零和博弈
双人零和博弈
一、双人零和博弈的概念零和博弈又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,一方收益多少,另一方就损失多少,所以博弈各方的收益和损失相加总和永远为“零”.双方不存在合作的可能.用通俗的话来讲也可以说是:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而双方在决策时都以自己的最大利益为目标,想尽一切办法以实现“损人利己”.零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分.二、双人零和博弈的模型的建立建立双人零和博弈的模型,就是要根据对实际问题的叙述确定参与人(局中人)的策略集以及相应的收益矩阵(支付矩阵).我们记双人零和博弈中的两个局中人为A和B;局中人A的策略集为a1,…,am,局中人B的策略集为b1,…,bn;cij为局中人A采取策略ai、局中人B采取策略bj 时A的收益(这时局中人B的收益为- cij).则收益矩阵见下表表1那么下面我们通过例子来说明双人零和博弈模型的建立: 例1甲、乙两名儿童玩猜拳游戏.游戏中双方同时分别或伸出拳头(代表石头)、或手掌(代表布)、或两个手指(代表剪刀).规则是剪刀赢布,布赢石头,石头赢剪刀,赢者得一分.若双方所出相同,算和局,均不得分.试列出对儿童甲的赢得矩阵.解 本例中儿童甲或乙均有三个策略:或出拳头,或出手掌,或出两个手指,根据例子中所述规则,可列出对儿童甲的赢得矩阵见表2.表2例2 从一张红牌和一张黑牌中随机抽取一张,在对B 保密情况下拿给A 看,若A 看到的是红牌,他可选择或掷硬币决定胜负,或让B 猜.若选择掷硬币,当出现正面,A 赢p 元,出现反面,输q 元;若让B 猜,当B 猜中是红牌,A 输r 元,反之B 猜是黑牌,A 赢s 元.若A 看到的是黑牌,他只能让B 猜.当B 猜中是黑牌,A 输u 元,反之B 猜是红牌,A 赢t 元,试确定A 、B 各自的策略,建立支付矩阵.解 因A 的赢得和损失分别是B 的损失和赢得,故属二人零和博弈.为便于分析,可画出如图3的博弈树图.图3中,○为随机点,□分别为A 和B 的决策点,从图中看出A 的策略有掷硬币和让B 猜两种,B 的策略有猜红和猜黑两种,据此可归纳出各种情况下A 和B 输赢值分析的表格,见表4.图3抽到红牌正面反面抽到黑球○□□○□1/2掷硬币让B 猜1/21/2猜红猜黑猜黑猜红1/2让B 猜p-q-rst-u表4对表4中各栏数字可以这样来理解:因让A 看到红牌时或掷硬币或让B 猜.若A 决定选掷硬币这个策略,当出现正面,这时不管B 猜红或猜黑,A 都赢p 元;当出现反面,不管B 猜红或猜黑,A 都输q 元.同样A 选择让B 猜的策略后,他的输赢只同B 猜红或猜黑有关,而与掷硬币的正反面无关.又若抽到的牌是黑牌,A 的决定只能让B 猜,因而掷硬币策略对A 的胜负同样不起作用.考虑到抽牌时的红与黑的概率各为1/2,掷硬币时出现正反面的概率也各为1/2,故当A 采取“掷硬币”策略,而B 选择“猜红”策略时,A 的期望赢得为:⎪⎭⎫ ⎝⎛-q p 212121+t 21=()t q p 241+- 当A 采取让B 猜策略,B 选择“猜红”策略时,A 的期望赢得为:()()⎪⎭⎫ ⎝⎛-+-r r 212121+t 21=()t r +-21 相应可求得其他策略对A 的期望赢得值.由此可列出本例的收益矩阵,见表5.表5三、双人零和博弈的求解定理1(极小极大定理)在零和博弈中,对于给定的支付矩阵U ,如果存在混合战略1σ*=(1σ*1,…1σ*m )和2σ*=(2σ*1,…2σ*n )以及一个常数v 满足,对任意j 有∑=mi i ij a 11*σ≥v ,对任意的i 有∑=nj j ij a 12*σ≤v ,那么战略组合(1σ*,2σ*)为该博弈的Nash 均衡.