相应的约束反力(梁截面上的弯距)代 替。得到如图(3.1b)所示的基本结构—单跨梁。 它会使得力法方程简化。
第三章 超静定结构的解法—力法
Methods of Analysis of Statically Indeterminate Structures- Mechanics
§ 3-1 超静定结构的组成与超静定次数的确定
概述
超静定结构是相对于静定结构而言的。静定结构 是几何不变而又没有多余约束的体系,其反力和内力 只需静力平衡方程即可求得。所谓几何不变体系是指 如果不考虑材料应变所产生的变形,体系在受到任何 载荷作用后能够保持其固有的几何形状和位置的体系。 超静定结构有以下几个特征:
支座1处的 转角
1 0
支座2处的 转角
21 23
§ 3-2 力法的基本原理及典型方程
上式即为变形协调条件。利用两端自由支持单跨 梁的弯曲要素表,可以得到转角与弯矩和外载荷之间 的关系式,并将他们代入到上式,得到:

集美大学船舶结构力学(48学时)第三章 力法(3)2014(2学时)

集美大学船舶结构力学(48学时)第三章 力法(3)2014(2学时)
由于: R2 v2 / A
216EI v 2 3 11l
M 2 M1 5 R2 ql l 2
因此,有方程:
216 EI M 2 M1 5 v ql 2 3 11l l 2
将此式与上面两方程联立 问题则解决。
题9 求下图 M , v , R 。 1 1 1
据3.6改 (教材52页)
梁的左半段断面惯性矩 为 I 1 ,右半段断面惯性矩 为 I 2 ,可以设想在断面变 化处加上一个柔性系数 A= ∞ 的弹性支座,如图4-27b)所示, 于是就可以按弹性支座上双跨 梁的方法来计算了。
静定基
v AR
EI1
R10
R R12
EI 2
v
静力平衡方程?
R0
A
转角连续方程式?
因此,可列出中间支座断面的 转角连续方程式:
R10
R12
3
l v1 AR1 ( R10 R12 ) 12EI 2 R ql 3
题8
(教材49页例2) 图3-26a所示的具有弹 性支座的多跨梁,试求其断 面弯矩、节点挠度和作用在 弹性支座上的力。
解:1、静定基:
M1
q 1
EI , l
M2
q
E,4I ,4l
M2
3
11l 3 A 216EI
即: 原模型:
A l3 6 EI
静定基:
EI , l EI , l
变协方: 4 4 5 q(2l ) 1 R(2l ) AR 384 EI 48 EI
由此直接解得:
R
v1 AR
可以去掉 中间的弹性支 座代以支反力 R,再利用变 形连续条件列 方程式求解。
R 5ql / 8

船体结构 第四A章(中) (集美大学船体结构与制图(48学时)课件2015年)

船体结构 第四A章(中) (集美大学船体结构与制图(48学时)课件2015年)

强 肋 骨
舷侧纵
•常用于杂货
船的船侧结 构。
杂货船
桁作为主 肋骨的支 点,可以 减小主肋 骨的剖面 尺寸,并 可将一部 分载荷传 递给强肋 骨及横舱 壁。
横骨架单舷侧结构举例
肋骨
强肋骨
肋骨
强肋骨
舷侧纵桁
重要构件:
腹板圆弧过渡代 替肘板连接
舷侧纵骨、舷侧纵桁和强肋骨
力的传递:外板—>纵骨-> 强肋骨—>甲板骨架、舷侧 纵桁、底部骨架。
甲板骨架反装
纵骨架式甲板结构举例:
纵骨架式甲板结构
(在胎架上反造时)
甲板纵骨 甲板
强横梁
甲板纵桁
(在胎架上反造时)
二.横骨架式甲板结构 重要构件:
下甲板
横骨架式甲板结构特点:
横向强度好,制造方便; 横梁设置在每档肋位上,支持甲板 板,并将甲板的横向载荷传给舷侧 和甲板纵桁; 甲板纵桁作用是支持横梁,同时起 着纵向强度和力的传递作用。
双舷侧作用: 强度增加; 降低泄漏几率; 货舱内舷侧壁平坦;意 外碰撞破损时,可保证 船舶安全。 双舷侧结构内部,常设 有人行通道、空舱、压 载舱等。
一般来说,肋骨或舷侧纵骨的最大间距应不大于1m。
横骨架单舷侧结构:
横骨架双舷侧结构:
纵骨架单舷侧结构:
纵骨架双舷侧结构:
纵向
纵向
纵 向
纵 向
6.9万吨化学品船
甲板纵桁用尺寸较 大的T型组合材制成,主要 用来支撑横梁。 普通杂货船
横骨架式甲板结构举例:
支柱:是舱内的竖向构件,作用是支 撑甲板骨架,承受轴向压缩力,
甲板边纵桁 甲板边纵桁
甲板中纵桁
短纵骨 支柱设置要求: ①舱口两端中 线或舱口四角; ②上下两端位 于纵横构件的交 叉点; ③不同层应位 于同一垂线上。

