线面 线线面面平行垂直方法总结

合集下载

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结线面垂直线面平行点面面面的证明全文共四篇示例,供读者参考第一篇示例:高中数学中,证明几何是一个重要的部分,特别是涉及到线面垂直、线面平行、点面面面的证明。

这些知识点是我们理解几何学的基础,掌握了这些知识点,可以更好地应用几何学的相关定理解决问题。

下面我们来总结一下关于这些知识点的证明方法。

首先是线面垂直的证明,线面垂直是指一条直线与一个平面相交成直角。

在证明线面垂直的过程中,常常使用垂直于平面的直线与这条直线的夹角为90度,并结合相关的几何定理来进行证明。

在证明直线与平面的垂直时,可以利用平行线的性质来证明。

其次是线面平行的证明,线面平行是指一条直线与一个平面平行。

在证明线面平行的过程中,常常使用有平行性质的几何图形,比如平行线、平行四边形等。

通过利用这些性质,可以简单明了地证明线面平行的关系。

在证明这些知识点的时候,我们需要注意一些技巧和方法。

首先要善于利用已知条件,根据题目中给出的条件来进行推理。

其次要善于利用几何图形的性质,结合相关定理来进行推理。

最后要善于应用代数方法,通过代数运算来证明一些几何关系。

证明几何是高中数学中非常重要的内容,能够帮助我们更好地理解几何学的相关定理和性质。

通过掌握线面垂直、线面平行、点面面面的证明方法,我们可以更好地解决各种几何问题,并提高数学解题能力。

希望以上总结对大家有所帮助,让我们共同努力,提高数学水平!第二篇示例:在高中数学中,证明几何是一个非常重要的部分,它不仅考察了学生对数学知识的掌握程度,还培养了学生的逻辑思维能力和分析问题的能力。

线面垂直、线面平行、点面、面面等几何关系的证明是学习数学证明的一个重要内容。

下面我们就来看一下关于这些几何关系的证明的知识点总结。

我们来介绍线面垂直的证明。

在线面垂直的证明中,一般需要用到的有以下几个重要的定理:1. 垂直平分线定理:在一个平面内,若一条线段垂直于一条线段的中点,那么这条线段垂直于这条线段。

线面平行、线面垂直、面面平行、面面垂直的性质定理-武威第三中学-邵志光

线面平行、线面垂直、面面平行、面面垂直的性质定理-武威第三中学-邵志光
定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个两两垂直的平面的交线两两垂直。
定理4:如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。(判定定理推论2的逆定理)
线面平行判定及其性质
1、直线与平面平行的判定定理:
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
2、判断直线与平面平行的方法:
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
3、直线与平面平行的性质定理:
定理1:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
定理2:一条直线与一个平面平行,则该直线垂直于此平面的垂线。
线面垂直判定及其性质
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
3、直线与平面平行的性质定理:
定理1:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
定理2:一条直线与一个平面平行,则该直线垂直于此平面的垂线。
线面垂直判定及其性质
定理3:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
2、面面平行的性质定理:
定理1:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。

