第二章 化学热力学初步

合集下载

无机及分析化学(南京大学)课件第2章

无机及分析化学(南京大学)课件第2章

12
2.3.6 键能和反应焓变的关系
H2(g) 键能 2H(g)
(298 K,100 kPa)
键焓
一般情况下,键能和键焓可以相互通用!
13
火箭推进剂
拓展知识
偏二甲肼 (CH3)2NNH和N2O4
(CH3)2NNH2(l)+2N2O4(g)
3N2(g)+4H2O(g)+2CO2(g)
特点:反应强烈放热、快速,且生成物是小分子
的右上标 指反应在标准状态下进行。
10
2.3.3 盖斯定律
1840年 俄 盖斯 (Hess G H)
不管化学反应是一步完成,还是分步完成,其热效应总是相同的。
求: 解:反应(1)= 反应(2)+ 反应(3) 所以:
11
2.3.4 生成焓
在标准状态和指定温度(通常为298 K)下,由元素的指定单 质生成1 mol某物质时的热效应称为该物质的标准生成焓。 一般化学反应
的。即 ΔS孤 > 0
孤立系统(isolated system)是指与环境不发生物
质和能量交换的系统。 ΔS系 +ΔS环 > 0 过程自发
ΔS系 +ΔS环 < 0
不可能发生的过程
17
2.4.4 标准摩尔熵 热力学第三定律:在热力学温度0 K时,任何纯物质的
完整晶体的熵值等于零。 在标准态下1 mol物质的熵值称为该物质的标准摩 尔熵(简称标准熵),用符号 表示。
无机及分析化学
(第五版) 南京大学化学化工学院
1
第二章 化学热力学初步
掌握化学反应的标准摩尔焓变的各种计算方法; 掌握化学反应的标准摩尔熵变和 标准摩尔吉布斯自由能变的各种计算方法; 学会用 判断化学反应的方向, 了解温度对 影响; 了解压力和浓度对 的影响;

第二章 化学热力学初步要点

第二章 化学热力学初步要点
如有一系统由状态(1)→(2),相应热力学能由U1 → U2 ,在此过程中系统吸收的热量为Q,环境对系统 所做的功为W。
根据能量守恒与转化定律有:U2 = U1 + Q +W 即: U = Q + W 当系统作体积功时,设系统压力为p,恒定外压下
膨胀做功,体积变化为 V 则 W = - p· V
解:反应 4H2(g) + 2O2(g) = 4H2O(l ) 在等压条件下进行, H= Qp= -1143 kJ
U = H- nRT
= -1143-[0 -(4+2)] ×8.315 × 10-3 × 298
= -1128kJ
说明:“R”应乘以10-3,则量纲为kJ·mol-1·K-1 。
敞开系统:系统和环境间既有能量的交换,又有物
质的交换。
封闭系统:系统和环境间有能量的交换,但无物质
的交换。
孤立系统:系统和环境间既无能量的交换,又无物
质的交换。
二、状态和状态函数
系统的状态由它的一系列物理量来确定,如气体
的状态由n、T、p、V等物理量决定,当这些物理量 确定时,系统的状态确定,所以状态是系统所有宏 观性质的综合。 系统的状态确定,确定系统状态的物理量就有定值, 确定系统状态的物理量称为状态函数。 状态函数最重要的特点,其变化值只与始态和终态 有关,而与变化的具体途径无关。
三、过程与途径
当系统的状态发生变化时,我们把这种变
化称为过程,完成这个过程的具体步骤称为 途径。
如果系统的状态是在恒压条件下发生变化, 就称等压过程。相应地有等容过程、等温过 程等。
2.2 热力学第一定律
2.2.1 热和功 2.2.2 热力学能 2.2.3 热力学第一定律

第二章 化学热力学基础

第二章 化学热力学基础

强度性质:体系的性质在数值上与体 系中物质的量无关,不具加和性。如温度、 压力、浓度、密度等。
11
上一页 下一页 本章目录
2.1.4 过程与途径
过程:体系状态发生变化的经过称为过程。 途径:完成过程的具体步骤称为途径。 298K, H2O(g) 途径1 298K,H2O(l) 始态 373K,H2O(l) 途径2
8
上一页 下一页 本章目录
状态函数:确定体系状态的宏观物理量 称为体系的状态函数。如质量、温度、压 力、体积、密度、组成等是状态函数。 状态函数的特点: 1. 体系的状态一定,状态函数值确定。 2. 状态函数的改变值只由体系的始态和 终态决定,与体系经过的途径无关。 3. 循环过程的状态函数改变值为零。
17
上一页 下一页 本章目录
能量守恒定律:自然界的一切物质都具 有能量,能量有不同的形式,能量可从一个 物体传递给另一个物体,也可从一种形式转 化为另一种形式,在传递和转化过程中,能 量总值不变。适用于宏观体系和微观体系。 电能 → 光能 化学能 → 机械能 机械能 → 电能
18
(电灯) (内燃机) (发电机)
上一页 下一页 本章目录
反应进度ξ表示化学反应进行的程度。 aA t=0 t + dD = gG + hH nD(0) nD (t) nG(0) nG (t) nH(0) nH (t)
nA(0) nA(t)

