有机化学第10章 羧酸及其衍生物
有机化学——10羧酸衍生物和脂类
=
R C OH + N2 + H2O
3.霍夫曼降解反应
=
O R C NH2 + Br2
NaOH
R NH2 + NaBr + Na2CO3 + H2O
反应使碳链减少一个碳原子
=
O
O
五、碳酸衍生物
(一)脲(尿素)——碳酸的二元酰胺
1. 弱碱性 不能使石蕊试纸变色, 只能与强酸成盐
= = =
O R C NHOH +
=
R'COOH
O
R C O R'
=
+ H NH OH
O R C NHOH +
= =
R'OH
O
R C NH2 + H NH OH
O R C NHOH + NH3 异羟肟酸
3R C NHOH + FeCl3
=
异羟肟酸铁 (红~紫色)
可用做羧酸及其衍生物的定性检验
=
O
O (R C NHO)3Fe + 3HCl
(四)酯缩合反应
具有α-H的酯在碱的作用下与另一分子酯发生 反应称酯缩合反应或克莱森(Claisen)缩合反应
CH3 O O O O ① C2H5ONa C OC2H5 + H CH2 C O C2H5 CH3 C CH2 C OC2H5 + C2H5OH ②H
=
=
=
(五)还原反应
卤、酸酐和酯还原成伯醇
乙酰乙酸乙酯 β 丁酮酸乙酯
羧酸衍生物比羧酸容易还原。氢化铝锂可将酰
=
O R C O R C
汪小兰有机化学第四版10-17章答案
第十章:羧酸及其衍生物10.1 用系统命名法命名(如有俗名请注出)或写出结构式a.(CH 3)2CHCOOHb.OHCOOHc.CH 3CH=CHCOOHd.CH 3CHCH 2COOHe.CH 3CH 2CH 2COClf.(CH 3CH 2CH 2CO)2Og.CH 3 CH 2COOC 2H 5h.CH 3CH 2CH 2OCOCH 3i.CONH 2j.HOOCC=CCOOHk.邻苯二甲酸二甲酯l.甲酸异丙酯m.N-甲基丙酰胺s.苯甲酰基n---r.略t.乙酰基答案:a. 2-甲基丙酸 2-Methylpropanoic acid (异丁酸 Isobutanoic acid )b. 邻羟基苯甲酸(水杨酸)o -Hydroxybenzoic acidc. 2-丁烯酸 2-Butenoic acid d 3-溴丁酸 3-Bromobutanoic acid e. 丁酰氯 Butanoyl Chloride f. 丁酸酐 Butanoic anhydride g. 丙酸乙酯 Ethyl propanoate h. 乙酸丙酯 Propyl acetate i. 苯甲酰胺 Benzamide j. 顺丁烯二酸 Maleic acids.COt.H 3CCO k.COOCH 3COOCH 3l.HCOOCH(CH 3)2m.CH 3CH 2CONHCH 310.2 将下列化合物按酸性增强的顺序排列:a. CH 3CH 2CHBrCO 2Hb. CH 3CHBrCH 2CO 2Hc. CH 3CH 2CH 2CO 2Hd. CH 3CH 2CH 2CH 2OHe. C 6H 5OHf. H 2CO 3g. Br 3CCO 2Hh. H 2O 答案:酸性排序 g > a > b > c > f > e > h > d 10.3 写出下列反应的主要产物a.22724b.(CH 3)2CHOH +COClH 3Cc.HOCH 2CH 2COOH LiAlH 4d.NCCH 2CH 2CN+H 2ONaOHH+e.CH 2COOH CH 2COOH2f.CH 3COCl+CH 3g.(CH 3CO)2O+OHh.CH 3CH 2COOC 2H 5NaOC 2H 5i.CH 3COOC 2H 5+CH 3CH 2CH 2OHH +j.CH 3CH(COOH)2k.COOH+HCll.2+HOCH 2CH 2OH m.COOHLiAlH 4COOH n.HCOOH+OH o.CH 2CH 2COOC 2H 5CH 2CH 2COOC 2H 5p.NCONH 2OHq.CH 2(COOC 2H 5)2+H 2NCONH 2答案:a.22724COOH COOH+COOHCOOHb.(CH 3)2CHOH +COOCH(CH 3)2H 3CCOClH 3Cc.HOCH 2CH 2COOH LiAlH 4HOCH 2CH 2CH 2OHd.NCCH 2CH 2CN+H 2ONaOH-OOCCH 2CH 2COO -H+HOOCCH 2CH 2COOHe.CH 2COOHCH 2COOH2Of.CH 3COCl+CH 3CH 3COCH 3+CH 3COCH 3g.