其中,v 为参与人1在均衡中所得到的期望支付,亦称该博弈的值.这个极小极大定理,其基本思想就是:参与人1考虑到对方使自己支付最小的最优反应,从中选择使自己最好的策略.参与人2也遵循同样的思路,这样才能满足Nash 均衡的互为最优反应的条件.这样我们就可以得到双人零和博弈Nash 均衡的计算方法了,如以下定理定理2 对于给定的零和博弈,如果博弈的值v 大于0,则博弈的Nash 均衡(1σ*,2σ*)为以下对偶线性规划问题的解Min ∑=mi i p 1s.t. ∑=mi i ij p a 1≥1 (j=1,…,n)i p ≥0 (i=1,…,m) 和Max ∑=nj j q 1s.t. ∑=nj j ij q a 1≤1 (i=1,…,m)j q ≥0 (j=1,…,n) 其中,Nash 均衡支付∑∑====nj jmi iqpv 1111Nash 均衡战略),,,,(1*1m i vp vp vp =σ,),,,(1*2n j vq vq vq =σ由于此定理只适用于v 大于0的情形,因此对于v 小于等于0的情形,该定理所给出的方法需做适当的修改.命题 如果支付矩阵U=mxn ij a )(的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v >0.定理3 如果支付矩阵U '=mxn ij a )('是由U=mxn ij a )(的每个元素都加上一个常数c 得到,即c a a ij ij +=',那么支付矩阵U 和U '所对应的零和博弈的Nash 均衡战略相同,博弈的值相差c.根据以上定理,可以得到如下求解一般零和博弈Nash 均衡的方法:(1) 若支付矩阵U 中的所有元素都大于零,则可以直接根据定理进行计算;若支付矩阵U 中有小于0的元素,可以通过加上一个常数使它们都大于0,然后再根据定理进行计算. (2) 求解定理中的两个对偶线性规划问题.下面通过实例来说明如何求解双人零和博弈的Nash 均衡.例3 求解下图中战略式博弈的Nash 均衡. 参与人2L M RU参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 根据前面的介绍,可知该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛224132312不难发现,该博弈的支付矩阵U=()33x ij a 的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v>0.设参与人1和参与人2的混合战略分别是1σ=(321,,vp vp vp )和2σ=(321,,vq vq vq ),利用对偶线性规划求解方法求解该战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++}s.t. 321422p p p ++≥1 32123p p p ++≥1 32123p p p ++≥1 1p ≥0,2p ≥0,3p ≥0 和Max {321q q q ++}s.t. 32132q q q ++≤1 32132q q q ++≤1 321224q q q ++≤1 1q ≥0,2q ≥0,3q ≥0求解第一个规划问题,得到1p =1/4, 2p =1/4, 3p =0,参与人1的支付v=2.因此,参与人1的混合战略1σ*=(1/2,1/2,0).同理,对对偶问题求解,得到1q =0,2q =1/4, 3q =1/4,参与人2的损失v=2,因此参与人的混合战略2σ*=(0,1/2,1/2).