_鉴相器(PD)
锁相环原理应用
锁相环基本原理一个典型的锁相环(PLL )系统,是由鉴相器(PD ),压控荡器(VCO )和低通滤波器(LPF )三个基本电路组成,如图1,Ud = Kd (θi –θo) U F = Ud F (s )θiθo图1鉴相器(PD )鉴相器用来鉴别输入信号Ui 与输出信号Uo 之间的相位差 ,并输出误差电压Ud 。
Ud 中的噪声和干扰成分被低通性质的环路滤波器滤除 ,形成压控振荡器(VCO )的控制电压Uc 。
Uc 作用于压控振荡器的结果是把它的输出振荡频率f 。
拉向环路输入信号频率fi ,当二者相等时,环路被锁定 ,称为入锁。
维持锁定的直流控制电压由鉴相器提供,因此鉴相器的两个输入信号间留有一定的相位差。
锁相环最初用于改善电视接收机的行同步和帧同步,以提高抗干扰能力。
20世纪50年代后期随着空间技术的发展,锁相环用于对宇宙飞行目标的跟踪、遥测和遥控。
60年代初随着数字通信系统的发展,锁相环应用愈广,例如为相干解调提取参考载波、建立位同步等。
具有门限扩展能力的调频信号锁相鉴频器也是在60年代初发展起来的。
构成鉴相器的电路形式很多,这里仅介绍实验中用到的两种鉴相器。
异或门的逻辑真值表示于表1,图2是逻辑符号图。
表1 图2从表1可知,如果输入端A 和B 分别送 2π入占空比为50%的信号波形,则当两者存在相位差∆θ时,输出端F 的波形的 占空比与∆θ有关,见图3。
将F 输出波 形通过积分器平滑,则积分器输出波形 的平均值,它同样与∆θ有关,这样,我们就可以利用异或门来进行相位到电压 ∆θ的转换,构成相位检出电路。
于是经积 图3F O o U K dtd =θVPD LP F VC O Ui Uo ABF __F = A B + A B F B A分器积分后的平均值(直流分量)为:UU = Vdd * ∆θ/ π(1) Vcc不同的∆θ,有不同的直流分量Vd。
∆θ与V的关系可用图4来描述。
从图中可知,两者呈简单线形关1/2Vcc系:Ud = Kd *∆θ(2)1/2ππ∆θKd 为鉴相灵敏度图。
系列I_面试题_射频_微波工程_电磁场相关
1 1 请简述锁相环的基本构成与工作原理请简述锁相环的基本构成与工作原理请简述锁相环的基本构成与工作原理,,各主要部件的作用各主要部件的作用。
答:相环由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理: 1. 压控振荡器的输出经过采集并分频; 2. 和基准信号同时输入鉴相器; 3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压; 4. 控制VCO,使它的频率改变; 5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。
当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。
这时,压控振荡器按其固有频率fv 进行自由振荡。
当有频率为fr 的参考信号输入时,Ur 和Uv 同时加到鉴相器进行鉴相。
如果fr 和fv 相差不大,鉴相器对Ur 和Uv 进行鉴相的结果,输出一个与Ur 和Uv 的相位差成正比的误差电压Ud,再经过环路滤波器滤去Ud 中的高频成分,输出一个控制电压Uc,Uc 将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fr,环路锁定。
环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。
这时我们就称环路已被锁定。
⑴鉴相环(或相位比较器,记为PD 或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位。
它的输出电压正比于两个输入信号之相位差。
⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用。
通常由电阻、电容或电感等组成,有时也包含运算放大器。
⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。
在PLL(锁相环)中,压控振荡器实际上是把控制电压转换为相位。
锁相环pll原理与应用
$number {01}
目 录
• 锁相环PLL的基本原理 • 锁相环PLL的种类与特性 • 锁相环PLL的应用 • 锁相环PLL的发展趋势与挑战 • 锁相环PLL的设计与实现
01
锁相环PLL的基本原理
PLL的基本结构
鉴相器(PD)
用于比较输入信号和反馈信号的相位 差。
压控振荡器(VCO)
相位同步
锁相环PLL用于电力系统的相位同步,确保不同电源之间的相位一 致,提高电力系统的稳定性。
频率跟踪
锁相环PLL用于电力系统的频率跟踪,实时监测电网频率变化,确 保电力系统的正常运行。
故障定位
通过分析电网信号的相位和频率变化,结合锁相环PLL实现电力故 障的快速定位和排查。
其他领域的应用
电子测量
PLL的发展趋势
高速化
随着通信技术的发展, 对信号的传输速率要求 越来越高,锁相环PLL 的频率合成速度和跟踪