(完整版)空间直线和平面总结_知识结构图+例题,推荐文档

(完整版)空间直线和平面总结_知识结构图+例题,推荐文档

m
对于③
l l // m
m m
∴②错
③正确
l
对于④ lm
/
/ /,如图
m
∴④错
∴①③正确,选 D
例 4. 如图,在四棱锥 P-ABCD 中,底面 ABCD 是正方形,侧棱 PD⊥底面 ABCD,PD=DC,E 是 PC 的
中点,作 EF⊥PB 交 PB 于点 F。(1)证明 PA//面 EDB。(2)PB⊥平面 EFD。
(三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角 θ:0°<θ≤90°
(2)直线与平面所成的角:0°≤θ≤90°
( 0 时,b∥或b )
(3)二面角:二面角的平面角 θ,0°≤θ≤180°
2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角; (2)证明其符合定义; (3)指出所求作的角; (4)计算大小。
A. 3
B. 10
C.3
D.2
2
2
5
5
分析:如图,取 AB 中点 E,CC1 中点 F 连结 B1E、B1F、EF
则 B1E//AM,B1F//NC ∴∠EB1F 为 AM 与 CN 所成的角
又棱长为 1
B1E
5 2
,B1 F
5 ,EF 2
6 2
cosEB1F
B1E 2 B1F 2 EF 2 2B1E B1F
3. 空间距离:将空间距离转化为两点间距离——构造三角形,解三角形,求该线段的长。 4. 点到面的距离,线线间距离、线面间距离、面面间距离都可转化为点到面的距离。
常用方法:三垂线法、垂面法、体积法、向量法等。
【典型例题】
例. 在棱长为 1 的正方体 ABCD-A1B1C1D1 中,M、N 分别是 A1B1 和 BB1 的中点,那么 AM 与 CM 所成角 的余弦值为( )

直线与平面的平行和垂直(汇总演示)资料

直线与平面的平行和垂直(汇总演示)资料

15
条直线与这个平面垂直.
线线平行
1 2
线面平行
a b
3 面面平行
4
12
5
14
10
线线垂直 6
7
11 13
线面垂直
8 9
面面垂直
返回
关于平行、垂直的
定7理由直(线与运平面用垂直)的定结义可构知:示意图l
如果一条直线与一个平面垂直,
那么这条直线与这个平面内的任意
15线线平一行条直线1垂2直. 线面平行
3 面面平行
4
5
14
10
线线垂直 6
7
11 13
线面垂直
8 9
面面垂直
返回
关于平行、垂直的 3 两个平面平行的判定定理: a
如果一个平面内有两条 b
定理(运用)结构示意图 相交直线都平行于另一个平 面,那么这两个平面平行.
15
线线平行
1 2
12
线面平行
3 面面平行
4
5
14
10
线线垂直 6
7
11 13
平面,那么这两条直线平行.
15
线线平行
1 2
线面平行
3 面面平行
4
12
5
14
10
线线垂直 6
7
11 13
线面垂直
8 9
面面垂直
返回
关于平行、垂直的 12 直线与平面垂直的判定定理2:
a b
定理(运用)结构示意图 如果两条平行直线中的一条 垂直于一个平面,那么另一条也
垂直于同一个平面.
15
线线平行
返回
l
关于平行、垂直的 14 两个平面平行的性质定理2: 一条直线垂直于两个平行

立体几何平行垂直有关定理总结

立体几何平行垂直有关定理总结
(线线平行 面面平行)
6
面面平行பைடு நூலகம்
性质定理
如果两个平行平面同时和第三个平面相交,那么交线平行.
(面面平行 线线平行)
7
线面垂直的判定定理
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
(线线垂直 线面垂直)
8
线面垂直的定义
如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的任何一条直线。
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(线面平行 面面平行)
4
面面平行的性质
如果两个平面平行,那么其中一个平面内的任何一条直线都平行于另外一个平面
(面面平行 线面平行)
5
面面平行定理的推论
如果一个平面内有两条相交直线分别平行另一个平面的两条相交直线,那么这两个平面平行.
(线面垂直 线线垂直)
9
面面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
(线面垂直 面面垂直)
10
面面垂直的性质定理
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线必定垂直于另一个平面.
(面面垂直 线面垂直)
11
线线平行
线面垂直
如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直这个平面.
立体几何有关平行垂直定理总结
文字语言
图形语言
符号语言
1
线面平行的判定定理
如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
(线线平行 线面平行)
2
线面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

立体几何中的平行与垂直

立体几何中的平行与垂直

立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

2.3 直线、平面垂直的判定及其性质线面垂直→线线垂直:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