(最新修订)船舶结构力学课件第三章 力法( 4)2014(2学时)集美大学轮机工程学院(总48学时)

(最新修订)船舶结构力学课件第三章 力法( 4)2014(2学时)集美大学轮机工程学院(总48学时)
图3-16(b)
ql Rl 384EI 192EI
v交 2 Rl 48EI1
3 1
4
3
2
变协方
v主2 v交2
2)根据变形一致条件(节点2 处挠度相等),有变形连续方 程式为 v主2 v交2 即
ql Rl Rl 384EI 192EI 48EI1
(A)
4
3
3 1
2、 再考虑撤去无荷重杆 1-3,在节点2(梁4-5的中 点)处加一弹性支座的情 况:如图3-16(c)所示,
1
x
1
EI , l 3
1
P
1
EI , l
两端刚固无载杆:
2
A
l3 192EI
l A 192 EI 1 公式
v/R
3 1
P
1
EI , l 3
4 2 EI , l EI , l
1
1
R
4 2 EI , l 3 EI , l
1
1
l R v2 AR 192EI
3
例3:
将下图所示的杆系 简化为具有弹性支座的 单跨梁。
其计算模型如该图所示, 图中甲板间肋骨的下端 暂时假定是自由支持的。
1
3-18
1. 先用力法来解这个刚架:
2 3
3-18 1
1)静定的基本结构图形如图 3-18(b)所示;
2
3
2
l ll EI
静定基
l1 1l 1 EI
1
变协方: 21 23
3-18
2)建立支座2处的转角连续 方程式即 21 23
q
z
q
x
y
q
显然: 由力法去支座法有

船舶结构力学习题答案

船舶结构力学习题答案

船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。

4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。

另一种处理时把该项外力放在梁上,不写进边界条件。

在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。

集美大学_船舶结构力学(48学时)第一章_绪论(2014年)

集美大学_船舶结构力学(48学时)第一章_绪论(2014年)

4、船体梁:把船整体当作一 根梁(空心变截面梁)静置于 静水中或波浪上,以研究船体 总纵强度等。
5、船体总纵强度(总强度):
将船视为船体梁来研究船 在纵向分布的重力与浮力作用 下的弯曲变形与应力等强度问 题。
思考:静水、波浪、中拱、中 垂。(参考图1-1、图片等)
中拱、中垂?
中拱、中垂?
以远洋干货船船体结构甲 板舱口部分(图1-7)为例介 绍板架模型的建立:
(参见图1-9)
(图1-4 a)
在计算舱口纵桁和舱口端横梁 在垂直于甲板载荷作用下的弯曲应 力和变形时,可将其取为图1-7a所 示的井字型平面杆系计算图形,即 板架。
以远洋干货船船体结构舱底部 分(图1-7)为例介绍船底板 架模型的建立:
但应注意到这些计算图形具有一 定的近似性。
四、空间结构及板梁组合结构
随着计算机的应用和发展,可采用 更切合实际的计算模型,使结构计算更 加精确可靠。
1、空间结构计算模型举例:图19 大舱口货船悬臂梁结构的计算 模型。
该空间杆系计算模型放弃了以
往模型中舱口纵桁刚性支撑悬臂梁 的假定,更切合实际。可同时算出 甲板纵桁、舱口纵桁、舱口端横梁、 悬臂梁及肋骨的应力与变形。
图1-8a所示的为双甲板船在舱口处横剖面的肋 骨框架计算图形:
刚架的进一步简化:仅由横梁与肋骨 组成的刚架(图1-8b)
考虑到实际船体结构中肋板的 尺寸远较肋骨的大,所以计算时可 将肋骨下端作为刚性固定端。把肋 板放到船底板架中去研究,而得。
注:以上介绍的矩形板、连续梁、板 架和刚架是船体结构中比较典型而 且比较简单的计算图形,应用结构 力学中的经典理论和方法,由手算 就能得到结果。
船舶结构力学
Structural Mechanics of Ship