速度也在不断加快。
数字化
随着数字信号处理技术 的进步,越来越多的锁 相环PLL开始采用数字 控制方式,提高了系统 的稳定性和灵活性。
集成化
为了减小电路体积和降 低成本,锁相环PLL的 集成化程度越来越高, 越来越多的功能被集成
软件PLL具有灵活性高、可重 构性好等优点,但同时也存在 计算量大、实时性差等缺点。
各种PLL的优缺点比较
1 2
3
模拟PLL
优点是响应速度快、跟踪性能好;缺点是元件参数漂移、温 度稳定性差。
数字PLL
优点是精度高、稳定性好、易于集成;缺点是响应速度慢、 跟踪性能较差。
软件PLL
优点是灵活性高、可重构性好;缺点是计算量大、实时性差 。
分立锁相环设计与验证
锁相环一、实验原理许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成框图如图1所示。
)t图1 锁相环基本原理框图图1所示的是锁相环基本原理框图。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u d(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u c(t),对振荡器输出信号的频率实施控制。
锁相环法载波提取:当u i(t)为固定频率正弦信号(θi(t)为常数)时,在环路的作用下,VCO输出信号频率可以由固有振荡频率ωo(即环路无输入信号、环路对VCO无控制作用是VCO的振荡频率),变化到输入信号频率ωi,此时θo(t)也是一个常数,u d(t)、u c(t)都为直流。
称此为环路的锁定状态。
定义△ω=ω-ωo为环路固有的频率差,△ωp表示环路的捕捉带,△ωh表示环路的同步带,模拟锁相环中△ωp<△ωh。
当|△ωo|<△ωp时,环路可以进入锁定状态;当|△ωo|<△ωh时,环路也可以保持锁定状态;当|△ωo|>△ωp时,环路不能进入锁定状态,环路锁定后若△ωo发生变化使|△ωo|>△ωh,环路也不能保持锁定状态。
这两种情况下,环路都将处于失锁状态。
失锁状态下u d(t)是一个上下不对称的差拍电压,当|△ωi|>△ωo时,是u d(t)上宽下窄的差拍电压;反之,u d(t)是一个下宽上窄的差拍电压。
VCO技术经验总结
PLL,VCO技术经验总结锁相环通常由鉴相器(P D,Pha se Dete cto r)、环路滤波器(L F,Lo op Filte r)和压控振荡器(VCO,Voltag e Cont rolled O scillato r)三部分组成。
目前常用锁相环有整数分频和小数分频两种。
衡量锁相环性能的主要指标包括输出频率、跳频范围、跳频步进、锁定时间、相位噪声、杂散、频率稳定度和频率准确度等。
在设计PLL时,需要考虑方面很多,下面总结一些PLL设计的实际工程经验,方便PLL设计者参考。
(1)输出频率和跳频范围主要决定于VCO和鉴相器。
(2)环路外相位噪声主要决定于VCO。
(3)PLL的环路内相噪声可以根据以下公式估算:参考相噪+20lg N(N为倍频次数)。
(4)PLL的鉴相泄露杂散主要靠环路滤波器来抑制(5)PLL的电源要处理的很赶紧,否则会引起电源调制杂散,而落在环路内的电源调六、制杂散很难滤除(6)PLL的参考、鉴相、环路、V CO各模块之间要有良好的屏蔽和隔离,以防止电磁串扰和辐射产生的杂散(7)PLL环路在振动和高低温下容易产生杂散,这主要是由于参考晶体振荡下产生的相位抖动产生的杂散和温度变化导致的参考晶体以及环路带宽等的变化。
对于振荡杂散和高低温杂散我们要对参考晶体做减振处理以及PLL环路中选择温度特性高的元件。
(8)PLL的输出频率稳定度等于参考的频率稳定度(9)PLL的输出频率准确度等于N*参考频率准确度(N为倍频次数)(10)对于整数分频:跳频步进=鉴相频率=1/20到1/10的环路带宽,而环路带宽大则锁定时间小,环路带宽小则锁定时间大。
(11)对于小数分频:跳频步进≤鉴相频率=1/20到1/10的环路带宽,而环路带宽大则锁定时间小,环路带宽小则锁定时间大。
(12)根据经验环路滤波器相位裕量在时,锁定时间和过冲都可以设计的最小。
小于的相裕会产生过度的过冲和振铃,而大于则会导致一个过阻尼的环路,环路就会慢慢爬行到锁定。
锁相技术复习大纲(第一章到第四章)
第1章 锁相环路的基本工作原理一、锁相环的基本组成及原理PLL 由鉴相器(PD)、环路滤波器(LF)和电压控制振荡器(VCO)三个基本部件组成的,基本构成如图,了解这三个基本部件的功能及数学模型,在此基础上完成环路动态方程模型的建立。
应理解θ1(t)与θ2(t)是以VCO 的自由振荡角频率w0为参考频率进行相位比较。
具体说明参见教材P2。
1、鉴相器鉴相器是一个相位比较装置,用来检测输入信号相位θ1(t)与反馈信号相位θ2(t)之间的相位差θe(t)。
输出的误差信号ud(t)是相差θe(t)的函数,即鉴相特性f [θe(t)]可以是多种多样的,有正弦形特性、三角形特性、锯齿形特性等等。
常用的正弦鉴相器可用模拟相乘器与低通滤波器的串接作为模型,如图所示。