(CH 3CO)2O+OHOCOCH 3h.CH 3CH 2COOC 2H 5NaOC 2H 5CH 3CH 2COCHCOOC 2H 53i.CH 3COOC 2H 5+CH 3CH 2CH 2OHH+CH 3COOCH 2CH 2CH 3+C 2H 5OHj.CH 3CH(COOH)2CH 3CH 2COOHk.COOH+HClClCOOH+ CO 2l.2+HOCH 2CH 2OH 2CH 2OOCm.COOHLiAlH 4CH 2OHCOOH n.HCOOH+OH HCOO o.CH 2CH 2COOC 2H 5CH 2CH 2COOC 2H 5OCOOC 2H 5p.NCONH 2OH -NCOO +NH 3q.CH 2(COOC 2H 5)2+H 2NCONH 2HN NH O OO10.4 用简单化学方法鉴别下列各组化合物:a.COOH COOH 与与CH 2COOHCH 2COOHb.COOHOCH 3OH COOCH 3与c.(CH 3)2CHCH=CHCOOH与COOHd.COOHCH 3OHCOCH 3OHOHCH=CH 2与答案:a. KmnO 4b. FeCl 3c. Br 2 or KmnO 4d. ①FeCl 3 ②2,4-二硝基苯肼或I 2 / NaOH10.5 完成下列转化:a.OCOOHOHb.CH 3CH 2CH 2BrCH 3CH 2CH 2COOH c.(CH 3)2CHOH 3)2C COOHd.CH 3CH 3OOOO OOe.(CH 3)2C=CH 2(CH 3)3CCOOHf.COOHBrg.HC CH CH 3COOC 2H 5h.OOi.CH 3CH 2COOH CH 3CH 2CH 2CH 2COOH j.CH 3COOH CH 2(COOC 2H 5)2k.O O OCH 2COONH 4CH 2CONH 2l.CO 2CH 3OHCOOH OOCCH 3m.CH 3CH 2COOH CH 3CH 2COOn.CH 3CH(COOC 2H 5)2CH 3CH 2COOH答案:a.OCN OH+COOH OHb.CH 3CH 2CH 2Br CN-CH 3CH 2CH 2CN+CH 3CH 2CH 2COOH c.(CH 3)2CHOH 32(CH 3)2C O (CH 3)2C CN+3)2C COOHOH d.CH 3CH 3KMnO 4COOHCOOH COOHCOOHOOOO OOe.(CH 3)2C=CH 2HBr(CH 3)3CBrMg 2(CH 3)3CMgBrCO 2+ 23)3CCOOHf.33CH 3KMnO 4COOHBr 2COOHBr g.HC CH2H Hg ,CH 3CHOKMnO 4CH 3COOH CH 3COOC 2H 5HCN21)22h.OHNO 3HOOC(CH 2)4COOHOi.CH 3CH 2COOHLiAlH 4CH 3CH 2CH 2OHHBrCH 3CH 2CH 2Br2CH 3CH 2CH 2MgBrO +CH 3CH 2CH 2CH 2CH 2OH4CH 3CH 2CH 2CH 2COOH或CH 3COCH 2COOC 2H 5EtONa322CH 3CO CH CH 2CH 2CH 3COOC 2H 5浓-CH 3(CH 2)3COOHj.CH 3COOH 2PCH 2COOH Cl-CH 2COOH CNCH 2(COOC 2H 5)2k.O O O3CH 2COONH 42CONH 2l.CO 2CH 3OHH +H 2O COOH OH3m.CH 3CH 2COOHSOCl 2CH 3CH 2COClCH 2COOn.CH 3CH(COOC 2H 5)2-+CH 3CH 2COOH+10.6 怎样将己醇、己酸和对甲苯酚的混合物分离得到各种纯的组分? 答案:己醇A已酸B 对甲苯酚C已酸钠已酸B 已醇对甲苯酚NaOH已醇AHClC10.7 写出分子式为C 5H 6O 4的不饱和二元羧酸的各种异构体。
有机化学--羧酸及其衍生物
POCl3
HCl↑
O R C OH
SOCl2
O R C Cl
SO2↑
低、高沸点 ↑ HCl 的酰氯制备 都适合
② 酸酐的生成
羧酸在脱水剂如五氧化二磷的存在下,加热。两分子羧 酸失去一分子水而形成酸酐。
R-C OH R-C OH O R-C O R-C + H2O
P2O5
△
(产率较低)
O
分子量较大的羧酸在乙酐(作脱水剂)存在下,失水生 成酸酐。反应平衡中发生了酸和酸酐的交换。 O O CH3-C 2R-C-OH + O CH3-C O
任何使酸根负离子稳定的因素都将增加其酸性,羧酸根负离 子愈稳定,愈容易生成,酸性就愈强。
(1)电子效应的影响
诱导效应:X—COOH
-I使酸性增强, +I使酸性减弱
X= F Cl Br I CHO 3.53 NO2 1.68
+N(CH ) 3 3
pKa 2.66 2.86 2.90 3.18
1.83
O CH3CH2 C
丙酰基
O C
苯甲酰基
CH3 CH3 CH3CH-CHCH2COOH CH3CH-CHCH21 COOH 4 3 2 CH2CH3 CH