22
n B (t ) nB (0)
B

nB
B
上一页
下一页
本章目录
例:
t=0 t
31
上一页 下一页 本章目录
(2)注明物质的物态(g、l、s)或浓度, 如果固态物质有几种晶型,应注明晶型(P 有白磷、红磷,C有金刚石、石墨等). (3)反应热的数值与反应方程式的写法 有关。如:

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点一.理解并熟悉热力学有关的概念:体系和环境状态和状态函数过程和途径常见的三个体系:敞开、封闭、孤立体系常见的三个过程:等压、等容、等温过程热和功热力学能(内能)和焓变化学反应热,等容反应热、等压反应热生成焓和标准生成焓;键能和离解能,键能和反应热的关系熵和熵变,标准摩尔熵Gibbs自由能和Gibbs自由能变,标准摩尔生成Gibbs自由能二.理解并熟练运用几个定律(包括两个判据)1.盖斯定律2.热力学第一定律:△U=Q-W3.热力学第二定律:△S(孤立)= △S(体系)+ △(环境)4.热力学第三定律:0K时,任何纯物质的完美晶体,S=05.两个判据:ⅰ.熵判据:△S(孤立)= △S(体系)+ △S(环境) ………………自发过程△S(孤立)= △S(体系)+ △S(环境) ………………不能进行ⅱ.G判据:等温等压吓,体系的G减小的方向是不能做非体积功的化学反应进行的方向.不及化学反应如此,任何等温等压虾,不做非体积功的自发过程的G都将减小.这正是热力学第二定律的另一种表述形式.△G<0 …………………自发进行△G>0 …………………不能自发进行△G=0 …………………可逆发应三.熟练掌握并运用几个热力学攻势(方程式)进行计算1.△U=Q-W2.Q v=△U3.Q p=△HH=U+PV △H=△U+△(PV)4.△r H mθ=∑υB△f H mθ(B)5.△S=Q r/T △r S mθ=∑υB△f S mθ(B)6.△G=△H-T△S 并分析自发进行的四种情况△r G mθ=∑υB△f G mθ(B)四.热力学的标准状态,尤其要注意所给定的热力学条件五.热力学化学方程式的书写六.问题:1.P△V和△(PV)2.H和Q。

化学热力学

化学热力学

第 二 章 化 学 热 力 学 初 步
3、掌握化学反应的标准摩尔焓变(standard molar enthalpy change)的各种 计算方法;(标准生成热( standard heat of formation )、燃烧热 (standard heat of combustion)。)
4、掌握化学反应的标准摩尔熵变(standard molar entropy change)和标 准摩尔吉布斯自由能变(standard molar Gibbs free energy change) 的计算方法; 5、会用ΔG来判断化学反应的方向,并了解温度对ΔG的影响。
不 可 逆 途 径 和 可 逆 途 径 的 功 和 热
第 二 章 化 学 热 力 学 初 步
2.1 热力学第一定律
*对于理想气体来说,热力学能U只是温度的函数,
第 二 章 化 学 热 力 学 初 步
根据热力学第一定律,比较不同途径时的功和热, 必然有如下结论: 理想气体恒温膨胀过程中,以可逆途径进行 时,体系对环境做的功最大,吸收的热量最多; 恒温压缩过程中,以可逆途径进行时,环境对体 系做的功最小,体系放出的热量最少。
2.1 热力学第一定律
3. 过程和途径(process and pathway)
方式 途径 过程 状态
第 二 章 化 学 热 力 学 初 步
基 本 概 念
过程 状态1 途径1 状态2
途径2
平衡状态
2.1 热力学第一定律
热力学中常见的过程 等温过程(isothermal process) :T1=T2=T环 等压过程(isobaric process):p1=p2=p环 等容过程(isochoric process):V1=V2 绝热过程(adiabatic process):Q=0 循环过程(cyclic process): 可逆过程*(reversible process):它是一种在无限接近于 平衡,并且没有摩擦力条件下进行的理想过程。 自发过程 (spontaneous process) : 一定条件下,自动进 行的过程。