鉴相器的输出电压:2、环路滤波器环路滤波器具有低通特性,它可以起到低通滤波器的作用,更重要的是它对环()sin ()d d e u t U t θ=路参数(如环路稳定性、环路单边噪声带宽、环路捕获时间等)调整起着决定性的作用。
环路滤波器是一个线性电路,在时域分析中可用一个传输算子F(p)来表示,其中p(≡d /dt)是微分算子;在频域分析中可用传递函数F(s)表示,其中s(a+j Ω)是复频率;若用s=j Ω代入F(s)就得到它的频率响应F(j Ω)。
主要了解RC 积分滤波器、无源比例积分滤波器及有源比例积分滤波器这三类环路滤波器的电路形式及传输函数。
a 、 R C 积分滤波器:式中τ1=RC 是时间常数,这是这种滤波器唯一可调的参数。
滤波器的频率特 性b 、无源比例积分滤波器式中τ1=(R1+R2)C ;τ2=R2C 。
这是两个独立的可调参数,其频率响应为c 、有源比例积分滤波器式中τ1=(R1+AR1+R2)C ;τ2=R2C ;A 是运算放大器无反馈时的电压增益。
若A 很大则有不考虑负号的影响,因为负号表示,鉴相器工作在鉴相器特性曲线斜率为负的那一段。
锁相环基础介绍
所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简称环路,通常用PLL表示。
锁相环路是由鉴相器(简称 PD)、环路滤波器(简称 LPF或LF)和压控振荡器(简称 VCO)三个部件组成闭合系统。
这是一个基本环路,其各种形式均由它变化而来PLL概念设环路输入信号v i= V im sin(ωi t+φi)环路输出信号v o= V om sin(ωo t+φo)——其中ωo=ωr+△ωo通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。
PLL构成由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。
PLL原理从捕捉过程→锁定A.捕捉过程(是失锁的)a.φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。
b.φe(t)由鉴相器产生误差电压v d(t)=f(φe)完成相位误差—电压的变换作用。
v d(t)为交流电压。
c. vd(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生控制角频差△ω0,使ω0随ωi变化。
B.锁定(即相位稳定)a.一旦锁定φe(t)=φe∞(很小常数)v d(t)= V d(直流电压)b.ω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。
ωr为VCO固有振荡角频率。
)锁相基本方程和相位模型(时域)★★各部件相位模型★鉴相器(PD)相位模型⊙数学模式v d(t)=A D sinφe(t)⊙相位模式★环路滤波器(LPF)相位模式⊙数学模式v c(t)=A F(P)v d(t)⊙相位模式★压控振荡器(VCO)相位模式⊙数学模式⊙相位模式★★环路相位模型★相位模式:指锁相环(PLL)输入相位和输出相位的反馈调节关系。
★相位模型:把鉴相器,环路滤波器和压控振荡器三个部件的相位模型依次级联起来就构成锁相相位模型。
锁相环原理
1锁相环的基本原理1.1 锁相环的基本构成锁相环路(PLL)是一个闭环的跟踪系统,它能够跟踪输入信号的相位和频率。
确切地讲,锁相环是一个使用输出信号(由振荡器产生的)与参考信号或者输入信号在频率和相位上同步的电路。
在同步(通常称为锁定)状态,振荡器输出信号和参考信号之间的相位差为零,或者保持常数。
如果出现相位误差,一种控制机理作用到振荡器上,使得相位误差再次减小到最小。
在这样的控制系统中,实际输出信号的相位锁定到参考信号的相位,因而我们称之为锁相环。
锁相环在无线电技术的许多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛的应用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。
锁相环通常由鉴相器(PD),环路滤波器(LF)和压控振荡器(VCO)三个基本部件组成。
如图1-1所示:VCOLFPD图1-1 锁相环的基本构成在PLL中,PD是一个相位比较器,比较基准信号(输入信号)(t)与输出信号(t)之间的相位偏差,并由此产生误差信号;LF是一个低通滤波器,用来滤除中的高频成分,起滤波平滑作用,以保证环路稳定和改善环路跟踪性能,最终输出控制电压;VCO是一个电压/频率变换装置,产生本地振荡频率,其振荡频率受控制,产生频率偏移,从而跟踪输入信号的频率。
整个锁相环路根据输入信号与本地振荡信号之间的相位误差对本地振荡信号的相位进行连续不断的反馈调节,从而达到使本地振荡信号相位跟踪输入信号相位的目的。
1.1.1 鉴相器鉴相器是一个相位比较器,比较两个输入信号的相位,产生误差相位,并转换为误差电压。
鉴相器有多种类型,如模拟乘法器型、取样保持型、边沿触发数字型等,其特性也可以是多种多样的,有正弦特性、三角特性、锯齿特性等,作为原理分析,通常使用正弦特性的鉴相器,理由是正弦理论比较成熟,分析简单方便,实际上各种鉴相特性当信噪比降低时,都趋向于正弦特性。