【线面垂直定义】线线垂直→线面垂直:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

【判定】线面垂直→线线平行:如果两条直线同时垂直于一个平面,那么这两条直线平行。

【性质】线面垂直→面面垂直:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

【判定】面面垂直→线面垂直:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

【性质】三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

一、选择题1.给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解析】直线l与平面α内两条相交直线都垂直,是线面垂直判定定理的条件,故为充要条件.【答案】 C2.空间四边形ABCD中,若AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( ) A.面ABD⊥面BDC B.面ABC⊥面ABDC.面ABC⊥面ADC D.面ABC⊥面BED【解析】在等腰三角形ABC、ADC中,E为底边AC的中点,则BE⊥AC,DE⊥AC.又∵BE∩DE=E,∴AC⊥面BDE,故面ABC⊥面BDE,面ADC⊥面BDE.【答案】 D3.对两条不相交的空间直线a和b,必定存在平面α,使得 ( )A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α【解析】当a,b异面时,A不成立;当a,b不平行时,C不成立;当a,b不垂直时,D不成立.故选B.【答案】 B4.设直线m与平面α相交但不垂直,则下列说法中正确的是( )A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直【解析】在平面α内有无数条彼此平行的直线与直线m垂直,与直线m垂直的直线可能与平面α平行,与直线m平行的平面可能与平面α垂直.故A,C,D错误.【答案】 B5.设a,b,c是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立...的是( )A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bC.当b⊂α时,若b⊥β,则α⊥βD.当b⊂α,且c⊄α时,若c∥α,则b∥c【解析】α⊥β,b⊂α,b不一定垂直于β.故C错误.【答案】 C6.命题p:若平面α⊥β,平面β⊥γ,则必有α∥γ;命题q:若平面α上不共线的三点到平面β的距离相等,则必有α∥β.对以上两个命题,下列结论中正确的是( ) A.命题“p且q”为真 B.命题“p或綈q”为假C.命题“p或q”为假 D.命题“綈p且綈q”为假【解析】命题p,命题q皆为假,所以命题C正确.【答案】 C7.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在的平面,那么( )A .PA =PB >PCB .PA =PB <PCC .PA =PB =PCD .PA ≠PB ≠PC【解析】 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故PA =PB =PC .【答案】 C二、填空题8.m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m ∥α,则m ⊥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥n ,n ⊂α,则m ∥α.其中真命题的序号是________.【解析】 由平面平行的传递性知①正确,由面面垂直的判定定理知③正确.【答案】 ①③9.P 为△ABC 所在平面外一点,AC =2a ,连接PA 、PB 、PC ,得△PAB 和△PBC 都是边长为a 的等边三角形,则平面ABC 和平面PAC 的位置关系为________.【解析】如图所示,由题意知PA =PB =PC =AB =BC =a ,取AC 中点D ,连接PD 、BD ,则PD ⊥AC ,BD ⊥AC ,则∠BDP 为二面角P -AC -B 的平面角,又∵AC =2a ,∴PD =BD =22a , 在△PBD 中,PB 2=BD 2+PD 2,∴∠PDB =90°.【答案】 垂直10.(精选考题·四川高考)如图所示,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________________________________________________________________________.【解析】 如图,过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线,垂足为D ,连接AD ,由线面垂直关系可知AD ⊥l ,故∠ADC 为二面角α-l -β的平面角,∴∠ADC =60°.连接CB ,则∠ABC 为AB 与平面β所成的角.设AD =2,则AC =3,CD =1,AB =AD sin30°=4,∴sin ∠ABC =AC AB =34. 【答案】34 三、解答题11.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【证明】 (1)在四棱锥P -ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC, ∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1)知,AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】 (1)证明:∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°,得BC ⊥DC .又PD ∩DC =D ,∴BC ⊥平面PCD .∵PC ⊂平面PCD ,∴PC ⊥BC .(2)如图,连接AC .设点A 到平面PBC 的距离为h .∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°.从而由AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P -ABC 的体积V =13S △ABC ·PD =13.∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC .又PD =DC =1,∴PC =PD 2+DC 2= 2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =22.由V =13S △PBC h =13×22h =13,得h = 2.因此点A 到平面PBC 的距离为 2.。