无机化学(周祖新)习题解答第二章

无机化学(周祖新)习题解答第二章

无机化学(周祖新)习题解答第二章第二章化学热力学初步思考题1.状态函数得性质之一就是:状态函数得变化值与体系得始态与终态有关;与过程无关。

在U、H、S、G、T、p、V、Q、W中,属于状态函数得就是U、S、G、T、p、V。

在上述状态函数中,属于广度性质得就是U、H、S、G、V,属于强度性质得就是T、p。

2.下列说法就是否正确:⑴状态函数都具有加与性。

⑵系统得状态发生改变时,状态函数均发生了变化。

⑶用盖斯定律计算反应热效应时,其热效应与过程无关。

这表明任何情况下,化学反应得热效应只与反应得起止状态有关,而与反应途径无关。

⑷因为物质得绝对熵随温度得升高而增大,故温度升高可使各种化学反应得△S大大增加。

⑸△H,△S受温度影响很小,所以△G受温度得影响不大。

2.⑴错误。

强度状态函数如T、p就不具有加与性。

⑵错误。

系统得状态发生改变时,肯定有状态函数发生了变化,但并非所有状态函数均发生变化。

如等温过程中温度,热力学能未发生变化。

⑶错误。

盖斯定律中所说得热效应,就是等容热效应ΔU或等压热效应ΔH。

前者就就是热力学能变,后者就是焓变,这两个都就是热力学函数变,都就是在过程确定下得热效应。

⑷错误。

物质得绝对熵确实随温度得升高而增大,但反应物与产物得绝对熵均增加。

化学反应△S得变化要瞧两者增加得多少程度。

一般在无相变得情况,变化同样得温度,产物与反应物得熵变值相近。

故在同温下,可认为△S不受温度影响。

⑸错误。

从公式△G=△H-T△S可见,△G受温度影响很大。

3.标准状况与标准态有何不同?3.标准状态就是指0℃,1atm。

标准态就是指压力为100kPa,温度不规定,但建议温度为25℃。

4.热力学能、热量、温度三者概念就是否相同?试说明之。

4.这三者得概念不同。

热力学能就是体系内所有能量得总与,由于对物质内部得研究没有穷尽,其绝对值还不可知。

热量就是指不同体系由于温差而传递得能量,可以测量出确定值。

温度就是体系内分子平均动能得标志,可以用温度计测量。

第二章 化学热力学初步

第二章 化学热力学初步
一、化学反应的自发性 一定条件下,不要外界做功就 可自动进行的过程, 自发过程,则该过程具有自发性 自发性。 称自发过程 自发过程 自发性 能量传递 热量传递 气体扩散 水的流动 自发方向 高温物体 → 低温物体 (T1) → (T2) 高压(P1) → 低压 (P1) → (P2) 高势能 → 低势能 (E1) → (E2) 判据 平衡
§2-2 热力学第一定律
一、功与热 是体系与环境之间能量交换的两种方式,是过程 量,没有过程就没有能量的传递。 热Q(heat):热力学中,由于温差而引起传递的能量。 : 功W(work):热力学中,除热以外,各种被传递的能 : 量。如电功、机械功、表面功等. (功=体积功+非体积功) 功 功和热不是状态函数,与过程有关。 功和热不是状态函数
热力学上常见的几种过程: 等压过程(isobaric process): 等压过程 : 体系压力始终恒定不变。 (如敞开容器中进行的反应) 等容过程(isochoric process): 等容过程 : 体系体积始终恒定不变。 (如体积不变的密闭容器进行的反应) 等温过程(isotheemal process):只要求T始 = T终 等温过程 :
3.过程和途径 (process and rood) . 体系的状态发生变化,从始态到终态,我们说体系 经历了一个热力学过程,简称过程 过程;完成这个过程的 过程 具体步骤称途径 途径
298K, H2O(g) 途径1 298K,H 298K, 2O(l) 始态 373K,H 373K, 2O(l) 途径2 途径 373K,H 373K, 2O(g) 终态
已知 (1) C(石墨 + O2(g) → CO2(g) 石墨) 石墨 = △rHm(1) -393.5 kJ.mol-1 (2) CO(g) + 1/2 O2(g) → CO2(g) = △rHm(2) -282.9 kJ.mol-1 C(石墨) + O2(g) (石墨) 石墨 始态) (始态) △rHm =? ? △rHm(1) CO2(g) 终态) (终态) △rHm (2)

化学热力学初步示范课

化学热力学初步示范课
P21例题 可逆过程功: W = -nRT ln(V2/V1) 如果气体是按可逆过程,系统对环境做
最大致积功
14
2.2.2 热力学能( thermodynamic energy)
热力学能(U): 系统内全部微观粒子的全部 能量之和,也称内能。
U是状态函数。
热力学能变化只与始态、终态有关,与变化途径无关。
36
2. 热力学原则态
反映物与生成物都是气体时,各物质的分压 为1.013 105 Pa 反映物与生成物都是液体时,各物质的浓度 为1.0 mol kg-1 固体和液体纯物质的原则态指在原则压力下 的纯物质 原则态对温度没有规定,不同温度下有不同 原则态
37
3. 书写热化学方程式: ● 注明反映的温度和压强条件 ● 注明反映物与生成物的聚集状态,
rHm(298) = - 483.6 kJmol-1
●正逆反映的反映热效应数值相等,符号相反 2H2(g) + O2(g) === 2H2O(g) rHm (298) = - 483.6 kJ mol-1 2H2O(g) === 2H2(g)+ O2(g)
rHm(298) = + 483.6 kJmol-1
35
§ 2.5 热化学方程式
1. 热化学方程式: 2H2(g) + O2(g) === 2H2O(g) rHm (298) = - 483.6 kJ mol-1 r: reaction, m:表达 mol, :热力学原则态 rHm表达反映进度为1mol时所产生的焓变,称 为
摩尔焓变,单位为KJ.mol
阐明:在等容过程中,体系吸取的热量QV全部 用来增加体系的热力学能。
23
QV= ΔT(C1+C2)