常用的正弦鉴相器可以用模拟乘法器与低通滤波器的串接作为模型,如图1-2所示。
全数字锁相环的设计及分析
全数字锁相环的设计及分析1 引言锁相环是一种能使输出信号在频率和相位上与输入信号同步的电路,即系统进入锁定状态(或同步状态)后,震荡器的输出信号与系统输入信号之间相差为零,或者保持为常数。
传统的锁相环各个部件都是由模拟电路实现的,一般包括鉴相器(PD)、环路滤波器(LF)、压控振荡器(VCO)三个环路基本部件。
随着数字技术的发展,全数字锁相环ADPLL(AllDigital Phase-Locked Loop)逐步发展起来。
所谓全数字锁相环,就是环路部件全部数字化,采用数字鉴相器、数字环路滤波器、数控振荡器构成锁相环路,并且系统中的信号全是数字信号。
与传统的模拟电路实现的锁相环相比,由于避免了模拟锁相环存在的温度漂移和易受电压变化影响等缺点,从而具备可靠性高、工作稳定、调节方便等优点。
全数字锁相环的环路带宽和中心频率编程可调,易于构建高阶锁相环,并且应用在数字系统中时,不需A/D及D/A转换。
在调制解调、频率合成、FM立体声解码、图像处理等各个方面得到广泛的应用。
随着电子设计自动化(EDA)技术的发展,可以采用大规模可编程逻辑器件(如CPLD或FPGA)和VHDL语言来设计专用芯片ASIC和数字系统。
本文完成了全数字锁相环的设计,而且可以把整个系统嵌入SoC,构成片内锁相环。
2全数字锁相环的体系结构和工作原理74XX297 是出现最早,应用最为广泛的一款全数字锁相环,在本文中以该芯片为参考进行设计、分析。
ADPLL基本结构如图1所示,主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器4部分构成。
K变模计数器和脉冲加减电路的时钟分别为Mfc和2Nfc。
这里fc是环路中心频率,一般情况下M和N都是2的整数幂。
2.1 鉴相器常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD)。
异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差θe,并输出误差信号Se作为K变模可逆计数器的计数方向信号。
pll锁相环
PLL :Phase Locked Loop 锁相环•锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,•锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位锁相环中的鉴相器又称为相位比较器它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。
锁相环可用来实现输出和输入两个信号之间的相位同步•锁相环可用来实现输出和输入两个信号之间的相位同步。
•锁相环处于锁定状态时,鉴相器的两输入端一定是两个频率完全一样但有一定相位差的信号,如果他们的频率不通,则在压控振荡器的输入端一定会产生一个控制信号使压控振荡器的振荡频率发生变化,最终使鉴相器的两输入信号频率完全一样。
号使压控振荡器的振荡频率发生变化最终使鉴相器的两输入信号频率完全样另一种表示:另种表示:另一种表示PD鉴相器•异或门相位比较器要求两个做比较的信号占空比为50%,输出波形F与Δθ有关,用异或门来实现相位到电压的装换,经过积分器积分的输出为Δθ与V成简单线性关系–简化后得到Kd称为鉴相灵敏度–鉴相器输出电压与两个比较信号相位之间的关系•边缘触发鉴相器,比较两输入信号的上跳边缘或下跳边缘,来对边缘触发鉴相器较两输入信号的跳边缘或下跳边缘来对信号进行鉴相无源比例积分滤波器•RC积分型滤波器对于足够高的频率,φ趋于90°,其输出电压似与输电分例近似与输入电压积分成比例,所以称作RC积分型滤波器。
•通常电容C取1~10μF,电阻R1通常电容C取110μF,电阻R1比R2大10~100倍。
•RC比例积分型滤波器在高频范围内,输入、输出电压关系保持一个固定的比例常数※例:有源RC比例积分滤波器•A(S)中负号可以不要考F虑,因极性问题锁相环路会自动得到调整。
鉴相器
鉴相器开放分类:电子电子技术电子术语通信编辑词条分享英文名:phasedetector鉴相器,顾名思义,就是能够鉴别出输入信号的相差的器件。
它是PLL,即锁相环的重要组成部分。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组使输出电压与两个输入信号之间的相位差有确定关系的电路。
表示其间关系的函数称为鉴相特性。
鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。
常见的鉴相特性有余弦型、锯齿型与三角型等。
鉴相器特性用u d(t)=k d f【θe(t)】表示。
式中k d为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。