线面、面面平行和垂直的八大定理-平面八大定理

线面、面面平行和垂直的八大定理-平面八大定理

线面、面面平行和垂直的八大定理-平面八大定理
一、直线面平行定理
定理:如果两条直线平行,那么任何一个由两条直线夹成的角都是相等的。

证明:设直线AR、AB为两直线,角A、A’R为AR与AB所成角,角A’B为AB与AR
所成角,设AR ∥ AB,则知AR与AB所成的角A = A’B(因两条直线平行),∴角A=
A’R,证毕。

证明:设平面Alpha、Beta为两个平面,角α为Alpha与Beta所成角,角β为
Beta与Alpha所成角,设Alpha ∥ Beta,则β=α(因两个平面平行),∴角β=α,证毕。

证明:设直线AB与平面S、T垂直,则知AB∥S;AB∥T;∴S∥T,证毕。

结论:当直线与两个不同的平面都垂直时,两个平面一定是平行的。

这就是平面八大定理。

它揭示了直线与平面之间的相互关系,也提供了重要的绘画几
何图形的基础。

线面垂直与平行关系的判定和计算方法

线面垂直与平行关系的判定和计算方法

线面垂直与平行关系的判定和计算方法线面垂直与平行关系是几何学中的基本概念之一,它在建筑、机械、工程等领域具有重要的应用价值。

本文将介绍线面垂直与平行关系的判定和计算方法,帮助读者更好地理解和应用这一概念。

一、线面垂直关系的判定和计算方法线面垂直关系是指一条直线与一平面相互垂直的情况。

在判定线面垂直关系时,可以采用以下几种方法:1. 以直线的斜率判断:若直线的斜率存在且为零,则该直线与水平面垂直;当直线的斜率为正无穷或负无穷时,则该直线与竖直面垂直。

2. 以直线的方向向量判断:若直线的方向向量与平面的法向量垂直,则直线与平面垂直。

3. 以直线上两点确定的向量判断:设直线上两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),平面的法向量为n(a, b, c),则向量AB与平面的法向量垂直的条件是AB·n=0(其中·代表向量的点乘运算)。

二、线面平行关系的判定和计算方法线面平行关系是指一条直线与一平面相互平行的情况。

在判定线面平行关系时,可以采用以下几种方法:1. 以直线斜率的倒数判断:若直线的斜率存在且与平面的法向量的斜率的倒数相等,则该直线与平面平行。

2. 以直线的方向向量判断:若直线的方向向量与平面的法向量平行,则直线与平面平行。

3. 以直线上一点与平面的垂直距离判断:设直线上一点为A(x₀,y₀, z₀),平面的法向量为n(a, b, c),平面上一点为P(x, y, z),则垂直距离d=|AP·n|/|n|(其中·代表向量的点乘运算,|n|表示向量n的模),若垂直距离d=0,则直线与平面平行。

三、线面垂直与平行关系的应用线面垂直与平行关系的应用广泛,以下列举几个常见的应用场景:1. 建筑设计中的水平线和垂直线的确定:在建筑设计中,水平线和垂直线的确定是非常重要的,它们决定了建筑物的稳定性和美观性。