第二章化学热力学初步

第二章化学热力学初步

例如,温度的改变量用 T 表示,则
T = T终 - T始
同样理解 n,p,V 等 的意义。
某些状态函数,如 V,n 等所 表示的体系的性质有加和性。
例如 5 dm3 气体,V = 5 dm3, 它等于体系各部分的体积之和。
这些性质称为体系的量度性质, 也称为广度性质或容量性质。
T,p, 等性质,无加和性,称
1100 kPa 16 dm3
2100 kPa 8 dm3
WB = W1 + W2 = (- 800 J)+ (- 800 J) = - 1600 J
WA = - 1200 J
完成同一过程时,不同途径的 功不相等。
再看 A 和 B 两种途径下的 热量 Q。
由于是理想气体体系, 且 T = 0, 故过程的 U = 0
= QV

rU = QV
QV 是恒容反应的热效应。 从 rU = QV 可见
在恒容反应中,热效应全部
用来改变体系的热力学能。
根据关系式 rU = QV
QV 和状态函数的改变量 rU 建立了数量关系。
于是为求得 QV 提供了方 便的条件。
根据 rU = QV
当 rU > 0 时, QV > 0,是吸热反应,
热力学上研究的,多是封闭体系。
2. 1. 2 状态和状态函数
状态 由一系列表征体系性质 的物理量所确定下来的体系的一种 存在形式。
状态函数 确定体系状态的物 理量,称为状态函数。
例如某理想气体体系 n = 1 mol, p = 1.013 105 Pa, V = 22.4 dm3, T = 273 K
截面积 S
F
l
II
I

无机及分析化学第二章

无机及分析化学第二章

保温杯式量热计
3.焓 enthalpy
(1)对于式(2-3),U、p、V都是状态函数,则 (U+pV)也是状态函数,为了方便,我们将 它定义为一个新的状态函数,称为焓,用H 表示。对于理想气体,H只是温度的函数, 等温过程△H=0
H=U+pV
(2-5)
则式(2-3)简化为QP=H2-H1=△H
(2-6)
无机及分析化学第二章
第二章 化学热力学初步
Chapter 2 Primary Conception of Chemical
Thermodynamics
本章学习要求
1、了解热力学能、焓、熵和吉布斯自由能等状态函数 的概念
2、理解热力学第一、第二和第三定律的基本内容 3、熟练运用各种方法计算化学反应的标准摩尔焓变 4、掌握化学反应的标准摩尔熵变和标准摩尔吉布斯
说明:等压过程中,系统吸收的热量全部用来增加系统的焓; 即等压过程中,系统焓的减少全部以热的形式放出。
(2)由式(2-5)知,等压变化中, △H=△U+ p·△V
(2-7)
对于式(2-7),注意: ①当生成物与反应物均为s态或l态时,△V≈0,则△H≈△U
②对有气体参加的反应,△V较大,用理想气体状态方程式来 处理
解: (1)W=-P外△V =-100KPa× (0.04-0.015)m3 =-2.5KJ
(2)V=nRT/P≈ 0.025m3 W=-200KPa×(0.025-0.015)m3-100KPa×(0.040- 0.025)m3 =-3.5kJ
(3)W=-nRTln(V2/V1) =-2×8.315×298×ln(0.04/0.015) ≈-4.9kJ
自由能变的计算方法 5、会用△G 来判断化学反应的方向,并了解温度对

第二章 化学热力学初步 (Thermodynamics)

第二章 化学热力学初步 (Thermodynamics)
1、热(Q):由于温差引起的能量传递形式。 恒压热效应(QP) 恒容热效应(QV)
2、功(W):除热以外的其它能量传递形式叫功。 体积功:体系体积变化反抗外力的 功(膨胀功)。 非体积功(电功、表面功) 注意:1、一般,化学反应中体系只作体积功。 2、热和功不是状态函数。因为其大小 与过程进行的途径有关。
注意:焓变是容量性质,与物质的量有关, 计算时应注意化学式前的系数。