函数f【²】表示鉴相特性,它反映鉴相器的输出电压u d(t)与相位差的关系。
常见的鉴相特性有余弦型、锯齿型与三角型等。
鉴相器鉴相器可以分为模拟鉴相器和数字鉴相器两种。
二极管平衡鉴相器是一种模拟鉴相器。
两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。
其鉴相特性通常为余弦型的。
鉴频鉴相器是一种数字鉴相器。
两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。
比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。
这种鉴相器的鉴相特性为锯齿形。
因它兼具鉴频作用,故称鉴频鉴相器二极管平衡鉴相器这是一种模拟鉴相器,原理电路如图1。
二极管D1、D2和C1R1、C2R2构成两个峰值检波器。
两个输入的正弦信号u1(t)=U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2) 的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压u d。
当U2U1时,u d∝U1cos(θ1-θ2)。
在这种情况下,它的鉴相特性是余弦型的(图2a)。
鉴相器鉴频鉴相器这是一种数字鉴相器。
两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。
比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。
鉴相器工作原理
鉴相器工作原理
鉴相器是一种用于测量和研究光线折射性质的仪器。
它基于光在不同介质中的传播速度不同的原理。
在鉴相器中,一束光线从一侧经过透明的介质(如玻璃或水)射入另一侧,并被观察者观察到。
通过观察光线在不同介质中的折射程度和路径的变化,鉴相器可以测量和研究不同材料的折射率、反射率和光的传播特性。
鉴相器的工作原理可以解释为以下几个步骤:
1. 光源发出一束光线,经过透明介质的一端射入鉴相器。
2. 光线从一种介质传播到另一种介质时,会发生光线的折射现象。
根据斯涅耳定律,光线在两种介质的交界面上折射时,入射角和折射角之间的正弦值的比等于两种介质的折射率的比。
3. 鉴相器中的透明介质通常具有已知的折射率,可以利用已知介质的折射率和透明介质的折射角来计算另一种未知介质的折射率。
4. 通过观察光线在鉴相器内的路径变化,可以确定不同材料的折射率和光的传播特性。
例如,当光线从空气中传播到水中时,由于水的折射率较高,光线会发生明显的偏折。
使用鉴相器可以进行很多实际应用,例如测量材料的光学性质、研究折射率和反射率、检测材料的质量和纯度等。
然而,在使
用鉴相器时需要注意避免外部光线的干扰,以确保准确的测量结果。
PLL基本原理
锁相环基本原理一个典型的锁相环(PLL )系统,是由鉴相器(PD ),压控荡器(VCO )和低通滤波器(LPF )三个基本电路组成,如图1,Ud = Kd (θi –θo) U F = Ud F (s )θi θo图1一.鉴相器(PD )构成鉴相器的电路形式很多,这里仅介绍实验中用到的两种鉴相器。
异或门的逻辑真值表示于表1,图2是逻辑符号图。
表1 图2从表1可知,如果输入端A 和B 分别送 2π 入占空比为50%的信号波形,则当两者存在相位差∆θ时,输出端F 的波形的 占空比与∆θ有关,见图3。
将F 输出波 形通过积分器平滑,则积分器输出波形的平均值,它同样与∆θ有关,这样,我们就可以利用异或门来进行相位到电压 ∆θ 的转换,构成相位检出电路。
于是经积 图3 分器积分后的平均值(直流分量)为: UU = Vdd * ∆θ/ π (1) Vcc不同的∆θ,有不同的直流分量Vd 。
∆θ与V 的关系可用图4来描述。
从图中可知,两者呈简单线形关 1/2Vcc 系:Ud = Kd *∆θ (2)1/2π π ∆θ Kd 为鉴相灵敏度 图4FO oU K dtd =θVPD LP F VC O Ui Uo VA B F__F = A B + A B F BA2. 边沿触发鉴相器 前已述及,异或门相位比较器在使用时要求两个作比较的信号必须是占空比为50%的波形,这就给应用带来了一些不便。
而边沿触发鉴相器是通过比较两输入信号的上跳边沿(或下跳边沿)来对信号进行鉴相,对输入信号的占空比不作要求。
二. 压控振荡器(VCO )压控振荡器是振荡频率ω0受控制电压U F (t )控制的振荡器,即是一种电压——频率变换器。
VCO 的特性可以用瞬时频率ω0(t )与控制电压U F (t )之间的关系曲线来表示。
未加控制电压时(但不能认为就是控制直流电压为0,因控制端电压应是直流电压和控制电压的叠加),VCO 的振荡频率,称为自由振荡频率ωom ,或中心频率,在VCO 线性控制范围内,其瞬时角频率可表示为: ωo (t )= ωom + K 0 U F (t )式中,K 0——VCO 控制特性曲线的斜率,常称为VCO 的控制灵敏度,或称压控灵敏度。
《高频电子线路》模拟考试试卷及参考答案 2