船舶结构力学ppt第三章力法

船舶结构力学ppt第三章力法

3-4 弹性支座与弹性固定端的概念
本节主要通过力法解杆系结构的例子引出弹性支座与弹性固定端的 实际概念。
1、弹性支座
q
I
l/2 R l/2
R
l1/2
l1/2
3-4 弹性支座与弹性固定端的概念
根据原结构节点处位移连续条件,列出力法方程为:
ql4 Rl3 Rl13 384EI 192EI 48EI1
X n

Δnp

3-3 刚性支座上连续梁与不可动节点简单刚架 计算
1、刚性支座上连续梁与三弯矩方程
1
2
i-1
M1
1
M2
2
i
i+1
n-1
n
Mn Mn-1
n-1
n
1、刚性支座上连续梁与三弯矩方程
根据原结构在固定端处转角为0和在每一个中间支座处转角连续的条件, 可列出力法方程:
l 3EI
i1
M i1
i
i
Mi
Mi
i1
M i1
li 1
i-1
i
li
i
i+1
根据中间支座i处转角连续的条件: i=(2M i1

li 3EI i
Mi
i (qi1) i
i 1
li1

li 3EI i
Mi

li1 6 EI i 1
(2)去掉多余约束后的体系,必须是几何不变的体系,因 此,某些约束是不能去掉的。
3-2 力法的基本原理及典型方程
M1
1
M2
M2
2
2
为使新静定结构与原结构等效, 必须满足以下变形协调条件:

船舶结构力学

船舶结构力学

第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。

这些外力包括船的各种载重(静载荷)、水压力、冲击力、以及运动所产生的惯性力(动载荷)等。

为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。

所谓具有一定的强度是指船体结构在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的能力。

2船体强度包括中拱状态、总纵强度、局部强度、扭转强度问题、应力集中问题、低周期疲劳。

3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。

局部强度是指船体的横向构件(如横梁、肋骨、及肋板等)一集船体的局部构建(如船底板、底纵衍等)在局部载荷作用下的强度。

4船体强度所研究的问题通常包括外力,结构在外力作用下的响应,及内力与变形,以及许用应力的确定等一系列问题。

船舶结构力学只研究船体结构的静力响应,及内力与变形,以及受压结构的稳定性问题,因此,船舶结构力学的首要任务是阐明结构力学的基本原理与方法,即阐明经典的方法、位移法及能量原理。

5船舶设计与制造是一个综合性很强的行业。

学习本课程不要仅仅满足于会计算船体结构中一些典型构件(如连续梁、钢架、板架、板)还应学会解决一般工程结构的计算问题。

6船体结构是由板和骨架等构件组成的空间复杂结构,在进行结构计算之前需要对实际的船体结构加以简化。

简化后的结构图形称为实际结构的理想化图形或计算图形(又称计算模型或力学模型等)7结构的计算图形是根据实际结构的受力特征,构建之间的相互影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。

因此,对于同一个实际结构,基于不同的考虑就会得出不同的计算图形,对于同一个实际结构,其计算图形不是唯一的,一成不变的。

8首先是船体结构中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。

9其次是船体结构中的骨架,船体结构中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件”或简称为“杆”。

(参考答案)集美大学船舶结构力学初参数法单元测试题

(参考答案)集美大学船舶结构力学初参数法单元测试题

集美大学船舶与海洋工程专业2012级船舶结构力学初参数法单元测试题(参考答案及评分标准)1.已知单跨梁如图1所示,试写出该梁用初参数表达的挠曲线及边界条件(不必确定初参数;梁端外力并入边界条件之中)。