(1) C(s) O2 (g) CO2 (g)
rH 393.5kJ
m1
1 (2) CO(g) O 2 (g) CO2 (g) rH m2 283.0kJ 2
1 (3) C(s) O 2 (g) CO(g) 求 rH m 3 ? 2 解: 即(1)-(2)=(3)则状态函数ΔrHmθ3
S
r
T
r-reversible,又叫可逆过程热温熵
三、热力学第二定律 1、第二定律的文字与数学表述: 在孤立体系的任何自发过程中,体系的熵 总是增加的。即ΔS(孤立)> 0 真正的孤立体系是不存在的,但若把与体 系有物质和能量交换的那部分环境也包括进去 组成一个新的体系,则这个新体系可算作为孤 立体系。此时,原体系 ΔS(体系)+ ΔS(环境)> 0
第三节 热化学(Thermochemistry)
一、等容反应热、等压反应热和焓的概念(Enthalpy) 在化学反应中,反应物为体系的始态,产物为体系的 终态。反应物和产物内能总和是不同的,反应后,体系总 内能会发生改变。其改变量是以热和功的形式表现出来的。 这就是反应热产生的原因。
1、等容反应热(QV) 等容下反应ΔV=0,则体系不做体积功W=0。
第二章 化学热力学初步

02化学热力学初步

02化学热力学初步

热化学方程式可像代数式那样进行加减运算
½ N2(g) + ½O2 (g) →NO (g) + NO (g) + ½O2 (g) →NO2 (g)
½ N2(g) + O2 (g) →NO2 (g)
△H = 90.25 kJ ·mol-1 △H = -57.07 kJ ·mol-1 △H = 33.18 kJ ·mol-1
Θ m
(CH
4
)
Δr
H
Θ m
利用标准摩尔燃烧焓计算反应热
反应: a A d D e E f F
ΔrHΘ m NhomakorabeaBΔc
H
Θ m
(B)
B
[aΔc HΘ m (A) dΔc HΘ m (D)] [eΔc HΘ m (E) fΔc HΘ m (F)]
第四节 热力学第二定律
• 一、 自发性 • 二、熵(S) • 三、热力学第二定律 • 四、标准摩尔熵
用热力学原理研究物质体系中的化学现
➢ 化学热力学: 象和规律,根据物质体系的宏观可测性
质和热力学函数关系来判断体系的稳定 性、变化方向和变化的程度
✓ 预测反应发生的可能性
➢ 三个研究重点: ✓ 判断反应进行的方向(判据)
✓反应进行的限度
➢ 研究特点:
研究中不考虑物质的微观 结构和反应进行的机理
第一节 常用术语
的影响 • 理解范托夫等温方程,了解压力和浓度对ΔG的影

章节内容
➢引 言 ➢常 用 术 语 ➢热力学第一定律 ➢热 化 学 ➢ 热力学第二定律 ➢吉布斯自由能及其应用
➢ 什么是化学热力学?




Fe2O3(s) + 3CO(g) →2Fe(l) + 3CO2(g)

第2章-化学热力学基础1

第2章-化学热力学基础1
返回主目录 返回主目录 返回次目录 返回次目录
4.相
系统中物理性质和化学性质完全相同,并与其 它部分在明确界面分隔开来的任何均匀部分称为 一相(phase)。
只含一个相的系统称为均相系统或单相系统。
例如:混合气体、NaCl水溶液、金刚石等。 相可以是纯物质或均匀的混合物组成。相和组分 不是一个概念。
2 状态与状态函数
热力学中是用体系的一系列性质来规定其状态(热力学平 衡态)。
状态:
描述一个体系的一系列物理性质和化学性质的总和就称为 体系的状态。 如质量、温度、压力、体积、密度、组成、热力学能(U)、
焓(H)、熵(S)、吉布斯函数(G)等,当这些性质都有确定值 时,体系就处于一定的状态。
返回主目录 返回主目录 返回次目录 返回次目录
ξ =[n2(N2)-n1(N2)]/v(N2) =(2.0-3.0)/(-1) = 1(mol)
或ξ =[n2(H2)-n1(H2)]/v(H2)=(7.0-10.0)/(-3) = 1(mol)
或ξ=[n2(NH3)-n1(NH3)]/v(NH3)=(2.0-0)/(2)=1(mol) 可见,对于同一反应式,不论选用哪种物质表示反应进度均是 相同的。
热和功与过程紧密联系,没有过程就没有能量的传
递。热和功不是体系的状态函数.
热力学中功的分类 体积功 : 体系因体积变化抵抗外压所作的功。用-pΔV表示
非体积功:
除体积功外的所有功。如电功、机械功、表面功等.
返回主目录 返回主目录 返回次目录 返回次目录
2.2.2 内能与热力学第一定律 内能U :
2.3.1 化学反应热效应
封闭体系在不作非体积功(Wf = 0)的条件下, 热力学第一定律表示为: △U = Q + W = Q – P△V