通过线面垂直关系的计算方法,可以准确地确定建筑物中各个部分的水平线和垂直线。

空间几何——线线平行面面平行线面垂直

空间几何——线线平行面面平行线面垂直
(5)若PA=PB=PC,AB=AC,则点O在△ABC的线上
2、已知 、 是平面,m、n是直线,则下列命题不正确的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
3、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直②过直线外一点有且仅有一个平面与已知直线平行③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直
第二章点、直线、平面之间的位置关系
一、知识点归纳
二、规律方法总结
(1)证点共线:常证明点在两个平面的交线上.
(2)证点线共面:常先据公理二及其推论确定一个平面,再证其它元素都在这个平面内.
()证线线平行:常用公理4、线面平行的性质、面面平行的性质、两直线与同一平面垂直.
(4)证线面平行:常用线面平行的判定定理,线面平行的定义.
7、如图,在正方体 中, 、 、 分别是 、 、
的中点.求证:平面 ∥平面 .
8、已知 中 , 面 , ,求证: 面 .
9、如图,已知空间四边形 中, , 是 的中点。
求证:(1) 平面CDE;(2)平面 平面 。
10、证明:在正四面体中,不相邻的两条棱互相垂直。
11、四面体 中, 分别为 的中点, 且 , ,
(5)证面面平行:常用判定定理、定义、推论或证两平面和同一条直线垂直,有时也用两平面与同一平面平行.
(6)证线线垂直:常用两直线所成的角是直角、线面垂直的性质、面面垂直的性质.
(7)证线面垂直:常用判定定理、定义.
(8)证面面垂直:常用判定定理、定义.
(9)求二面角、直线与直线所成角:常先作出角然后组成三角形,并通过解三角形求角.
其中正确命题的个数为()A.0个B.1个C.2个D.3个

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结在空间几何中,平行与垂直关系是非常重要的概念,它们贯穿于整个几何学习的始终。

理解和掌握这些关系对于解决空间几何问题至关重要。

下面,我们就来详细总结一下空间几何中平行与垂直关系的相关知识点。

一、线线平行1、平行线的定义在同一平面内,不相交的两条直线叫做平行线。

2、线线平行的判定定理(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

3、线线平行的性质定理(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

4、空间中直线平行的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

二、线面平行1、线面平行的定义如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。

2、线面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

3、线面平行的性质定理如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线与交线平行。

三、面面平行1、面面平行的定义如果两个平面没有公共点,那么这两个平面平行。

2、面面平行的判定定理(1)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

(2)如果两个平面都平行于同一条直线,那么这两个平面平行。

3、面面平行的性质定理(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

四、线线垂直1、线线垂直的定义如果两条直线所成的角为直角,那么这两条直线互相垂直。

2、线线垂直的判定定理(1)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任意一条直线。

(2)如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直1、线面垂直的定义如果一条直线与一个平面内的任意一条直线都垂直,那么这条直线与这个平面垂直。

立体几何平行垂直速记

立体几何平行垂直速记

立体几何平行垂直速记
立体几何平行垂直速记口诀如下:
点线面体是一家,共筑立几百花圆。

点在线面用属于,线在面内用包含。

四个公理是基础,推证演算巧周旋。

空间之中两直线,平行相交和异面。

线线平行同方向,等角定理进空间。

判断线和面平行,面中找条平行性。

已知线和面平行,过线作面找交线。

要证面和面平行,面中找出两交线。

线面平行若成立,面面平行不用看。

已知面与面平行,线面平行是必然。

若与三面都相交,则得两条平行线。

判断线和面垂直,线垂面中两交线。

两线垂直同一面,相互平行共伸展。

两面垂直同一线,一面平行另一面。

要让面和面垂直,面过另面一垂线。

面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线。

线线垂直得巧证,三垂定理风采显。

空间距离和夹角,平行转化在平面。

一找二证三构造,三角形中求答案。

引进向量新工具,计算证明开新篇。

空间建系求坐标,向量运算更简便。

希望这些口诀能够帮助你更好地理解和记忆立体几何中的平行和垂直关系。

(完整版)线面平行垂直知识点,推荐文档

(完整版)线面平行垂直知识点,推荐文档

角(或直角)叫做异面直线 a 和 b 所成的角.
(2)取值范围:0°<θ≤90°.
(3)求解方法
①根据定义,通过平移,找到异面直线所成的角 θ;
②解含有 θ 的三角形,求出角 θ 的大