所以,该博弈存在一个混合战略Nash 均衡((1/2,1/2,0)(0,1/2,1/2),).例4 求解下图中的战略式博弈的Nash 均衡.参与人2L M R U 参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛--203011122 在上树支付矩阵U=33)(x ij a 中,12a <0, 21a <0.为了利用对偶线性规划模型求解博弈的解,构造支付矩阵U '=33')(x ij a ,其中a 'ij=ij a +c.令c=2,那么新构造的支付矩阵为U '=⎪⎪⎪⎭⎫ ⎝⎛425231304 设参与人1和参与人2的混合战略分别是1σ=(v 'p 1, v 'p 2, v 'p 3)和2σ=(v 'q 1, v 'q 2 v 'q 3,),v 为原博弈的值,v '为新博弈的值,且v '=v+2,利用对偶线性规划求解方法求解新战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++} s.t. 32154p p p ++≥13223p p +≥1 321423p p p ++≥11p ≥0, 2p ≥0, 3p ≥0Max {321q q q ++}s.t. 3134q q +≤1 32123q q q ++≤1 321425q q q ++≤1 1q ≥0,2q ≥0,3q ≥0通过求解对偶问题,得到1p =0,2p =3/13, 3p =2/13,参与人1的支付v '=13/5, 1q =1/13, 2q =4/13, 3q =0,参与人2的损失v '=13/5.因此,参与人1的混合战略1σ*=(0,3/5,2/5), 参与人2 的混合战略2σ*=(1/5,4/5,0),原博弈的值v= v '-2=3/5.所以,博弈存在一个混合战略Nash 均衡((0,3/5,2/5),(1/5,4/5,0)).。
零和博弈
股市零和博弈的定义可以表述为:
输家损失+现金分红=赢家收益+融资+交易成本。
(等式左边是股市资金的提供者,右边则是股市资金的索取者)
在现实的经济生活中,人们常常将因合作带来的额外收益称为“双赢”(win–win),即合作往往会给经济主体间带来1加1大于2的结果,有时人们也将这种合作行为称为“正和博弈”。相反,不合作行为往往带来1减1小于零的负效应。可称这种不合作行为为“负和博弈”。当然,这种用语仅仅是一种形容意义上的表称,与我们所说的“博弈”还不是一个概念。因为将“正和博弈”中的各个局中人支付减去一个足够大的数岂不就变成了“负和博弈”,而这又是与“正和博弈”和“负和博弈”概念的原意相左的。但是,经济互动中的许多行为过程并非导致一方所得就是另一方所失,有可能双方都因某种行为的选择而同时有所得或同时有所失,因而这些互动并非是“零和的”。这是棋牌类游戏与经济互动的区别。
零和博弈属于非合作博弈,是指博弈中甲方的收益,必然是乙方的损失,即各博弈方得益之和为零。在零和博弈中各博弈方决策时都以自己的最大利益为目标,结果是既无法实现集体的最大利益,也无法实现个体的最大利益。除非在各博弈方中存在可信性的承诺或可执行的惩罚作保证,否则各博弈方中难以存在合作。
这样的道理倒可以类似于能量守恒中的一种特殊情况。
当你看到两位对弈者时,你就可以说他们正在玩“零和游戏”。因为在大多数情况下,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分,那么,这两人得分之和就是:1+(-1)=0。
零和游戏原理之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的“零和游戏”。这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个“邪恶进化论”式的弱肉强食的世界。