5 6 3
CH3-C =CH-COOH CH3 3-甲基-2-丁烯酸
γ β α
4
3
2
1
3,4-二甲基戊酸 CH2-COOH CH2-COOH 丁二酸
羧酸铵盐 腈的水解为其逆反应:
酰胺
腈
O C OH + HNH-
O C NHN-苯基苯甲酰胺
+ H2 O
扑热息痛
3、羧基的还原 (LiAlH4)
大学有机化学羧酸及其衍生物习题答案
第十章羧酸和取代羧酸习题1.用系统命名法命名下列化合物(标明构型)。
(1){EMBED ChemDraw.Document.6.0 \* MERGEFORMAT |COOHCOOHClHHCl(2)(3)(4) (5) (6)(7) (8) (9)2.写出下列化合物的结构式。
(1)反-4-羟基环己烷羧酸(优势构象)(2)(2S,3R)-2-羟基-3-苯基丁酸(3)7,9,11-十四碳三烯酸(4)(R)-2-苯氧基丁酸(5)丙二酸二甲酯(6)(E)-4-氯-2-戊烯酸(7)2-甲基-4-硝基苯甲酸3.用化学方法分离下列各组混合物。
(1)辛酸、己醛、1-溴丁烷(2)苯甲酸、对甲酚、苯甲醚4.将下列各组化合物按酸性由大到小顺序排列。
(1)(A)丁酸(B)顺丁烯二酸(C)丁二酸(D)丁炔二酸(E)反丁烯二酸(2)(A)(B)(C)(D)(3)(A)α-氯代苯乙酸(B)对氯苯甲酸(C)苯乙酸(D)β-苯丙酸5.回答下列问题。
(1)为什么羧酸的沸点及在水中的溶解度较相对分子质量相近的其他有机物高?(2)苯甲酸和邻氯苯甲酸都是不溶于水的固体,能用甲酸钠的水溶液将其混合物分开,为什么?(3)如果不用红磷或三卤化磷作催化剂,可以采用什么方法使羧酸的α-卤代反应顺利进行?说明理由。
6.写出下列反应的主要产物。
(1) (2)(3)(4)(5) (6)(7) (8)(9) (10)7.下列化合物在加热条件下发生什么反应?写出主要产物。
(1)3-苯基-2-羟基丙酸(2)邻羟基苯乙酸(3)2-环戊酮羧酸(4)顺-β(邻羟基苯)丙烯酸(5)丁二酸(6)庚二酸8.用化学方法区别下列各组化合物。
(1)乙醇,乙醛,乙酸(2)水杨酸,2-羟基环己烷羧酸,乙酰水杨酸(3)甲酸,草酸,丙二酸(4)对甲基苯甲酸,对甲氧基苯乙酮,2-乙烯基-1,4-苯二酚9.指出下列反应式中存在的问题。
(1)(2)(3)(4)10.按由快到慢的次序排列下列醇或酸在酸催化下酯化时的速度。
羧酸及衍生物
H HOOC
H
chrysanthemic acid (pyrethrin)
二、物理性质(physical properities)
沸 点:
CH3CH2CH2OH CH 3CO OH
2OH
HCOO H
+ H2O
COOH 230℃ COOH
丁二 酸 酐 二 丁 CO 酸 酐 O
KMnO4 H2SO4
O
COOH COOH
P2O5
O
O + H2OFra bibliotek⑷ 酰卤 (acyl halide)的生成:
O R C O OH + Cl S Cl 亚硫酰氯 氯化亚砜 O
R
C
Cl + HCl + SO2
卤化试剂:PCl3, PCl5, SOCl2, PBr3
COOH
A-CH2-COOH
加热 ,碱
CH
ACH3 + CO2
在结构上,两个吸电子基连在同一个碳上的 化合物,热力学上是不稳定的,受热易脱羧。
HOOCCH2COOH
CH3COOH + CO2
当-碳上连有吸电子基团时,羧酸受热易发生脱 羧反应。
O O CH3 C C O H
-CO2
O CH3 C H
合成题:
COOH CH2Br
解:
COOH 1).LiAlH4 2).H3O+
HBr CH2Br
CH2OH
4. 脱羧反应(decarboxylation)
—羧酸失去羧基的反应,即脱去一分子CO2。
第十章 羧酸及其衍生物
+ H OC2H5
18
H
+
O CH3C
18
OC2H5 + H2O
酰氧断裂
12
O CH3C OH
:OH
+H
+
OH CH3C OH 加成
-H2O
HOC2H5
OH CH3 C OH HOC2H5
OH CH3 C OC2H5
: : : : : : : :
质子迁 移
-H+
O CH3 C OC2H5
1
I 羧酸
一,结构 烃基与羧基相连的物质叫羧酸:一元羧酸通式为 RCOOH;羧基( COOH)就是羧酸的官能团 RCOOH;羧基(-COOH)就是羧酸的官能团. 就是羧酸的官能团.
O
ห้องสมุดไป่ตู้
中碳为SP 杂化, OH 中碳为SP2 杂化,氧原子与羰基双键间存 在着P― 共扼.由于共扼, P―л 在着P―л共扼.由于共扼,使羧基中的羰基失去了典 型的羰基的性质(如不与NH OH作用 作用) 型的羰基的性质(如不与NH2OH作用);―OH 氧原 子上的电子云向羰基偏移,这有利于―OH氢的离解 氢的离解. 子上的电子云向羰基偏移,这有利于―OH氢的离解.