(10分)图1 解:挠曲线方程:224302000)2(22462)(l x EI m x EI q x EI N x EI M x v x v --++++=θ (2分) 梁左端边界条件:P A v N M +-==000000;αθ (4分) 梁右端边界条件:1'''1''';A v EIv v EIv l l l l =-=α (4分) 2.两端刚性固定的单跨梁如图2所示,不受外荷重作用,当其左、右支座分别发生已知位移21,v v 时, 试求挠曲线。

(15分)图2解:1) EIx N EI x M v x v v v 62)(0,30201010++===θ (5分) 2)代入梁右边条0)(',)(2==l v v l v 有: 0262200230201=+=++l EIN l EI M v l EI N l EI M v (4分) 3)由上式得:31202120)12;)6l v v EI N l v v EI M --=-=(( (4分) 4) 331222121)2)3)(x lv v x l v v v x v ---+=(( (2分) 3.试求出图3所示单跨梁的挠曲线。

(5分) l EI ,x y omlEI ,x y o P图3解:1) 00=N (2分); 2) l EI m =0θ (2分);3)22)(x EI m lx EI m x v -=(1分)。

集美大学船舶结构力学(48学时)第二章 单跨梁(4)2014(1学时)

集美大学船舶结构力学(48学时)第二章 单跨梁(4)2014(1学时)


h / l 1 / 10
v2 0.01v1
,则
结论: 1、若梁的高度与长度相比 很小,则剪切对弯曲的影 响也很小而可忽略不计;
2、在船体结构中对于细 长的骨架,可以无须考虑 剪切对弯曲的影响; 3、对于大型油轮中的高腹 板梁,要考虑剪切影响, 在计算船体总弯曲挠度时, v1 。 v2 的10% 约取
l4 k u 2 4 EI
(J2-93)
5、简支弹性基础梁跨中有 集中力的弯曲要素:
Pl Pl v ' ( 左端 ) ( u ) 0 v(中) 2 (u ) 16 EI 48EI
3
2
Pl M (中) 0 (u ) 4
P N (右端 ) 0 (u ) 2
6、当u>0时,弹性基础梁 的辅助函数随u的增加而 减少(参见附录C). l4 k 如:u: 0--5 u 2 4 EI 2 (u) : 1--0.006
Pl v(中) 2 (u ) 48EI
3
这说明了随着弹性基 础刚度的增加弯曲要素将 逐渐减少。
考研概念题: 有下列的弹性基础梁(a) (b) (c),试判定;它们中梁中点 挠度最大的为( ), 最小的为( ), 判定的主 要依据为( )。
8P
(a)
l4 k u 2 4 EI
EI , l
弹性基础梁弯曲问题的几个 结论:
1、随着弹性基础刚度的增加弯 曲要素将逐渐减少,也说明 有弹性基础时梁的变形将比 没有弹性基础时小些。
2、当k(弹性基础刚度)一定 时,梁的弯曲要素与外荷 重成线性关系。
3、若弹性基础梁上受到 不同的外荷重时,仍可 应用叠加原理求出该梁 的弯曲要素。
4、弹性基础梁的刚度参数 u(教材27页):

集美大学 船舶结构力学(总48学时)第六章 能量法(1)(2学时)2014

集美大学 船舶结构力学(总48学时)第六章 能量法(1)(2学时)2014

EI
可得 图5-3
1 1 V P11 dV P 1d 2 2 再据 有
写出
1 dV Mdθ 2 1 M M dx 2 EI 2 1M dx 2 EI
线性体系一维弹性体 应变能的统一形式
Mdx d EI

1 M2 dV dx 2 EI
V

"
l
0
1 lM dV dx 2 0 EI
1 0

1
0

1
1
0
1 2 V k 1 2
2 0
(J6-11a)
应变能与广义位移的关系?
1 1 2 P P 1 1 1 2 2k
由以上推导可见应变能 是广义位移的二次函数。
1 2 1 2 P1 V k 1 V 2k 2
应变能与什么有关?
应变能只与载荷的最终数值有关, 或只与位移的最终数值有关。
1 l "2 EIv dx 弯曲 2 0 一般以弯曲为主的杆 l 1 '2 件,剪切和拉压应变能与 GA v dx s 2 弯曲应变能相比很小可忽 0 2 略不计。
1 l '2 u V EAu dx 2 0 1 l 扭转 104页 '2 GJ dx (5-8b) 2 0
1
2.应变能(变形能)(用V表示) 显然: V
W Pd
0
教材105页(5-11)
1
3.一维弹性体——受拉杆的外 力功或应变能、单位体积的 应变能:
外力功或应变能:V
W Al d
0
1
单位体积的应变能:V0