双人零和博弈
双⼈零和博弈⼀、双⼈零和博弈的概念零和博弈⼜称零和游戏,与⾮零和博弈相对,是博弈论的⼀个概念,属⾮合作博弈,指参与博弈的各⽅,在严格竞争下,⼀⽅的收益必然意味着另⼀⽅的损失,⼀⽅收益多少,另⼀⽅就损失多少,所以博弈各⽅的收益和损失相加总和永远为“零”.双⽅不存在合作的可能.⽤通俗的话来讲也可以说是:⾃⼰的幸福是建⽴在他⼈的痛苦之上的,⼆者的⼤⼩完全相等,因⽽双⽅在决策时都以⾃⼰的最⼤利益为⽬标,想尽⼀切办法以实现“损⼈利⼰”.零和博弈的结果是⼀⽅吃掉另⼀⽅,⼀⽅的所得正是另⼀⽅的所失,整个社会的利益并不会因此⽽增加⼀分.⼆、双⼈零和博弈的模型的建⽴建⽴双⼈零和博弈的模型,就是要根据对实际问题的叙述确定参与⼈(局中⼈)的策略集以及相应的收益矩阵(⽀付矩阵).我们记双⼈零和博弈中的两个局中⼈为A和B;局中⼈A的策略集为a1,…,am,局中⼈B的策略集为b1,…,bn;cij为局中⼈A采取策略ai、局中⼈B采取策略bj 时A的收益(这时局中⼈B的收益为- cij).则收益矩阵见下表表1那么下⾯我们通过例⼦来说明双⼈零和博弈模型的建⽴: 例1甲、⼄两名⼉童玩猜拳游戏.游戏中双⽅同时分别或伸出拳头(代表⽯头)、或⼿掌(代表布)、或两个⼿指(代表剪⼑).规则是剪⼑赢布,布赢⽯头,⽯头赢剪⼑,赢者得⼀分.若双⽅所出相同,算和局,均不得分.试列出对⼉童甲的赢得矩阵.解本例中⼉童甲或⼄均有三个策略:或出拳头,或出⼿掌,或出两个⼿指,根据例⼦中所述规则,可列出对⼉童甲的赢得矩阵见表2.表2例2 从⼀张红牌和⼀张⿊牌中随机抽取⼀张,在对B 保密情况下拿给A 看,若A 看到的是红牌,他可选择或掷硬币决定胜负,或让B 猜.若选择掷硬币,当出现正⾯,A 赢p 元,出现反⾯,输q 元;若让B 猜,当B 猜中是红牌,A 输r 元,反之B 猜是⿊牌,A 赢s 元.若A 看到的是⿊牌,他只能让B 猜.当B 猜中是⿊牌,A 输u 元,反之B 猜是红牌,A 赢t 元,试确定A 、B 各⾃的策略,建⽴⽀付矩阵.解因A 的赢得和损失分别是B 的损失和赢得,故属⼆⼈零和博弈.为便于分析,可画出如图3的博弈树图.图3中,○为随机点,□分别为A 和B 的决策点,从图中看出A 的策略有掷硬币和让B 猜两种,B 的策略有猜红和猜⿊两种,据此可归纳出各种情况下A 和B 输赢值分析的表格,见表4.图3抽到红牌正⾯反⾯抽到⿊球○□□○□1/2掷硬币让B 猜1/21/2猜红猜⿊猜⿊猜红1/2让B 猜p-q-rst-u表4对表4中各栏数字可以这样来理解:因让A 看到红牌时或掷硬币或让B 猜.若A 决定选掷硬币这个策略,当出现正⾯,这时不管B 猜红或猜⿊,A 都赢p 元;当出现反⾯,不管B 猜红或猜⿊,A 都输q 元.同样A 选择让B 猜的策略后,他的输赢只同B 猜红或猜⿊有关,⽽与掷硬币的正反⾯⽆关.⼜若抽到的牌是⿊牌,A 的决定只能让B 猜,因⽽掷硬币策略对A 的胜负同样不起作⽤.考虑到抽牌时的红与⿊的概率各为1/2,掷硬币时出现正反⾯的概率也各为1/2,故当A 采取“掷硬币”策略,⽽B 选择“猜红”策略时,A 的期望赢得为:-q p 212121+t 21=()t q p 241+- 当A 采取让B 猜策略,B 选择“猜红”策略时,A 的期望赢得为:()()??? ??-+-r r 212121+t 21=()t r +-21相应可求得其他策略对A 的期望赢得值.由此可列出本例的收益矩阵,见表5.