14
Br2 / P
(2)芳香环的取代反应 (2)芳香环的取代反应
COOH Br2 FeBr3
COOH
Br
5. 二元羧酸的受热反应
乙 二 酸 HOOCCOOH 丙 二 酸 HOOCCH 2COOH 丁二酸 CH 2 COOH CH 2 COOH 戊 二 酸 CH 2 CH 2COOH CH 2COOH
CH 3 COOH + C 2H 5 OH : 1 1 1 : 10
有机化学第10章羧酸及其衍生物
. 6H O 2
Ⅱ羧酸衍生物
羧酸分子中的羧基被不同基团取代的产物—羧酸的衍生物。 一、命名
酰氯和酰胺的命名相同,以它所含酰基命名
O O C CH 3 C Cl Cl CH3 C NH2 C NH2 O O
O H C N
CH3
O C H 3 C N H C H 2C H 3
CH3
N,N‘—二甲基甲酰胺(DMF)
O H2 R
'
+
-H R
+
O R C OR
'
H
(4)酰胺的形成
先得到铵盐,将铵盐加热,首先失去一分子水,生成酰胺,继续加热失水成腈。
O R C OH O O ONH
4
+
NH3
R
C
-H 2 O
R
C
NH2
-H 2 O
R
C
N
正好是腈水解的逆反应。 芳香、二元羧酸同样具有上述反应,可生成单酰氯、单酯也可生成二酰氯二酯。
2-丁烯酸
二元羧酸、 选取含有两个羧基的最长碳链,叫某二酸。
COOH H 3 CH 2 C H C HOOCCH COOH
2 CH 2 CH 2 CH 2 COOH
乙基丙二酸
HOOCCH=CHCOOH
已二酸
丁烯二酸 芳香酸:把芳环作为取代基
COOH COOH CH=CH-COOH HOOCH
2C
邻苯二甲酸
三、化学性质 1、酸性 RCOOH可看作 HOH中的H被酰基
R O C
取代的产物。
由于羰基的π 键与羟基氧原子上未共用电子对形成P-π 共轭体系,—OH氧上电子密度因向羰基转移而有所降低,使得—OH中氢氧间电 子密度降低,键强度减弱,以致—OH中的氢以质子形成离解,所以酸性比弱酸 和水强得多。但与强酸相比,羧酸只属于弱酸。
有机化学答案
第十章 羧酸及其衍生物习题答案1. 命名下列化合物(1)三氟乙酸 (2)3-丁烯酸 (3)4-戊酮酸 (4)1-羟基环己基甲酸 (5)2,4-二氯苯氧乙酸 (6)1,3-环己基二甲酸 (7)2,2-二甲基丙二酸 (8)丁二酸单酰氯 (9)2-甲基顺丁烯二酸酐 (10)N-溴丁二酰亚胺 (11)2-环戊酮基甲酸甲酯 (12) -丁内酯 (13)N-苯基-4-甲氧基苯甲酰胺 (14)N-苯基氨基甲酸甲酯 (15)2-乙酰氧基苯甲酸(乙酰水杨酸) (16)2-乙基-3-丁酮酸乙酯 2. 写出下列化合物的结构式CH 3CH 2CHCCHOOHCH 3CH 3COOH COOH CH CHCOOHHOOCCH 2CCH 2COOH COOH CH 3CHCOOH CH 3ONHCOCH 3H C ON(CH 3)2CH 2CCOOCH 33C C O OO NHC O (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)3. 比较下列化合物的酸性大小(1)甲酸 > 碳酸 > 苯酚 > 水 > 环己醇(2)氯乙酸 > 羟基乙酸 > 乙酸 > 丙酸 (3)草酸 > 丙二酸 > 苯甲酸 > 乙酸(4)邻硝基苯甲酸 > 对硝基苯甲酸 > 间硝基苯甲酸 > 苯甲酸(5)对溴苯甲酸 > 对甲基苯甲酸 > 对甲氧基苯甲酸 > 对氨基苯甲酸 4.按要求排序(1)按水解活性大小排序:丙酰氯 > 丙酸酐 > 丙酸乙酯 > 丙酰胺 (2)与乙醇酯化的速度:乙酸 > 丙酸 > 2-甲基丙酸 > 苯甲酸 (3)与丙酸酯化的速度:乙醇 > 丙醇 > 异丙醇 > 苯甲醇(4)碱性水解的速度:甲酸甲酯 > 乙酸甲酯 > 乙酸乙酯 > 乙酸异丙酯(5)碱性水解的速度:对硝基苯甲酸乙酯 > 对氯苯甲酸乙酸 > 对甲基苯甲酸乙酯 5.写出下列化合物加热后生成的主要产物。
(2)(3)(4)(1)CH 3CH O C OOCHCCH 3OCH 3CH CHCOOH C O OCH 3COCH 3O(5)(6)CH 3CHO C C O O OHCOOH (7)(8)(9)CH 3COOH6.写出丙酸与下列试剂反应的主要产物(2)(3)(4)(1)(5)(6)CH 3CH 2COONa CH 3CH 2COCl CH 3CH 2COOCH 2CH 3CH 3CH 2CH 2OHCH 3CHCOOHCH 3CH 2CONH 27.写出乙酰氯与下列试剂反应的主要产物。
大学有机化学下学期复习题
N-亚硝基化物 油层 丙醇 水相
①HCl ②NaOH
乙醚提取蒸馏
41
(4)
酰化N-甲基苯胺
乙酰氯
水相(NaOH中和)
HCl
油相
乙醚提取
洗涤蒸馏
42
9.完成下列转换
Cl Cl
(1)
NH2 NO2
CH3
NH2 NO2
(2)
NO2
CH3
43
Cl
Cl
(1)
NH2 NO2
Cl
(CH3CO)2O
Cl
Cl HNO3
10%NaOH 水溶液
水层
辛酸盐
加盐酸 调PH至酸性
辛酸
己醛 有机层 和1-溴丁烷 饱和亚硫酸氢钠
有机层 1-溴丁烷
水层
白色固体
水层
白色固体
加盐酸 调PH至酸性
己醛
6
4、将下列化合物按指定性质的活泼程度从小到大排列成序
(1)将下列化合物按醇解反应速率快慢排序: A. 苯甲酰氯 B.丙烯酰氯 C. 乙酰氯
CH3
KMnO4 H+ COOH
CN
CONH2 1) SOCl2 2 ) NH3
CN P2O5
CN HNO3 H2SO4 NO2
Fe HCl
CN
NH2
CN NaNO2 HCl CN CuCN
48
(5)
Cl
CH2CH3
Cl
NH2
(6)
NHCH3 CH3
49
Cl
CH2CH3
Cl
NH2
(5)
KMnO4
36
6. 在一组分子量相近的伯、仲和叔胺中,为何通 常伯胺的沸点最高?