1
0
d
下面说明之:

集美大学 船舶结构力学(48学时)第二章 单跨梁(2)2014年 4学时

集美大学 船舶结构力学(48学时)第二章 单跨梁(2)2014年 4学时
第二章 单跨梁的弯曲理论
§2.2梁的支座及边界条件
基本概念: 1)梁端边界条件: 梁端弯曲要素的特 定值或弯曲要素之间的 特定关系式。
2)梁端支座情况与梁端边 界条件的关系: 梁端的边界条件取决 于梁端的支座情况,不同 的支座对梁有不同的约束, 从而就有不同的边界条件。
3)研究梁端边界条件的意 义: 确定初参数, 即确定挠曲线方程。
一、各种支座及相应的边界 条件 本节先介绍通常的刚性 支座和刚性固定及铰支端和 刚固端的边界条件,再介绍 弹性支座和弹性固定及弹支 端和弹固端的边界条件。
1、刚性支持端(参见图2-7) 简称刚支端又称铰支端或简 支端:
(它的弯曲要素的特定值?)
铰支(端) 简支(端)
固定铰支座 活动铰支座
简化表达
(梁左端用负号)
图2-11
6、弹性固定 1)定义: 该种固定(端)在受 弯矩作用后将产生一个正 比于弯矩的转角。
M
M k

(2-14)
P
M

k


记忆该式有利于使用叠加 法、力法、 位移法处理弹性固定端的 情况。
k


M

P

2)弹性固定的“柔性系数” /: M
7、弹性固定端(弹固端)的边 界条件: 由于对梁来说,支反力矩 M就是梁端的弯矩,因此就可 以把梁端转角与弯矩之间的关 系找到。 v0
0
x
y
M0x N0 x qx v v0 0 x 2 EI 6 EI 24EI m P 2 3 a ( x a) b ( x b) 2 EI 6 EI
2
3
4
解: (1)代入左端边界条件的挠曲 线方程式: 3 2 M0x N0 x v 2 EI 6 EI

集美大学船舶结构力学(48学时)第六章能量法(3)2014 1学时

集美大学船舶结构力学(48学时)第六章能量法(3)2014 1学时
第六章 能量法
教学内容 : §6.6 李兹法(位能驻 值原理的近似解法之一)
教学目的: 李兹法可用来求解任 意结构形式,在任意载荷 作用下的梁的挠曲线。
有限元法的推导中 也应用了李兹法,所以 了解李兹法的思想、掌 握李兹法求解梁的弯曲 问题十分重要。
教学要求: 掌握用李兹法求解梁 的挠曲线的方法。
任意荷重: v( x) a1 sin ... l x 1) 0
EI , l
y
x
任意荷重:
x v( x) a1 (1 cos ) ... 2l
2 3
v( x) a1 x a2 x ...
EI , l
x
2)
0
y
对称荷重:
2x v( x) a1 (1 cos ) ... l
l 4ql4 1 ql4 vmax v( ) 5 (1 ) 0.013017 2 EI 243 EI
取第一项
4 4
误差:-0.03%
l 4ql ql vmax v( ) 5 0.013071 误差:0.04% 2 EI EI 4 4 l 5ql ql vmax v( ) 0.013021 精确值 2 384EI EI
2
题6:
0
y
P
取 v ( x ) a (1 sin 2l )
EI , l
x
x
EI V 2