表5三、双⼈零和博弈的求解定理1(极⼩极⼤定理)在零和博弈中,对于给定的⽀付矩阵U ,如果存在混合战略1σ*=(1σ*1,…1σ*m )和2σ*=(2σ*1,…2σ*n )以及⼀个常数v 满⾜,对任意j 有∑=mi i ij a 11*σ≥v ,对任意的i 有∑=nj j ij a 12*σ≤v ,那么战略组合(1σ*,2σ*)为该博弈的Nash 均衡.其中,v 为参与⼈1在均衡中所得到的期望⽀付,亦称该博弈的值.这个极⼩极⼤定理,其基本思想就是:参与⼈1考虑到对⽅使⾃⼰⽀付最⼩的最优反应,从中选择使⾃⼰最好的策略.参与⼈2也遵循同样的思路,这样才能满⾜Nash 均衡的互为最优反应的条件.这样我们就可以得到双⼈零和博弈Nash 均衡的计算⽅法了,如以下定理定理2 对于给定的零和博弈,如果博弈的值v ⼤于0,则博弈的Nash 均衡(1σ*,2σ*)为以下对偶线性规划问题的解Min ∑=mi i p 1s.t. ∑=mi i ij p a 1≥1 (j=1,…,n)i p ≥0 (i=1,…,m) 和Max ∑=nj j q 1s.t. ∑=nj j ij q a 1≤1 (i=1,…,m)j q ≥0 (j=1,…,n) 其中,Nash 均衡⽀付∑∑====nj jmi iqpv 1111Nash 均衡战略),,,,(1*1m i vp vp vp =σ,),,,(1*2n j vq vq vq =σ由于此定理只适⽤于v ⼤于0的情形,因此对于v ⼩于等于0的情形,该定理所给出的⽅法需做适当的修改.命题如果⽀付矩阵U=mxn ij a )(的每个元素都⼤于0,即ij a >0,那么博弈的值⼤于0,即v >0.定理3 如果⽀付矩阵U '=m xn ij a )('是由U=mxn ij a )(的每个元素都加上⼀个常数c 得到,即c a a ij ij +=',那么⽀付矩阵U 和U '所对应的零和博弈的Nash 均衡战略相同,博弈的值相差c.根据以上定理,可以得到如下求解⼀般零和博弈Nash 均衡的⽅法:(1) 若⽀付矩阵U 中的所有元素都⼤于零,则可以直接根据定理进⾏计算;若⽀付矩阵U 中有⼩于0的元素,可以通过加上⼀个常数使它们都⼤于0,然后再根据定理进⾏计算. (2) 求解定理中的两个对偶线性规划问题.下⾯通过实例来说明如何求解双⼈零和博弈的Nash 均衡.例3 求解下图中战略式博弈的Nash 均衡. 参与⼈2L M RU参与⼈1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解根据前⾯的介绍,可知该博弈的⽀付矩阵为U=224132312不难发现,该博弈的⽀付矩阵U=()33x ij a 的每个元素都⼤于0,即ij a >0,那么博弈的值⼤于0,即v>0.设参与⼈1和参与⼈2的混合战略分别是1σ=(321,,vp vp vp )和2σ=(321,,vq vq vq ),利⽤对偶线性规划求解⽅法求解该战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++}s.t. 321422p p p ++≥1 32123p p p ++≥1 32123p p p ++≥1 1p ≥0,2p ≥0,3p ≥0 和Max {321q q q ++}s.t. 32132q q q ++≤1 32132q q q ++≤1 321224q q q ++≤1 1q ≥0,2q ≥0,3q ≥0求解第⼀个规划问题,得到1p =1/4, 2p =1/4, 3p =0,参与⼈1的⽀付v=2.因此,参与⼈1的混合战略1σ*=(1/2,1/2,0).同理,对对偶问题求解,得到1q =0,2q =1/4, 3q =1/4,参与⼈2的损失v=2,因此参与⼈的混合战略2σ*=(0,1/2,1/2).所以,该博弈存在⼀个混合战略Nash 均衡((1/2,1/2,0)(0,1/2,1/2),).例4 求解下图中的战略式博弈的Nash 均衡.