有机化学-- 羧酸及其衍生物
碱性水解
O
OH-
RC
OR'
O R C OR' OH
O R C + -OR'
OH
O
RC OH
H+
O
R C + HOR'
O-
同位素跟踪结果表明: 碱性水解时,发生酰氧键断裂。
O
O
C2H5C18OC2H5 + H2O NaOH CH3CONa + C2H518OH
碱性水解的讨论
1. 碱性水解速率与 [-OH]成正比。
OO C RO R
酸酐 carboxylic acid anhydride
RCN
腈 nitrile
➢羧酸及其衍生物的命名和物理性质 ➢羧酸及其衍生物的制备 ➢羧酸衍生物的水解、醇解和氨解 ➢羧酸及其衍生物的还原反应 ➢羧酸及其衍生物-碳的反应
羧酸及其衍生物的命名
HCO2H CH3CO2H CH3(CH2)16CO2H
(4) 在RCOOR'中, R对速率的影响是: 一级 > 二级 > 三级 R'对速率的影响是: 三级 > 一级 > 二级
CH3COOR'在盐酸中,于25OC时水解的相对速率v的 实验数据如下:
R': CH3 C2H5 CH(CH3)2 C(CH3)3
v: 1 0.97
0.53 1.15(历程不同)
2.98
CO2H OR
水杨酸: R = H O
阿司匹林: R = -CCH3
羧酸及其衍生物的制备
1. 羧酸的制备
(1)醇和醛的氧化
RCH2 OH
or O
RC H
KMnO4 or
羧酸及其衍生物的化学性质
羧酸及其衍生物的化学性质羧酸及其衍生物是一类含有羧基(-COOH)的有机化合物。
它们常常具有酸性,因为羧基可以给出质子(H+)。
羧酸和其衍生物在水中可以形成水合物,而这些水合物在中性或酸性条件下可以存在,但在碱性条件下容易发生水解。
下面将对羧酸及其衍生物的化学性质进行一些介绍。
1. 酸性羧酸的羧基可以给出质子,因此羧酸有一定的酸性。
在水中,羧酸可以形成羧酸离子(-COO^-)和质子(H+)。
由于质子是暂时性的,因此羧酸是一个弱酸。
羧酸的酸性可以通过pKa值来衡量,pKa值越小,酸性越强。
羧酸的pKa通常在3-5之间。
2. 水解在碱性条件下,羧酸及其衍生物容易发生水解反应。
以酯为例,当酯和水在碱性条件下反应时,产生的产物是羧酸和醇。
羧酸的水解可以通过以下反应来表示:RCOOR' + NaOH → RCOO^-Na+ + R'OH3. 脱羧反应在一些情况下,羧酸中的羧基可以被脱除,形成烯丙基化合物。
这种反应叫做脱羧反应。
脱羧反应通常在高温下进行,而且需要使用强碱或强酸催化剂。
例如,苯甲酸在高温、强碱条件下可以脱羧成为苯乙烯:C6H5COOH → C6H5CH=CH2 + CO24. 共轭碱羧酸和其衍生物的共轭碱是指它们失去羧基后的化合物。
在水中,共轭碱可以受到水分子的配位,形成水合离子。
共轭碱的性质类似于胺,因为它们都有可供质子接受的孤对电子对。
共轭碱的酸性比羧酸弱,因为它们缺少羧基的酸性贡献。
5. 还原性羧酸和其衍生物在还原条件下可以发生还原反应,还原成相应的醇。
还原反应通常需要使用还原剂,如锌、氢气或铁(II)离子。
以乙酸为例,下面是它们的还原反应:6. 酰化反应羧酸和酰化试剂在酸性条件下可以发生酯化反应,生成酯。
酰化试剂通常是醇或酚,如甲醇或苯酚。
酯化反应通常需要强酸或酸性催化剂,如硫酸或氯化铝。
下面是酯化反应的示意式:总之,羧酸及其衍生物具有多种化学性质。
它们可以形成羧酸离子和质子,发生水解、脱羧、酰化等反应。
羧酸及其衍生物
乙酰氯,加热后才出现白色沉淀者为氯,无上述现象发生者为乙酸酐 (4)首先在三者中分别
加入容易,不能产生黄色碘仿沉淀者为乙酸;然后把能发生碘仿反应的两者再加入托伦试剂 实 验,能够发生银镜反映者为乙醛,无此现象者为乙醇
答:由强到弱的排列顺序如下 (1) 草酸>丙二酸>氯乙酸>乙酸>苯酚 (2)F3CCOOH> C6H5COOH> CH3COOH >C6H5OH> C2H5OH
(3) CH3CCl2COOH >CH3CHClCOOH >CH2ClCH2COOH >CH3CH2COOH >H2O >C2H5OH 10.4 用化学方法区别下列各组化合物。 (1) 甲酸,乙酸,乙二酸;(2)乙酸丁酯,丁酸乙酯,甲基丙烯甲酯 (2) 乙酰胺,乙酰氯,滤乙烷;(4)乙醇,乙醛,乙酸
Cl C6H6,AlCl3 (C6H5)3COH
(3) 乙 烯、丙 烯
3甲 基 丁酸
CH2
CH2
O2,Ag 250 ℃
CH3CH CH2 HBr
CH2
CH2OCH3 NhomakorabeaCH2CH2
Mg CH3CHCH3 无水 乙 醚 CH3CHMgBr
O
CH3 CH3CHCH2CH2OMgBr
H3+
Br O,H2O
CH3
C6H6,AlCl3
COCH2CH2COOH
C2H5NH2 (过量) C2H5NHCOCH2CH2COONH3C2H5
10.7 写出丙酸乙酯与下列试剂作用的产物
有机化学10第10章 羧酸及其衍生物
• 取代基的供电子(+I效应)强弱次序:
•注意: 与苯环、1,3-丁二烯和烯烃的-,p-共轭效应比较: 共轭效应是指在共轭体系中原子间的一种相互影响,这种 影响造成分子更加稳定,内能更小,键长趋于平均化。 共 轭效应常与诱导效应同时存在,共同起作用。(苯的定位)
有机化合物酸性的强弱主要受其结构的电子效应、杂 化、氢键、空间效应和溶剂的影响。 1. 羧酸的酸性 (1) 脂肪族羧酸