化学热力学

化学热力学
孤立体系
isolated system
open system
closed system
isolated system
2.状态和状态函数
状态:用一些具有一定数值的物理量(如P、V、n、 T、m等)来描述一个体系的情况. 只要一个状态函数改变,状态就改变.
状态函数:描述体系状态的这些物理量.
功(W):除热以外,体系和环境间,与其他形式传 递的能量,统称为功(如电功,膨胀功等),它也不 是状态函数. 2.热力学能(内能U):是体系内部各种分子和 原子的一切能量的总和. 绝对值是无法测得 的.但△U是可以测定的.因为是体系自身的 一种性质,所以是状态函数. 3.热力学第一定律(能量守恒定律): 封闭体系(体系与环境只有能量交换,没有 物质交换)
状态函数的性质:状态一定值一定,殊途同归 变化等;周而复始变化零.(与变化途径无关)
3.过程和途径 过程:状态变化的经过.如恒温过程,恒压过程
途径:体系状态变化的具体方式(步骤)称为途径.
某一过程中状态函数的变化值只取决 于始态和终态,而与所经历的途径无关
二.热力学第一定律 1.热和功(体系和环境间的能量交换方式) 热量(Q):由于具有温差而传递的能量, 它不是状态函数.
4.标准摩尔生成焓

0) (ΔfHm
在标准条件和指定温度下,由最稳 定单质生成一摩尔该物质时的等压热效 应。 *标准条件:标准压力 p0=105Kp a (p36) 标准浓度 C0=1mol.l-1 *最稳定单质的标准摩尔生成热都等于 零。 *c(H+)=1mol.L-1的标准摩尔生成热等 于零。 * ΔfHm0相对值。
U2-U1=△U=Q+W
上式说明:能量可以相互转化,转化过程体系 得到(失去)多少能量,环境则失去(得到)多少 能量.能量总值不变. 吸热:Q>0; 放热Q<0 受功W > 0; 做功W< 0

第二章 化学热力学基础

第二章  化学热力学基础

普通化学第二章化学热力学基础⏹§1.1 热力学基本概念⏹§1.2 热力学第一定律⏹§1.3 焓热力学⏹§1.4 自发过程和熵⏹§1.5 吉布斯自由能与化学反应的方向⏹总结化学热力学研究与解决的主要问题?热力学-------研究各种形式的能量相互转变过程中所遵循规律的科学。

热力学的基础:热力学第一定律和热力学第二定律化学热力学-------将热力学的原理应用于化学变化过程,就称为化学热力学。

化学热力学研究与解决的主要问题:一是在指定的条件下,某一化学反应进行时,与外界交换多少能量?即计算化学反应热。

二是在指定的条件下,某一化学反应能否自发进行,即判断化学反应进行的方向。

三若可能自发进行,反应进行的温度如何?热力学方法的特点:大量质点组成的宏观体系1、热、功、状态函数△U、△H、△G和△S2、热力学第一、二、三定律3、盖斯定律4、自发过程的判定5、吉布斯—亥姆霍兹公式1、功、热、内能、焓、自由能、熵的计算2、自发过程判定AgNO 3与NaCl 的水溶液:如果只研究在水溶液中所进行的反应,则含有这两种物质的水溶液就是体系。

溶液以外的烧杯、溶液上方的空气都是环境。

如果还要研究反应时的能量变化,则水溶液和烧杯为体系,空气为环境。

例如:NaCl+AgNO 3溶液-体系分类敞开体系:体系与环境之间既有能量交换,又有物质交换。

封闭体系:体系与环境之间只有能量交换,没有物质交换。

孤立体系:体系与环境之间既没有能量交换,也没有物质交换。

敞开体系封闭体系绝热箱孤立体系NaOH+H2ONaOH+H2ONaOH+H2O热物质热二、体系的性质1、体系的性质:确定体系状态的各种宏观物理量。

如温度、压力、体积、质量、密度、浓度等2、体系的性质分为广度性质和强度性质两类:广度性质:在数值上与体系中物质的量成正比,即具有加和性。

如体积、质量、内能、焓、熵等。

强度性质:在数值上与体系中物质的量无关,即不具有加和性。

第2章 化学热力学初步(习题解)

第2章 化学热力学初步(习题解)

第二章化学热力学初步1. 热力学第一定律WU-=Q∆,由于U为状态函数,所以Q和W也是状态函数,对吗?为什么?答:不对。

Q和W只有在能量交换的时候才会有具体的数值,并且随途径不同,共和热的数值都会有变化,所以不是状态函数。

2. 解释下列名词(1) 体系与环境(2) 热(Q)(3) 功(W)(4) 焓(H)和焓变(H∆)(5) 热力学能U(6) 恒容反应热(Q V)和恒压反应热(Q p)答:(1) 热力学中称研究的对象为体系,称体系以外的部分为环境。