2、直线和平面所成的角——斜线和射影所成的锐角
(1)取值范围 0°≤θ≤90°
(2)求解方法
①作出斜线在平面上的射影,找到斜线与平面所成的角 θ.
α⊥β,a∩β=α,l β,l⊥a,则 l⊥α.(面面垂直的性质定理)
(5)两平面平行的判定
①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点 α∥β.
②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若
a,b α,a∩b=P,a∥β,b∥β,则 α∥β.(面面平行判定定理)
m α,n α,m∩n=B,l⊥m,l⊥n,则 l⊥α.(线面垂直判定定理)
③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若 l∥a,a⊥α,则 l⊥α. ④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若 α∥β,l⊥β,则 l⊥α. ⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若
立体几何知识点总结
一、平面 通常用一个平行四边形来表示. 平面常用希腊字母 α、β、γ…或拉丁字母 M、N、P 来表示,也可用表示平行四边形的两个相对顶点字母 表示,如平面 AC. 在立体几何中,大写字母 A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面 看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a α,b α,a∥b,则 a∥α.(线面平行的判定定理) ③两个平面平行,其中一个平面内的直线平行于另一个平面,即若 α∥β,l α,则 l∥β.

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以

线面 线线面面平行垂直方法总结

线面 线线面面平行垂直方法总结

所有权归张志涛所有线线平行1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.)2.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

3.【定义】同一平面内,两直线无公共点,称两直线平行3.【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性)4.【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行.5.平行线分线段成比例定理的逆定理线面平行1.面外一条线与面内一条线平行,或两面有交线强调面外与面内(如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

)2.面外一直线上不同两点到面的距离相等,强调面外3.如果连条直线同时垂直于一个平面,那么这两条直线平行4.证明线面无交点5.反证法(线与面相交,再推翻)6.空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)7.【定义】直线与平面无公共点,称直线与平面平行8.X7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面.面面平行1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

2.若两个平面所夹的平行线段相等,则这两个平面平行.3.【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.4.【定义】两平面无公共点,称两平面平行.5.【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性)6.【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.线线垂直1如果一条直线垂直于一个平面,则这个平面上的任意一条直线都与这条直线垂直。

. 2.三垂线定理:如果平面内的一条直线垂直于平面的血现在平面内的射影,则这所有权归张志涛所有条直线垂直于斜线。

线面垂直1.如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

最新立体几何平行和垂直知识点整理

最新立体几何平行和垂直知识点整理

精品文档
β
αβ
αβ
αa αa b αβ
α
A
P
α 立体几何知识点整理 要求:作出图形,并在
}前用符号语言写
出条件。

一、平行理论
1、线线平行⇒线面平行
2、线面平行⇒线线平行
3、线面平行⇒面面平行
4、面面平行⇒线面平行
5、线线平行⇒面面平行
6、面面平行⇒线线平行
二、垂直理论
1、线线垂直⇒线面垂直
2、线面垂直⇒线线垂直
3、线面垂直⇒面面垂直
4、面面垂直⇒线面垂直
1、如图,b a 、
把 称为b a 、异面直线所成角∈θ
2、如图,PA 为面α的斜线,A 为斜足
把 称为PA 与α所成角 直线与平面所成角∈θ
α//a ⇒⎪⎭