CH3
KMnO 4 / NaOH
COOH
KMnO 4 / NaOH
C2 H5
CH3
K2Cr2O 7 / H2SO 4
COOH
NO2
NO2
CH(CH3)2
Na2Cr2O 7 / H2SO 4
COOH
COOH (CH2)6CH3
CH3
KMnO 4 / NaOH
COOH
侧链是叔烷 基,很难氧 化,强氧化 剂时环发生 破裂。
• 羧酸的沸点高于质量相近的醇——双分子缔合
O H O CH3 C O H O C CH3
R O H O R H O H O R R H
10.4 羧酸的化学性质
-H取 代反应
H C
O C O
C=O 基亲核加成 O H 键断裂而
呈酸性
R
H
脱羧反应
H
OH被取代反应
羧酸的化学反应包括: (1) O—H键的酸性; (2) —H取代反应 (3) —OH基取代反应; (4) C=O亲核加成 (5) 脱羧反应
第十章 羧酸及其衍生物、取代羧酸
(一)羧酸
10.1 羧酸的结构、分类和命名
——羧酸的分子中都含有羧基官能团
10.1.1 羧酸的结构
第十章 羧酸及衍生物
酰卤
羧基中的羟基可 被其它原子或原 子团取代,生成 羧酸衍生物。
O R C OH
P2O5
O R R C O C O
酸酐
O
R'OH
NH3
R C OR'
酯
酰胺
a.酰氯的生成
• 羧酸与PCl3、PCl5、SOCl2等试剂都可以发生羧基中的羟基被取代的 反应,生成相应结构的酰氯,此反应中不能用 HX反应,酰氯是发生 活泼的最常用的酰化试剂之一。
还原反应 亲核取代反应
(1) 水解
O R C X O O O R C O C R +H HOH 2O
+
R C O R' O
R C NH2
水解反应活性: 酰卤> 酸酐>酯>酰胺
=
立即反应
HX O RC O O H R'OH
(2)乙酸
俗称醋酸,食醋中约含6%-10%的醋酸。纯醋酸为无色并具有刺 激性的液体,沸点118℃ ,冷却至16.6℃时即可凝结为冰状固体。 无色乙酸亦称冰醋酸。
(3)乙二酸
乙二酸俗称草酸,通常以盐的形式存在于多种植物的细 胞膜中。草酸是无色晶体,常见的草酸含有两分子结晶水, 熔点为101.5℃ ,在100~105℃加热则可失去结晶水,得到 无水草酸。无水草酸的熔点为189.5℃ 。
NaO H
RCOO Na+
C10以下溶于水;
+ H2O
>C10在水溶液中呈胶体溶液。
RCO O H +
NaHCO 3
RCOO Na+
+ CO2 + H2O
应用:用于分离、鉴别。
苯甲酸 对甲苯酚
第十章 羧酸及其衍生物
第十章羧酸及其衍生物羧酸及其衍生物❖羧酸及其衍生物的结构特征;❖羧酸及其衍生物的物理和化学性质;❖乙酰乙酸乙酯和丙二酸酯的特性及其在有机合成上的应用;❖蜡和油脂,碳酸衍生物重点要求掌握羧酸及其衍生物的化学性质;乙酰乙酸乙酯在有机合成上的应用。
10.1 羧酸10.1.1 羧酸的构造、分类和命名1、羧酸的构造和分类分子中具有羧基的化合物,称为羧酸。
它的通式为 RCOOH。
2、命名由它的来源命名:甲酸最初是由蚂蚁蒸馏得到的,称为蚁酸。
乙酸最初是由食用的醋中得到,称为醋酸。
还有草酸、琥珀酸、苹果酸、柠檬酸。
系统命名:含羧基最长的碳链作为主链,根据主链上碳原子数目称为某酸.编号从羧基开始.3,4-二甲基戊酸3-甲基-2-丁烯酸芳香族羧酸可以作为脂肪酸的芳基取代物命名:羧酸常用希腊字母来标名位次,即与羧基直接相连的碳原子为α,其余位次为β、γ…,距羧基最远的为ω位。
二元酸命名:10.1.2 羧酸的物理性质在室温下10个碳原子以下的饱和一元羧酸是液体。
10个碳原子以上的羧酸为石蜡固体,挥发性很低,无气味。
4~9个碳原子的脂肪酸具有腐败恶臭、动物的汗液和奶油发酸变坏的气味。
饱和一元羧酸的沸点比相对分子质量相似的 醇还要高。
饱和一元羧酸的熔点随分子中碳原子数目的增加呈锯齿状的变化。
低级脂肪酸易溶于水,但随分子量的增高而降低。
甲酸与水通过氢键缔合在固态和液态,羧酸主要以二聚体形式存在。
低级的羧酸,在气相时仍以双分子缔合状态存在。
10.1.3 羧酸的化学性质OOH H HOH O HH HHOCRCOOHOORHO ORHCC2HOR H O HC Cα10.1.3.1 酸性羧酸具有弱酸性,在水溶液中存在着如下平衡:乙酸的离解常数K a 为1.75×10-5 甲酸的K a =2.1×10-4 , p Ka =3.75其他一元酸的K a 在1.1~1.8×10-5之间, p Ka 在4.7~5之间。
羧酸及其衍生物
羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMgX RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.RCOOH RCOO- + H+因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + NaOH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 SOCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CHCl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CHCOOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-CaO)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3这是实验室用来制取纯甲烷的方法.