(2) 体系在变化过程中吸收的热量为Q。

(3) 体系对环境所做的功。

(4) H=U+PV当泛指一个过程的时候,其热力学函数的改变量为焓变。

(5) 体系内一切能量的总和叫热力学能。

(6) 在恒容过程中完成的化学反应,其热效应称为恒容反应热。

在恒压过程中完成的化学反应,其热效应称为恒压反应热。

3. 什么叫状态函数?它具有何特性?答:藉以确定体系状态的物理量称为体系的状态函数。

它具有加和性。

4. 何谓热效应?测量方法有哪两种?答:化学反应的热效应为当生成物和反应物的温度相同时,化学反应过程中的吸收或放出的热量。

可以选择恒压和恒容两种条件下测量。

5. 什么叫热化学方程式?书写热化学方程式要注意哪几点?答:表示出反应热效应的化学方程式叫做热化学方程式。

书写化学方程式时要注意一下几点:(1)写热化学方式式,要注意反应的温度和压强条件,如果反应是在298K和1.013×105Pa下进行时,习惯上不予注明。

(2)要注明物质的聚集状态和晶形。

(3)方程式中的配平系数只是表示计量数,不表示分子数。

但计量数不同时,同一反应的反应热数值也不同。

6. ①无机化学中常用的反应热有哪几种?反应热的实质是什么?什么类型的化学反应Q V=Q p?等摩尔的NaOH和NH3·H2O溶液分别与过量的HCl溶液中和所放热量是否相等?为什么?②反应2N2(g)+O2(g)=2N2O(g)在298K时,ΔrH mø=164K J·mol-1, 求反应的ΔU?答:①无机化学中常用的反应热有恒压反应热和恒容反应热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.2 焓和自发变化
许多放热反应能够自发进行。例如: 1 H2(g)+ O2(g) H2O(l) 2 mol-1 △ rHm (298K) = -285.83kJ· H+(aq) + OH-(aq) H2O(l) mol-1 △ rHm (298K) = -55.84kJ·
-1 (2) = -282.98kJ· mol △ rHm
1 计算 C(s) 2 O2 (g) CO(g) △ rHm (3)
解:利用Hess定律 (3) △ H r m C(s) O (g )
2
1 2
O2 (g) CO(g)
△ rHm (2)
△ rHm (1)
途径2
途径1
CO2 g
例:金属铝粉和三氧化二 铁的混合物点火时,反应放出 大量的热能使铁熔化,而应用于诸如钢轨的焊接等。试 利用标准摩尔生成焓的数据,计算铝粉和三氧化二 铁反 应的焓变。
解:
θ f Hm (kJ mol-1 )
2Al(s)+Fe2O3 (s) = Al 2O3 (s)+2Fe(s)
0
-824.2
-1675.7
2.1.2 状态和状态函数
状态:系统的宏观性质的综合表现。 状态函数:描述系统性质的物理量。(p,V,T) 特点:①状态一定,状态函数一定。 ② 状态变化,状态函数也随之而变,且 状态函数的变化值只与始态、终态 有关,而与变化途径无关。
(Ⅰ)
终态
始态
(Ⅱ)
状态函数可分为两类: 1. 容量性质 与物质的量有关,具有加和性。 如 V .n. U. H. S. G
U H pexV
对于无气体参加的反应,W = –pex V=0 △ rHm = △ rUm 有气体参加的反应:
△ rUm =△ rHm –pex V =△ rHm – n(g)RT
=△ rHm –RT∑νB(g)
(1 0) 8.314 298 2.48kJ
2.强度性质:
与物质的量无关,不具有加性。 如 p T M .c ρ
2.1.3 过程
体系状态发生的每一个变化,都叫过程。
完成过程的步骤或方式叫途径。
定温过程:始态、终态温度相等,始终保 持这个温度。T1=T2 定压过程:始态、终态压力相等,并且过 程中始终保持这个压力。p1=p2 定容过程:始态、终态容积相等,并且 过程中始终保持这个容积。V1=V2
焓: 焓变:
吸热反应H 0, 放热反应H 0
△ rHm 称为反应的标准摩尔焓变。
标准状态: 气体:T,p = p =100kPa 液、固体:T,p 下,纯物质 溶液:溶质B,bB=b =1mol· kg-1 cB=c =1mol· L-1
3. rUm与rHm 的关系
U Q W


-1
(3)C3H8(g)+5O2(g)=3CO2(g)+4H2O(l)
r H3 2220.07kJ mol
-1
试计算下列反应的焓变:
(4)3C(s)+4H2(g)=C3H8(g)
r H 4 ?