⎬⎫b a //⇒⎪⎭

⎬⎫βα//⇒⎪⎭⎪
⎬⎫βα//⇒⎪⎭⎪
⎬⎫b a //⇒⎪⎭⎪
⎬⎫α⊥⇒⎪⎭

⎬⎫a b a ⊥⇒⎪⎭

⎬⎫βα⊥⇒⎪⎭

⎬⎫α⊥⇒⎪⎭

⎬⎫a α//a ⇒⎪⎭

⎬⎫
精品文档
l
β
α
3 、如图,二面角βα--l
把 称为二面角βα--l 的平面角 二面角大小∈θ。

线面平行垂直二十四式

线面平行垂直二十四式
面面垂直的性质定理:两个平面垂直,在第一个平面
312
内垂直于交线的直线垂直于另一个平面.
面⊥面 (4 个)
a
b
α
α β
a
β a
α β
a
α β
b a
α
γ a
β b
α
a ⊥ , a // b b⊥ a ⊥ , // a ⊥ a ,a a // , a ⊥ a b,a ,b ∥,
α β γ
b a线平行,前提是
321
线不在面内.
,a ,a a / /
补充:垂直于同一平面的平面和直线平行,前提是线
312
不在面内.
a ,b ,a b o ,a // ,b // //
面面平行的判定定理:一个平面内两条相交直线分别
522
与另一个平面平行,那么这两个平面平行.
a ⊥, a ⊥ //
212 补充:垂直于同一条直线的两个平面平行.
a , b , a b o , a , b , a b o , a / /a , b / /b //
补充:一个平面内两条相交直线分别与另一个平面两
842
, a ,b a b
补充:三垂线定理:平面内一直线若与斜线的射影垂 341 直则它与斜线垂直. 逆定理:平面内一直线若与斜线
垂直则与斜线的射影垂直.
补充:如何两条直线分别垂直于两个互相垂直的平面,
322
那么这两条直线垂直.
a ⊥ ,b a b
线面垂直的性质定理:一条直线若垂直于一平面,则
txm
文字
230 公理 4:平行于同一条直线的两条直线互相平行
线面平行的性质定理:如果一条直线和一个平面平行,
322 经过这条直线的平面和这个平面相交,那么这条直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线线平行
1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.)
2.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

3.【定义】同一平面内,两直线无公共点,称两直线平行
3.【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性)
4.【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行.
5.平行线分线段成比例定理的逆定理
线面平行
1.面外一条线与面内一条线平行,或两面有交线强调面外与面内(如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。


2.面外一直线上不同两点到面的距离相等,强调面外
3.如果连条直线同时垂直于一个平面,那么这两条直线平行
4.证明线面无交点
5.反证法(线与面相交,再推翻)
6.空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
7.【定义】直线与平面无公共点,称直线与平面平行
8.X7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面.
面面平行
1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

2.若两个平面所夹的平行线段相等,则这两个平面平行.
3.【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.
4.【定义】两平面无公共点,称两平面平行.
5.【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性)
6.【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
线线垂直
1如果一条直线垂直于一个平面,则这个平面上的任意一条直线都与这条直线垂直。

. 2.三垂线定理:如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

线面垂直
1.如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

2.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

面面垂直
1.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

2.【性质】X2逆定理、X4、X6及垂直关系性质
主要性质
1.X1【定理】空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(等角定理)
1.X2【定理】三条平行线截两条直线,所得对应线段成比例.(平行线分线段成比例定理)
直线在平面内判定方法
1.【定义】直线与平面有无数个公共点,称直线在平面内.
2.【公理】如果一条直线上两点在一平面内,那么这条直线在此平面内.
3.【公理】任意两点确定一条直线,不共线的三点确定一个平面;两相交直线、两平行直线确定一平面.
4.【性质】X3及垂直关系性质
5.X3【定理】过平面内一点的直线平行于此平面的一条平行线,则此直线在这个平面内.
直线在平面外判定方法
1.【定理】平面外一直线与平面内一直线平行,则该直线与此平面平行.
2.【性质】X5、X7及垂直关系性质
主要性质
3.X4【定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
4.X5【定理】平面外的两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面.
【性质】
1.【性质】X8逆定理、X9及垂直关系性质
2.X8【定理】夹在两个平行平面间的平行线段相等.
3.X9【结论】经过平面外一点有且只有一个平面与已知平面平行.(存在性与唯一性)。

相关文档
最新文档