一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CHCl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐) 乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质酰氯大多数是具有强烈刺激性气味的无色液体或低熔点固体.低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯> 酸酐> 酯> 酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + HOR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CHOHCOOH 2-羟基丙酸(乳酸)HOOCCH2CHOHCOOH 羟基丁二酸(苹果酸)HOOCCHOHCHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CHOHCOOH OHCH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOHCOH RCHO + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOHCOOH + RCHOHCOOH 交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOHCH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.4,洒石酸:是透明棱形晶体,有很强的酸味,易溶于水.洒石酸常用于配制饮料,洒石酸钾钠用于配制斐林试剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2SO4 RCHO + CO2↑RCOCOOH + 浓H2SO4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅NaOH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离.形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.与HNO2反 应
小结:羧酸的酸性判断;羧酸盐生物的生成方法;脱羧反应; α-H的卤代反应及其应用;还原反应。 羧酸衍生物的亲和取代机理;活性的比较;水解、醇解、氨 解、与格式试剂反应。还原。
作业: 11(1,2,4,11), 13,15…. 预习:第11章取代酸和β-二羰基化合物
10.3.6脱羧反应
10.3.6.1一元羧酸
10.3.6.2二元羧酸
Blanc规则:二元羧酸热分解时,可能的条件下尽可能生成
五元 或六元环。
10.4. 羧酸的制法
温故而知新: 1.氧化法 从烯烃、炔烃的氧化断键
伯醇或醛的氧化——制备同碳数的羧酸:
甲基酮卤仿反应——制备减少一个碳原子的羧酸: 芳环侧链的氧化
酸性的判断: ■Ka越大(或pKa越小),酸性越强 ■任何使酸根负离子稳定的因素都将增加其酸性,羧酸根负 离子愈稳定,愈容易生成,酸性就愈强。
影响酸性的因素:
▲诱导效应对羧酸酸性的影响: 吸电子效应使羧酸负离子的电荷更加分散,使其稳定性增加,
从而使羧酸的酸性增强;供电子效应使羧酸负离子的电荷更
加集中,使其稳定性减弱,从而使羧酸的酸性降低。
②增加了羧基中羟基的氧氢键的极性,有利于氢的离解,所以羧酸有
明显的酸性。 ③羧酸α-H活性降低
10.1.3羧酸命名
1、结构比较简单的羧酸常用普通命名法。例如:甲酸、 乙酸、丙酸等。
- 甲基丁酸
-甲基- -戊稀酸
-羟基戊酸
2、结构复杂的羧酸用系统命名法命名
5-羟基-3-氯戊 4-乙基-6-溴-4-己烯酸
10.7羧酸衍生物的化学性质
10.7.1亲核加成-消除反应
10.7.1.1反应机理
10.7.1.2羧酸衍生物中主要反应基团性能的比较
羧酸衍生物的亲核取代反应的速度取决于两步反应,在第一步 反应中,当亲核试剂Nu一定时取决于羰基碳原子的正电性和基 团的体积效应。
▲羰基碳原子连有吸电子基团,使反应活性↑;
▲羰基碳原子连有的基团体积↑,不利于亲核试剂的进攻,也不 利于四面体结构的形成。
四种羧酸衍生物中,羰基的正电性顺序比较: 从诱导效应看,R相同时,L的吸电子能力越强,羰碳上的正电 性就越大,而四种羧酸衍生物的吸电子能力大小为:
-Cl >-OCOR >-OR’ >-NH2 从共轭效应看,L上的孤电子对与C=O存在p-共轭,使羰
-COOH中的 H+
离去后,(-CO2-)P—π
共轭更完全,键
长平均化(甲酸钠的X射线测定表明,碳氧键长均等)使体系 更稳定。
由于共轭效应的存在,氧原子
上的负电荷则均匀地分散在两
个原子上因而稳定容易生成。
羧酸的性质可从结构上预测,有以下几类:
10.3.2羧酸的酸性
10.3.2.1影响羧酸酸性的因素