参与⼈2L M R U 参与⼈1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解该博弈的⽀付矩阵为U=--203011122 在上树⽀付矩阵U=33)(x ij a 中,12a <0, 21a <0.为了利⽤对偶线性规划模型求解博弈的解,构造⽀付矩阵U '=33')(x ij a ,其中a 'ij =ij a +c. 令c=2,那么新构造的⽀付矩阵为U '=425231304 设参与⼈1和参与⼈2的混合战略分别是1σ=(v 'p 1, v 'p 2, v 'p 3)和2σ=(v 'q 1, v 'q 2 v 'q 3,),v 为原博弈的值,v '为新博弈的值,且v '=v+2,利⽤对偶线性规划求解⽅法求解新战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++} s.t. 32154p p p ++≥13223p p +≥1 321423p p p ++≥11p ≥0, 2p ≥0, 3p ≥0Max {321q q q ++}s.t. 3134q q +≤1 32123q q q ++≤1 321425q q q ++≤1 1q ≥0,2q ≥0,3q ≥0通过求解对偶问题,得到1p =0,2p =3/13, 3p =2/13,参与⼈1的⽀付v '=13/5, 1q =1/13, 2q =4/13, 3q =0,参与⼈2的损失v'=13/5.因此,参与⼈1的混合战略1σ*=(0,3/5,2/5), 参与⼈2 的混合战略2σ*=(1/5,4/5,0),原博弈的值v= v '-2=3/5.所以,博弈存在⼀个混合战略Nash 均衡((0,3/5,2/5),(1/5,4/5,0)).。
零和博弈理念
零和博弈理念
零和博弈理念是一种经济学理论,认为在一定条件下,参与者之间的收益与亏损之和为零。
这意味着,一个人的成功必然意味着另一个人的失败,参与者之间的关系是完全对立的。
这种理念常常被应用于商业竞争、政治谈判等领域。
在零和博弈理念下,每个参与者都会尽最大努力争取自己的利益,不断寻求优势和机会,同时也需要时刻关注其他参与者的动向和策略。
这种竞争往往会导致资源和机会的短缺,促使参与者采取更加激烈的竞争手段,包括恶性竞争、欺骗等。
然而,零和博弈理念并不是万能的。
在现实生活中,很多情况下参与者之间的关系并不是完全对立的,反而可以通过合作实现互利共赢。
而且,在某些领域,如科学、文化等,追求个人利益并不是唯一的动机,更多的是对人类进步和发展的贡献。
因此,在实践中,我们需要灵活运用零和博弈理念,根据具体情况决定是否采取合作还是竞争策略。
只有在正确的时机和恰当的方式下,才能实现最大的价值和利益。
- 1 -。
零和博弈理念
零和博弈理念
零和博弈理念是一种经济学和游戏论的概念,它认为在一场竞争中,一个人的收益必定与另一个人的损失成反比。
换句话说,参与者之间的收益和成本总和为零,因此这种博弈也被称为“零和游戏”。
在零和博弈中,参与者的利益是相互对立的,他们的目标是争夺有限的资源,如市场份额、资金、客户等。
这种竞争往往导致恶性竞争,每个参与者为了自己的利益而不惜对其他人造成损失。
零和博弈理念在商业领域中非常常见,例如在价格战中,每个公司都试图通过降低价格来吸引更多的顾客,但这往往导致利润下降。
在招标中,每个承包商都试图以最低的价格赢得合同,但这也会导致质量和服务水平下降。
虽然零和博弈看起来是一种不公平的竞争方式,但在某些情况下它是必要的。
例如在战争中,参与国之间的竞争就是零和博弈。
在这种情况下,一方的胜利必然伴随着另一方的失败。
然而,在商业领域中,零和博弈并不是唯一的选择。