解:将反应式
(1) 3 (2) 4 (3) (4)
r H 4 3 r H1 4 r H 2 r H3
第二章
化学热力学初步
§2.1 热力学术语和基本概念
§2.2 热化学 §2.3 化学反应的自发性
§2.4 Gibbs(吉布斯)函数
§2.1 热力学术语和基本概念
2.1.1 系统和环境 2.1.2 状态和状态函数 2.1.3 过程
2.1.4 相
2.1.2 状态和状态函数 2.1.1 系统(体系)和环境 系统:被研究对象。 环境:系统外与其密切相关的部分。 敞开系统:与环境有物质交换也有能量交换。 封闭系统:与环境无物质交换有能量交换。 隔离系统:与环境无物质、能量交换。
pex V
非体积功
l
功不是状态函数
2.2.2 热力学能
热力学能(U): 系统内所有微观粒子的全部
能量之和,也称内能。
U是状态函数。
U 2 U1 U
热力学能变化只与始态、终态有关, 与变化途径无关。
2.2.3 热力学第一定律
热力学定律的实质是能量守恒与转化定律。 U1 Q U 2 W
2.2.4反应热和焓变
反应热(热效应):反应时,若体系不做非体积功,当反应 终态的温度恢复到始态温度时,体系吸收或放出的能量,称 为该化学反应的反应热。
1.定容反应热 对于封闭系统,在定容过程中, V = 0,W = 0
QV U
QV为定容反应热。
2.焓变 在定压过程中, U Q W
0
θ θ θ θ r Hm ( yf HY zf HZ ) (af HA bf HB )
= (-1675.7) + 0- 0 -(-824.2) = -851.5 kJ mol-1
§2.3 化学反应自发性
2.3.1 自发变化
2.3.2 焓和自发变化
2.3.3 混乱度和熵
化学反应不管是一步完成还是分几步完 成,其反应热总是相同的。
应用:1.利用方程式组合计算 △ rHm
例:已知298.15K下,反应:
(1) C(s) O 2 (g)
CO 2 (g)
mol-1 △ rHm (1) = -393.5kJ·
(2) CO(g) 1 O 2 (g) 2
CO 2 (g)
1 C(s) 2 O2 (g) CO(g) △ rHm (3)
例:已知298K,下列变化的焓变值 (1 ) C(s)+ O2(g) = CO2(g)
r H1 393.5kJ mol-1
(2) H2(g) +1/2O2(g) = H2O(l)
r H2 285.38kJ mol
yY zZ
r H m (1)

始态,稳定单质
r H m (1) r Hm r H m (2)
r Hm r Hm (1) r Hm (2)



4NH3 (g) 5O2 (g)
4△ fHm (NH3,g) 5△fHm (O2,g)
△ rHm =?
(定压反应热) U Qp pexV Qp U 2 U1 Qp pex V2 V1
U 2 U1 Qp p2V2 p1V1
H U pV
H H 2 H1
Qp (U 2 p2V2 ) U1 p1V1
状态函数 Qp = H
规定:系统吸热:Q >0; 系统放热: Q <0。
2.功( W ) 系统与环境之间除热之外以其它形式 传递的能量 。 规定:系统对环境做功,W<0(失功) 环境对系统做功,W>0(得功) 体积功: W Fex l pex pex A l V1
pex V2 V1
△ fHm (参考态单质,T)=0
稳定单质(参考元素):Cl 2(g) H2(g) N2(g) O2(g) C(石墨) Br2(l) I2(s)
二. 由标准摩尔生成焓求反应的标准摩尔焓变
aA + bB → yY + zZ
aA bB
r H m (2)
H r m 终态
△ rHm (1) =△ rHm (2) + △ rHm (3)
mol-1 △ rHm (3) =△ rHm (1) -△ rHm (2) = -110.53kJ·
解法二: C(s) O 2 (g) )CO(g) 1 O 2 (g)
2
CO 2 (g) △ rHm (1) CO 2 (g) △ rHm (2)
2.2.6 Hess定律
物体之间能量的三种交换形式:
热、功、辐射。 热力学中,只研究系统在过程中与环境以 热和功两种形式交换的能量。
2.2.1 热和功
1.热( Q ) 系统与环境之间由于存在温差而传递 的能量。
没有过程就没有热,热不是体系的性质,热不 是状态函数
热的种类:过程热、相变热、反应热 热的方向:自动的从高温物体传递到低温物体
绝热过程 :体系与环境间没有热的传递。 正常相变过程:正常沸点和正常凝固点时 的相变。 特点:恒温、恒压的平衡过程 ΔT=0
100 ℃
Δp=0
ΔG=0
H2O(l) = H2O(g)
§2.2 热化学
2.2.1 热和功
2.2.2 热力学能 2.2.3 热力学第一定律 2.2.4 反应热与焓变
2.2.5 热化学方程式
△ rHm 称为反应的标准摩尔焓变。
2H2(g)+O2(g) 2H2O(g)
mol-1 △ rHm (298.15K) = -483.64kJ·
△ rHm不同。 • 聚集状态不同时, 2H2(g)+O2(g) 2H2O(l)
mol-1 △ rHm (298.15K) = -571.66kJ·
稳定单质(参考元素):Cl 2(g) I2(s) N2(g) O2(g) C(石墨)
H2(g)
Br2(l)
定义: 在温度T下,由参考状态单质生成物质 B(νB=+1)的标准摩尔焓变,称为物质B的 标准摩尔生成焓。 mol-1 △ fHm (B,相态,T) ,单位是kJ· 1 H2(g)+ O2(g) H2O(g) 2 mol-1 △ fHm (H2O ,g,298.15K) = -241.82kJ·
4NO(g) 6H 2Og
4△ fHm (NO,g) 6△ fHm (H2O,g)
2N2 (g) 5O2 (g) 6H2 (g)
相关文档
最新文档