10.7.1.4醇解Βιβλιοθήκη 特点:a. 醇解产物是酯。
b. 反应活性: 酰卤〉酸酐 〉酯 〉酰胺 c. 酰氯和酸酐是活泼的酰基化剂。 d. 酯的醇解为酯交换。
10.7.1.5氨解
特点:(1)产物是酰胺。
(2)反应活性: 酰卤 > 酸酐 > 酯 > 酰胺
10.7.1.6与格式试剂反应
Grignard试剂与酰氯的反应:
10.7.3羧酸衍生物的还原
10.7.3.1酰氯的还原 1.Rosemmund还原法
2.催化加氢
3.LiAlH4还原
10.7.3.2酸酐的还原
10.7.3.3酯的还原
10.7.3.4酰胺的还原
10.8碳酸衍生物
10.8.1碳酰氯
10.8.2碳酰胺
1.成盐
脲只能与强酸成盐。因为碱性:
2.水解
10.3.3羧羟基的取代反应--羧酸衍生物的生成
10.3.3.1酰卤的生成
10.3.3.2酸酐的生成
条件:加热、
脱水剂:醋酸酐或P2O5等。 用乙酸酐作脱水剂不仅价格便宜,而且它易于吸水生成乙酸, 容易除去,故常用来制备较高级的羧酸酐。 适用范围:羧酸的分子间脱水只适用于制备简单酸酐。
混合酸酐可用酰卤与羧酸盐一起共热的方法来制备。
C6H5COOH>CH3COOH
②芳环上有吸电子基时,ArCOOH酸性增加
③芳环上有斥电子基时,ArCOOH酸性减弱
二元酸:
酸性: pKa1<pKa2; pKa1<一元酸的pKa;
原因:两个-COOH,且-COOH有较强的-I效应。
10.3.2.2成盐
10.3.2.3应用 用途: 1、用于鉴别羧酸。 2 、用于分离提纯非水溶性羧酸 3、用于生产肥皂(C12~ C18脂肪酸的钠盐可用作肥皂)
2.水解法:
多氯代烃水解,也能生成羧酸
羧酸衍生物和腈 水解均产生相应的羧酸
3.Grignard试剂与CO2作用——制备增加一个碳原子的羧酸
10.5羧酸衍生物的结构和命名
10.5.1羧酸衍生物的结构
共振式:
10.5.2羧酸衍生物的命名
10.6羧酸衍生物的物理性质
酰胺 > N - 一取代酰胺 > N - 二取代酰胺
羧酸可看作是烃分子中的H被羧基取代后的生成物。因此,羧
基就是羧酸的这能团。羧酸的通式为:RCOOH。
10.1羧酸的结构、分类和命名
10.1.1羧酸的分类
10.1.2羧酸的结构
p—π共轭
p—π共轭的结果(与醛、酮的羰基碳比较): ①降低了羧基中羰基碳的正电性,所以,羧基一般不能进行亲核加成 反应。
原因: 通过氢键形成二聚体。
4.水溶解度:
大于分子量相近的醇、醛、酮;
随R↑,水溶解度↓,C10以上羧酸不溶于水。
与水形成氢键
二聚体
10.3羧酸的化学性质
10.3.1羧酸的结构特点
结果:①p—π共轭使羰基碳正性减弱,C=O失去了典型的羰 基的性质,如与羰基试剂 HONH2不发生反应,
②-OH的酸性比醇的O-H酸性强。
第10章
主要内容
羧酸及其衍生物
羧酸的结构、分类、命名
羧酸的物理性质
羧酸的化学性质(酸性、羟基的取代 反应、α-H的取代、脱羧反应、还原)
二元羧酸的性质
主要内容
羧酸衍生物的结构、分类、命名
羧酸衍生物的物理性质
羧酸衍生物的化学性质(水解、醇解、 氨解、与格式试剂反应、还原)
碳酸衍生物
环己基甲酸
3、俗名:羧酸的名称常用俗名
10.2羧酸的物理性质
1.物态
C1~C3 有刺激性酸味的液体,溶于水。C4~C9 有腐败气
味的油状液体(丁酸为脚臭味),难溶于水。> C9腊状固体, 无气味,不溶于水。芳烃的水溶性极微。
2.熔点
有一定规律,随着分子中碳原子数目的增加呈锯齿状的变化。 (偶数C原子酸的熔点比相邻的两个奇数C原子酸的熔点高) 乙酸熔点16.6℃,当室温低于此温度时,立即凝成冰状结晶, 故纯乙酸又称为冰醋酸。 3.沸点 比相应的醇的沸点高。
诱导效应的特点: 具有加和性;诱导效应强度与距离成反比,距离↑,诱导效 应强度↓。
▲共轭效应对羧酸酸性的影响: -C 效应是酸性增强,+C效应是酸性减弱。 取代基位置对苯甲酸酸性的影响: 取代苯甲酸的酸性与取代基的位置、共轭效应与诱导效应 的同时存在和影响有关 ①当能与基团共轭时,则酸性增强:
低温下,酰氯与1mol Grignard试剂反应可以得到酮:
特点:
(1)可制得两个烃基相同的叔醇。 (2)低温且控制R’MgX不过量可用来制备酮。 (3)R’MgX过量,则主要产物为三级醇。 Grignard试剂与酯的反应 :
酯与格氏试剂的反应是制备含有两个相同烃基的3°醇的好方
法。得不到酮。
特点: (1)可制得两个烃基相同的叔醇。 (2)反应难停留在酮的阶段,因为酮与格试剂反应比酯快 (3)甲酸酯与格氏试剂反应得对称的二级醇。
10.3.3.3酯的生成
不同结构的羧酸和醇进行酯化反应的活性顺序为:
RCH2COOH > R2CHCOOH > R3CCOOH
RCH2OH (伯醇) > R2CHOH (仲醇) > R3COH (叔醇)
10.3.3.4酰胺的生成
10.3.4羧基被还原
10.3.5羧酸的α-H的卤代反应
应用:
碳正电性降低,
所以羰基的正电性顺序为: 酰氯>酸酐>酯>酰胺
第二步反应中,若R,Nu一定,反应速度取决于L的离去能力
离去基团的碱性越强,越不易离去。基团的离去能力顺序为:
综上所述,羧酸衍生物的反应活性顺序为:
10.7.1.3水解
特点: (1)它们都能水解生成相应的羧酸。 (2) 水解反应进行的难易次序为:酰氯> 酸酐 > 酯 > 酰胺