另一种更可持续的竞争方式是合作,通过合作可以创造更多的价值,使所有参与者受益。
这种合作方式被称为“非零和博弈”。
在非零和博弈中,参与者之间的利益是相互依存的,他们的目标是共同创造更多的价值。
这种竞争方式可以促进创新和协作,使所有参与者获得更大的回报。
因此,作为现代企业家,我们需要了解零和博弈和非零和博弈的区别,并选择适当的竞争方式来实现我们的目标。
企业零和博弈的例子
企业零和博弈的例子
企业零和博弈是指一方获利必须以另一方的失利为代价的竞争关系,以下是一些例子:
1. 电子商务平台的竞争:例如,当阿里巴巴和京东在中国的电子商务市场上竞争时,阿里巴巴的成功取决于京东的失败,因为它们争夺同样的客户和市场份额。
2. 航空公司的竞争:例如,当两家航空公司争夺同一条航线的客户时,一家公司的成功必定导致另一家公司的失败,因为客户只能选择其中一家。
3. 餐厅的竞争:例如,当两家餐厅争夺同一批顾客时,一家餐厅的成功必然导致另一家餐厅的失败,因为客户只有一定的消费能力。
4. 银行的竞争:当两家银行争夺同一批客户时,一家银行的成功必然导致另一家银行的失败,因为客户只有一定的存款和投资能力。
5. 酒店的竞争:例如,当两家酒店争夺同一批客户时,一家酒店的成功必然导致另一家酒店的失败,因为客户只有一定的预算和时间。
6. 车辆制造商的竞争:例如,当两家汽车制造商争夺同一批客户时,一家制造商的成功必然导致另一家制造商的失败,因为客户只有一定的购车预算和需求。
7. 饮料生产商的竞争:例如,当两家饮料生产商争夺同一批客户时,一家生产商的成功必然导致另一家生产商的失败,因为客户只有一定的口感和价格偏好。
8. 电信服务提供商的竞争:例如,当两家电信服务提供商争夺同一批客户时,一家服务提供商的成功必然导致另一家服务提供商的失败,因为客户只有一定的通信需求和预算。
9. 食品加工企业的竞争:例如,当两家食品加工企业争夺同一批客户时,一家企业的成功必然导致另一家企业的失败,因为客户只有一定的偏好和消费能力。
10. 金融机构的竞争:例如,当两家金融机构争夺同一批客户时,一家机构的成功必然导致另一家机构的失败,因为客户只有一定的投资需求和预期收益。
零和动态非合作博弈论模型
零和动态非合作博弈论模型
零和博弈是指参与者的利益完全相反,一方的收益必然导致另一方的损失,总收益为零。
在这种情况下,参与者之间存在激烈的竞争,他们的利益是完全对立的。
动态非合作博弈则考虑参与者在一段时间内做出一系列决策,每一步决策都会影响到后续的决策和最终的结果。
这种类型的博弈模型更贴近实际情况,因为参与者通常需要考虑对手的反应和未来可能发生的情况。
在零和动态非合作博弈论模型中,参与者需要在每一时刻做出决策,以最大化自己的收益或者最小化损失。
他们需要考虑对手的策略,并且根据对手的行为做出相应的反应。
这种模型的分析通常涉及到博弈论中的一些重要概念,比如纳什均衡、最优策略、博弈树等。
在实际应用中,零和动态非合作博弈论模型被广泛应用于经济学、管理学、政治学等领域。
比如在经济学中,研究者可以利用这种模型来分析企业之间的竞争行为和市场的变化;在政治学中,可以用来研究国家之间的外交政策和冲突解决策略。
总的来说,零和动态非合作博弈论模型是博弈论中的一个重要分支,它帮助我们理解多方参与者之间的冲突与合作,以及他们在动态环境下的最优决策策略。
通过对这种模型的研究,我们可以更好地预测和解释现实世界中复杂的决策和行为。
零和博弈和双赢的演讲稿
零和博弈和双赢的演讲稿在人际关系中,我们经常会遇到零和博弈和双赢的情况。
零和博弈是指参与者之间的利益是互相对立的,一方的利益增加就意味着另一方的利益减少,双赢则是指参与者之间能够达到共同的利益,相互合作共赢。