l
0
v "2 ( x)dx

公式:
x 1 sin Bxdx sin 2 Bx 2 4B
2
U Pv( 0 )
(本题B

2l
)
V
EI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
静定基
这时原来仅受均布荷重q作用的静 不定的双跨梁变为受均布荷重q与集中 力R共同作用的静定的单跨梁;
2)比较前后两种梁的变 形情况,根据变形一致 (协调、连续)条件建 立方程式;
原超静定结构
v1 0
静定基
变形一致条件:
v1 0
静定基
变形一致条件:
v1 0
vq1 vR1 0
4
3
Rl 5ql 0 5 6 EI 24 EI R ql 4
P
M图
中点挠度大小
3
端点转角大小
2
m
Pl Pl EI , l 48EI 16EI Pl / 4 2 m ml ml ml 左 右 查单跨梁的弯曲要素表(附录A表A-2),得到: 3EI 6EI 16EI
Q
EI , l
Ql / 8
(力法基本未知数数目与结构的 静不定次数相同。)
2、在去掉约束或截断处, 列出变形一致(连续) 方程式以保证基本结构 的变形与原结构的变形 相同。
(方程数目与基本未知数数目相同。)
3、从变形一致(或连续、 协调)方程式中求出未 知“力”,进一步可求 出结构的其他弯曲要素。
五、三弯矩方程法 1、三弯矩方程式:一般来 说,在用力法的第二种方法 (截面法)解静不定杆系问 题时,列出的变形连续方程 式(或称节点转角连续方程) 是以各断面弯矩为未知数的 方程组,
1 2 M 1 ql 14
3 2 M2 ql 28
7)画弯矩图
求出了 M 1 、M 2 后, 就可以分别对两个单跨 梁1-2、2-3画弯矩图。
其中每一个单跨梁 的弯矩图都可以用叠加 法来画。最后组合起来 得到双跨梁的弯矩图, 图3-7(a)。
a
弯矩图
3
例2(教材P37例) 计算图 3-9中的等断面三跨连续 梁,已知梁的跨长为 , l 梁断面惯性矩为 ,梁 I 上作用的均布荷重为 , q 梁上作用的集中力为 =
“力”?
力法的适用范围:
力法多用于求解连 续梁、简单刚架及简单 板架。
2、节点:刚架或板架 中杆件的相交点、连续 梁中支座与杆件的交点。
3、简单刚架:
刚架中节点汇交的杆 件只有两根。(如单甲板 船的肋骨刚架)
是简单刚架?
4、简单板架:
节点数目较少,且主 向梁、交叉构件都是等断 面梁的板架。
Ql 24EI
2
2
EI , l
Q
Ql / 8
EI , l
2Ql 2 7Ql 2 左 右 45EI 180EI
查单跨梁的弯曲要素表(附录A表A-2),利用叠加法可得: 两端自由支持单跨梁的弯曲要素表
静定基:
2
1
2
1
2
2
3
EI ,l
EI ,l
12 0
21 23
化简?
M 1l M 2l ql3 0 3EI 6 EI 24EI 3 3 M 1l M 2l ql M 2l ql 6 EI 3EI 24EI 3EI 24EI
第三章
力法
§3.2 具有刚性支 座连续梁的计算
一、 用力法的三弯 矩方程法(截面法) 求解刚性支座上的连 续梁问题举例:
例1(教材引例P33) 计算图3-6(a) 双跨 梁,画出该梁的弯矩 图。
1
2
3
静不定次数?
解: 1)确定所要求解 的基本未知数数目
此双跨梁为两次静不定结 构,故所要求解的未知数数目 为2。
2
3
3)建立变形一致方程式
一个是固定端处的转角 为零的方程式,12 0 另一个是中间支座的转 角连续方程式。 21 23
P
M图
端点转角大小
EI , l
m m
Pl / 4
EI , l
Q
Pl 48EI 2 ml 16EI
5Ql 384EI