《高频电子线路》模拟考试试卷及参考答案一、填空题(每空1分,共16分)1.放大器的噪声系数N F是指输入端的信噪比与输出端的信噪比两者的比值,用分贝表示即为10lg(P si/P Ni)/(P so/P No)。
2.锁相环路由鉴相器、环路滤波器和压控振荡器组成,它的主要作用是用于实现两个电信号相位同步,即可实现无频率误差的频率跟踪。
3.小信号谐振放大器的主要特点是以调谐回路作为放大器的交流负载,具有放大和选频功能。
4.电容三点式振荡器的发射极至集电极之间的阻抗Zce性质应为容性,发射极至基极之间的阻抗Zbe性质应为容性,基极至集电极之间的阻抗Zcb性质应为感性。
5.小信号调谐放大器按调谐回路的个数分单调谐回路放大器和双调谐回路放大器。
6.高频功率放大器主要用来放大高频信号,为了提高效率,一般工作在丙类状态。
7.电容三点式振荡器的发射极至集电极之间的阻抗Z ce性质应为容性,发射极至基极之间的阻抗Z be性质应为容性,基极至集电极之间的阻抗Z cb性质应为感性。
8.振幅调制与解调、混频、频率调制与解调等电路是通信系统的基本组成电路。
它们的共同特点是将输入信号进行频率变换,以获得具有所需新频率分量的输出信号,因此,这些电路都属于频谱搬移电路。
9.调频波的频偏与调制信号的幅度成正比,而与调制信号的频率无关,这是调频波的基本特征。
10.在双踪示波器中观察到如下图所示的调幅波,根据所给的数值,它的调幅度应为0.5 。
11.根据干扰产生的原因,混频器的干扰主要有组合频率干扰、副波道干扰、交调干扰和互调干扰四种。
13.通信系统由输入变换器、发送设备、信道、接收设备以及输出变换器组成。
14.丙类高频功率放大器的最佳工作状态是临界工作状态,这种工作状态的特点是输出功率最大、效率较高和集电极电流为尖顶余弦脉冲波。
15.石英晶体振荡器是利用石英晶体的压电和反压电效应工作的,其频率稳定度很高,通常可分为串联型晶体振荡器和并联型晶体振荡器两种。
PLLVCO技术经验总结
PLL,VCO技术经验总结锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成。
目前常用锁相环有整数分频和小数分频两种。
衡量锁相环性能的主要指标包括输出频率、跳频范围、跳频步进、锁定时间、相位噪声、杂散、频率稳定度和频率准确度等。
在设计PLL时,需要考虑方面很多,下面总结一些PLL设计的实际工程经验,方便PLL设计者参考。
(1)输出频率和跳频范围主要决定于VCO和鉴相器。
(2)环路外相位噪声主要决定于VCO。
(3)PLL的环路内相噪声可以根据以下公式估算:参考相噪+20lgN(N为倍频次数)。
(4)PLL的鉴相泄露杂散主要靠环路滤波器来抑制(5)PLL的电源要处理的很赶紧,否则会引起电源调制杂散,而落在环路内的电源调六、制杂散很难滤除(6)PLL的参考、鉴相、环路、VCO各模块之间要有良好的屏蔽和隔离,以防止电磁串扰和辐射产生的杂散(7)PLL环路在振动和高低温下容易产生杂散,这主要是由于参考晶体振荡下产生的相位抖动产生的杂散和温度变化导致的参考晶体以及环路带宽等的变化。
对于振荡杂散和高低温杂散我们要对参考晶体做减振处理以及PLL环路中选择温度特性高的元件。
(8)PLL的输出频率稳定度等于参考的频率稳定度(9)PLL的输出频率准确度等于N*参考频率准确度(N为倍频次数)(10)对于整数分频:跳频步进=鉴相频率=1/20到1/10的环路带宽,而环路带宽大则锁定时间小,环路带宽小则锁定时间大。
(11)对于小数分频:跳频步进≤鉴相频率=1/20到1/10的环路带宽,而环路带宽大则锁定时间小,环路带宽小则锁定时间大。
(12)根据经验环路滤波器相位裕量在时,锁定时间和过冲都可以设计的最小。
小于的相裕会产生过度的过冲和振铃,而大于则会导致一个过阻尼的环路,环路就会慢慢爬行到锁定。
锁相环的组成和工作原理
锁相环的组成和工作原理1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
高频电子线路第12章反馈控制电路
▪ 改写输入和输出信号表示式:
v i( t) V is mio 0 n t 1 ( [ t) ] V is mii( t n )] [
v o ( t ) V o c mo o 0 t o s ( t ) [ V ] o c mo o 0 t 2 s ( t )
的正弦波,则 i(t) i0 是一常数, 即 v i (t ) 的初始相位。
▪ 假设输出信号为:
v o ( t) V oc mo o 0 t s o ( t) [ ] V oc mo o ( t)s ][
V 式 频 瞬中时率,相,位oo(m。t )为是余输弦出信信号号的以振其幅自,由振o 0荡为相环位路VCo0Ot 自为由参振考荡的角
大,将无法捕捉信号频率。能由失锁进入锁定所允许的最大角
频差的两倍称为环路的捕捉带。
两种不同的跟踪状态
锁相环的两种跟踪状态:载波跟踪与调制跟踪。
(1)参考信号不变:压控振荡器的输出信号频率只跟踪 输入信号的载频,那么就称之为载波跟踪状态,这叫载波 跟踪环,或称“窄带跟踪环”。