3
3
Pl 16EI ml ml 左 右 3EI 6EI
P
ql 2
m ql2 / 20
l/2
/2
解: 1、静定基
原模型:
P
ql 2
m ql2 / 20
l/2
/2
P
ql 2
静定基
m ql / 20
2
3
变形连续方程?
2、变形一致方程:
01 0 10 12 21 23
3、三弯矩方程:
M 0l M 1l Pl 0 3EI 6 EI 16EI 2 M 0l M 1l Pl M 1l M 2l ml 6 EI 3EI 16EI 3EI 6 EI 24EI 3 M 1l M 2l ml M 2l ql 6 EI 3EI 24EI 3EI 24EI
由于此方程组中的 每一个方程式中最多包 括三个未知弯矩,因此 称为三弯矩方程式。
思考: 是否可以说力法的 第二种解题法(截面法) 就是三弯矩方程法?
2、三弯矩方程法的优点: (1)一般来说,对于求解 连续梁(三跨以上)、简单 刚架,用三弯矩方程法较 为简便;
(2)工程实际中应用 广泛; (3)求出弯矩后可立 即画出弯矩图。
2
2 2 R ( 2 l ) 2 Ql 7 Ql q ( 2 l ) 略 左 45EI 右 180EI
24EI
l -m/2
m/2
8
ql 8
零 1
2
ml 24EI
4
三、用力法的去支座法
求解弹性支座上的连 续梁举例:
例1:具有弹性支座的双跨梁 如下图,用力法的去支座法 求 R1 , M1 , v1 ,已知如图。
M 1l M 2l Pl 0 3EI 6 EI 16EI 2 M 1l M 2l Pl M 2l M 3l 6 EI 3EI 16EI 3EI 6 EI 3 M 2l M 3l M 3l ql 6 EI 3EI 3EI 24EI
2
化简成正则式:
3 2 2 M 1 M 2 ql 16 3 2 M 1 4 M 2 M 3 ql 16 1 2 M 2 4 M 3 ql 4
主向梁?交叉构件?
简单板架?
5、连续梁:两端以一定
边界形式的固定,中间具 有多个刚性或弹性支座, 且在横向荷重作用下的直 杆。
双跨梁是连续梁?
二、力法原理 用力法解题有两种 方法,下面以受均布荷 重的双跨梁(静不定结 构)求解为例说明力法 原理。
力法第一法(去支座法): 力法第一法(去支座法): 1)将双跨梁中间刚性支座 拿掉,以支反力R代替拿 掉的支座对梁的作用,
4
5Ql 384EI

3
5q(2l ) vq1 384 EI m
Q
2Ql 2 7Ql 2 左 右 45EI 180EI
Ql 24EI
2
R ( 2l ) v R1 48EI
3
ml 24EI
3)R解出后,即可解出 双跨梁的内力与变形。 (思考:该种力法的 解题关键是什么?)
关键是求出力 R
节点转角连续方程
原超静定结构
10 12
3)写出含有M的变形连 续条件的具体形式(关 于弯矩的方程)并解出 M
10 12
Ml ql 10 3EI 24EI 3 Ml ql 12 3EI 24EI
3
代入式( J4-2 10 )得 12
Ml ql Ml ql 3EI 24EI 3EI 24EI
力法第二种方法(截面法):
1)假定在原来双跨梁中间 支座处沿断面切断,
在断面处加上弯矩M及 铰支座以形成两根在断面处 为自由支持的单跨梁(力法 的基本结构-静定基);
2)对受均布荷重q与断面弯 矩M共同作用的两根单跨梁, 根据变形连续条件建立方程 式; 为什么?
10 12
静定基
由于原来的双跨梁在节点1(支 座1)处是连续的, 现在把它切开后仍应保持变形 连续的条件, 具体就是: 梁0-1与梁1-2在节点1处应该有 相同的转角(或M的大小恰好使 梁0-1与梁1-2在节点1处保持相 同的转角),即:
R3
l/2
4
2
3
据弹性支座有:v
5 q(l ) R3l 据静定基有: v3 384 EI 48EI
3
R3 A
变形协调方程:
R3l 5 ql R3 A 384 EI 48EI
4 3
另据静定基有: 令M3=0得 R
R3变协方得
l A 192EI
3
例3:具有弹性支座的双跨梁 如下图,求 v2 , M1 。
q 1
l/2
2 A l/2
EI
3
3
l A 48EI
计算图形
解:静不定基(超静定基):
q 1
l/2 2 l/2 R 2 EI
3
R2
若用静定基?
l v1 R2 A R2 48EI
3
变形协调方程:
1 ql R2l AR2 384 EI 192EI
q
0
EI , l
1
A
3
EI , l
2
l A 6 EI
解:静定基:
0
q 1
据静定基写出:
4
EI , l
3
R1 R1
EI , l
2
5 q(2l ) R1 (2l ) v1 384 EI 48EI
据弹性支座写出:
变形协调方程?
l v1 R1 A R1 6 EI
3
变形协调方程:
5 q(2l ) R1 (2l ) R1l 384 EI 48EI 6 EI 解得: 5 R1 ql 8
1 2 3
相关文档
最新文档