(2)参考信号改变:压控振荡器的输出信号跟踪输入的 调制信号变化。这种状态就是调制跟踪状态,这种环路称 为“调制跟踪环路”。调制跟踪环路可实现高质量的调角 信号的解调。
三、PLL各部件的特性与数学模型 1、鉴相器 (PD)
▪ 常用的鉴相器有以下几类:数字鉴相器、模拟相乘器、抽样 鉴相器和鉴频鉴相器等。 ▪ 作为原理分析,通常使用具有正弦鉴相特性的鉴相器。
vd(t)f[i(t)o(t)]
式中, i (t ) 为输入信号 v i (t ) 的瞬时相位; o (t ) 为压控振荡器输出信号 v o (t ) 的瞬时相位。
鉴相器(PD)
参考频率fR vR(t) θR(t)
鉴 相 器 ( P D )
一、正弦波相位检波器
(1)正弦波相位检波器电路 (2)工作原理分析
vR(t)=VRmsin(ωRt+θR)
参考频率fR vR(t) θR(t)
v d( t ) PD θe(t) vV(t) θV(t)
D1 i1
相位 误差 电压 vd
压控频率fV
正弦波相位检波器 继续
鉴 相 器 ( P D )
鉴相器输出的线性范围
一、正弦波相位检波器
(1)正弦波相位检波器电路 Kd +π (2)工作原理分析 -π π/2 O 则vd(t)=Kdsin(θV-θR)=Kdsinθe θV-θR (3)正弦波相位检波器的锁相范 正弦鉴相曲线 围为π。 D1 i1 当θe≤30°时,有sinθe≈θe。 Tr + + 则 vd(t)≈Kdθe + + vD1 R C vd1 vV v 此时鉴相器输出的电压与θe成 压控 + R- v d( t ) 频率 线性关系,鉴相效果最好。 + + fV vV fR vD2 R C vd2
实际振荡频率fV
引言 本页完 返回
引言
锁相环路由三大部分组成,如下图所示:
参考频率fR vR(t) θR(t)
PD
fV θV(t) vV(t)
vd(t) θe(t)
LPF
vc(t)
VCO
vV(t)
压 控 输 出
实际振荡频率fV 返回
引言
引言
锁相环路由三大部分组成,如下图所示:
参考频率fR vR(t) θR(t) 压 控
鉴(θ相 器 ( P D ) 显然K 越大, -θ )较小的
手机电路常见英文缩写
手机电路常见英文缩写ADC:Analog Digital Conversion 模数转换通常出现在手机的方框图中(特别是发射的音频电路和接受的RXI/Q解调之后)。
AC:Alternating Current 交流电ADDRESS:地址线,出现在逻辑电路中AF:Audio Frequency 音频AFC:Audio Frequency Control 自动频率控制控制基准频率时钟电路,在GSM手机电路中,只要看到AFC字样,则马上可以断定该信号线控制的是13MHz电路。
该信号不正常则可能导致手机进不了服务状态,严重的导致手机不开机。
AGC:Auto Gain Control 自动增益控制该信号通常出现在接收机电路的低噪声放大器,被用来控制接收机前端放大器在不同的强度信号时给后级电路提供一个比较稳定的信号。
ALERT:告警属于音频接收电路,被用来提示用户有电话进入或者操作错误。
AMP:Amplifier 放大器常用于手机的电路框图中。
ANT:Antenna 天线用来将高频电磁波转化为高频电流或将高频信号电流转化高频电磁波AOC:Auto Output Control 自动功率控制通常出现在手机发射机的功率放大器部分。
ASIC:Application Specific Integrated Circuit 专用应用集成电路在手机电路中,它通常包含多个功能电路,提供许多接口,主要完成手机的各种控制。
B+:电源BAND:频段BAND-SELECT:频段选择只出现在双频手机和三频手机电路中。
该信号控制手机的频段切换。
BATT:电池电压BIAS:偏压常出现在诺基亚电路中,被用来控制功率放大器或其他相应的电路,有时也会出现一些手机的送话电路中BSI:Battery Size Information 电池尺寸若该信号不正常,会导致手机不开机。
BUFFER:缓冲放大器。
常出现在VCO电路的输出端。
BUS:通信总线BUZ:蜂鸣器BUZZER。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考频率fR vR(t) θR(t)
代入正弦函数并展开得
+
+ -
vV v + R
- + -
vD1 R C vD2 R C
压控 频率 fV
vV v + R
- + -
vD1 R C vD2 R C
D2 i2
+
+
-
vd1 vd2
+
v d( t )
-
vV f R
+
正弦波相位检波器 本页完 继续
鉴 相 器 ( P D )
推导输出电压表达式
一、正弦波相位检波器
vR(t)=VRmsin(ωRt+θR)
相位 (1)正弦波相位检波器电路 vd(t) 误差 PD (2)工作原理分析 θe(t) 电压 vD1=vR+vV vd vV(t) θV(t) vD2=vR-vV 压控频率fV vv(t)=VVmcos(ωVt+θV) 二极管的电流为(小信号检波) D1 i1 i1=b0+b1vD1+b2v2D1 Tr i1和i2两式相减 i2=b0+b1vD2+b2v2D2 + + + + vD1 R C vd1 vV v 二极管电流的表达式为 压控 + R- 2 v d( t ) 频率 i1=b0+b1(vR+vV) +b2(vR+vV) + + fV i2=b0+b1(vR-vV) +b2(vR-vV)2 vV fR vD2 R C vd2 + 不考虑电容C时输出电压为 vd(t)=vd1-vd2=i1R-i2R=(i1-i2)R D2 i2 其中 i1-i2=2b1vV+4b2vRvV 正弦波相位检波器 本页完 继续
Tr
vv(t)=VVmcos(ωVt+θV)
+ + -
压控 频率 fV 不考虑电容C时输出电压为 vd(t)=vd1-vd2=i1R-i2R=(i1-i2)R 其中 i1-i2=2b1vV+4b2vRvV
vV v + R
- + -
vD1 R C vD2 R C
D2 i2
+
+
-
vd1 vd2
+
v d( t )
PD
fV θV(t) vV(t)
v d( t ) θe(t)
LPF
vc(t)
VCO
vV(t)
输 出
实际振荡频率fV
压控振荡频率为 vv(t)=VVmcos(ωVt+θV) 参考频率信号为 vR(t)=VRmsin(ωRt+θR) 当为θe(t)=常数时,fV=fR,系统频率被锁定在fR上。 在锁相环路中,鉴相器PD为关键部件。
-
vV f R
+
正弦波相位检波器 继续
鉴 相 器 ( P D )
推导考虑C时的输出电压
一、正弦波相位检波器
vR(t)=VRmsin(ωRt+θR)
相位 (1)正弦波相位检波器电路 vd(t) 误差 PD (2)工作原理分析 θe(t) 电压 不考虑电容C时输出电压为 vd vV(t) θV(t) vd(t)=vd1-vd2=i1R-i2R=(i1-i2)R 压控频率 fV vv(t)=VVmcos(ωVt+θV) 当考虑电容 C时,这 其中 i1-i2=2b1vV+4b2vRvV 两项高频被滤掉。 D1 i1 所以 vd(t)=2b1RvV+4b2RvRvV Tr 压控 vd(t)=2b1RVVmcos(ωVt+θV) 频率 +2b2RVRmVVmsin[(ωV+ωR)t+θV+θR] f V
实际振荡频率fV
引言 本页完 返回
引言
锁相环路由三大部分组成,如下图所示:
参考频率fR vR(t) θR(t)
PD
fV θV(t) vV(t)
vd(t) θe(t)
LPF
vc(t)
VCO
vV(t)
压 控 输 出
实际振荡频率fV 返回
引言
ቤተ መጻሕፍቲ ባይዱ 引言
锁相环路由三大部分组成,如下图所示:
参考频率fR vR(t) θR(t) 压 控
引言 本页完 返回
本 节 学 习 要 点 和 要 求
掌握正弦波相位检波的基本工作原理
了解脉冲抽样保持相位比较器基本原理
返回
鉴 相 器 ( P D ) 主 页
学习主页
藏族老汉
正 弦 波 相 位 检 波 器
脉冲抽样保持相位比较器
使用说明:要学习哪部分内容, 只需把鼠标移到相应的目录上单击 鼠标左键即可,按空格键或鼠标左 键进入下一页。
vR(t)=VRmsin(ωRt+θR)
一、正弦波相位检波器 (1)正弦波相位检波器电路 (2)工作原理分析
参考频率fR vR(t) θR(t)
v d( t ) PD θe(t) vV(t) θV(t)
D1 i1
相位 误差 电压 vd
压控频率fV
Tr
vv(t)=VVmcos(ωVt+θV)
+ + -
结束 返回
鉴 相 器 ( P D )
一、正弦波相位检波器
(1)正弦波相位检波器电路 (2)工作原理分析 vD1=vR+vV vD2=vR-vV 二极管的电流为(小信号检波) i1=b0+b1vD1+b2v2D1 i2=b0+b1vD2+b2v2D2 1、压控振荡频率fV和 参考频率fR的电压进行 相加后加在D1和D2上 。 2、vD1和vD2产生电流 i1和i2 。其伏安特性可用 二次多项式近似表示 。
西藏· 扎达土林
返回
封面
引言
锁相环路在频率合成,数字通信的同频系统、
调频调相信号的解调、作为跟踪飞行器的锁相相关
应答器等均有广泛的应用, 锁相环路由三大部分组成,如下图所示:
参考频率fR vR(t) θR(t)
PD
fV θV(t) vV(t)
vd(t) θe(t)
LPF
vc(t)
VCO
vV(t)
压 控 输 出
参考频率fR vR(t) θR(t)
鉴 相 器 ( P D )
一、正弦波相位检波器
(1)正弦波相位检波器电路 (2)工作原理分析
vR(t)=VRmsin(ωRt+θR)
参考频率fR vR(t) θR(t)
v d( t ) PD θe(t) vV(t) θV(t)
D1 i1
相位 误差 电压 vd
压控频率fV
D2 i2
+
+
-
vd1 vd2
+
v d( t )
-
vV f R
当考虑C滤波时输出电压为
+
正弦波相位检波器 本页完 继续
鉴 相 器 ( P D )
一、正弦波相位检波器
(1)正弦波相位检波器电路 (2)工作原理分析
Tr
D1 i1
+ + -
压控 频率 fV 当考虑C滤波时输出电压为