在生活和工作中,我们需要认识到零和博弈和双赢的不同,以更好地处理人际关系,实现共赢局面。
首先,让我们来看看零和博弈。
在零和博弈中,参与者之间存在着竞争和对抗,他们的利益是相互对立的。
在这种情况下,一方的成功意味着另一方的失败,双方往往会采取敌对的态度,互相攻击,争夺有限的资源和利益。
这种情况下,往往会导致人际关系的紧张和矛盾的加剧,不利于双方长期的合作和发展。
然而,双赢的局面则完全不同。
在双赢的情况下,参与者之间能够达到共同的利益,相互合作共赢。
他们之间存在着合作和信任,共同努力实现各自的目标和利益,从而达到共赢的局面。
在这种情况下,人际关系更加和谐,合作更加顺畅,双方能够共同成长和发展。
如何在人际关系中实现双赢呢?首先,我们需要树立正确的合作观念,意识到合作是实现共赢的关键。
我们需要摒弃零和博弈的思维,转变为双赢的思维,从竞争转向合作。
其次,我们需要建立良好的沟通和信任,只有通过良好的沟通和信任,才能够实现双赢的局面。
同时,我们需要学会倾听和尊重他人的意见和需求,尊重对方的利益,从而建立起良好的人际关系。
最后,我们需要注重团队合作,只有通过团队的合作,才能够实现共同的目标和利益,从而达到双赢的局面。
总之,零和博弈和双赢是人际关系中常见的情况。
我们需要认识到它们的不同,树立正确的合作观念,建立良好的沟通和信任,注重团队合作,从而实现共赢的局面。
只有通过双赢的方式,我们才能够更好地处理人际关系,实现共赢局面。
希望我们都能够在人际关系中实现双赢,共同成长和发展。
零和博弈
零和博弈零和博弈(zero-sum game),又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈。
指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作的可能。
也可以说:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而双方都想尽一切办法以实现“损人利己”。
零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分。
零和游戏又被称为游戏理论或零和博弈,源于博弈论(game theory)。
是指一项游戏中,游戏者有输有赢,一方所赢正是另一方所输,而游戏的总成绩永远为零。
[1]早在2000多年前这种零和游戏就广泛用于有赢家必有输家的竞争与对抗。
“零和游戏规则”越来越受到重视,因为人类社会中有许多与“零和游戏”相类似的局面。
与“零和”对应,“双赢”的基本理论就是“利己”不“损人”,通过谈判、合作达到皆大欢喜的结果。
双赢”来自于英文:“win——win”的中文翻译。
营销学这样认为,双赢是成双的,对于客户与企业来说,应是客户先赢企业后赢;对于员工与企业之间来说,应是员工先赢企业后赢。
双赢强调的是双方的利益兼顾,即所谓的“赢者不全赢,输者不全输”。
这是营销中经常用的一种理论。
多数人的所谓的双赢就是大家都有好处,至少不会变得更坏。
“双赢”模式是中国传统文化中“和合”思想与西方市场竞争理念相结合的产物。
在现代企业经营管理中,有人强调“和谐高于一切”,有人提倡“竞争才能生存”,而实践证明,和谐与竞争的统一才是企业经营的最高境界。
市场经济是竞争经济也是协作经济,是社会化专业协作的大生产,因此在市场经济条件下的企业运作中,竞争与协作不可分割地联系在一起。
(原则)互利共赢是指必须统筹国内发展和对外开放,不断提高对外开放水平,要实施互利共赢的开放战略,把既符合我国利益、又能促进共同发展,作为处理与各国经贸关系的基本准则,一是加快转变对外贸易增长方式,积极发展对外贸易,优化进出口商品结构,努力实现进出口的基本平衡、二是继续积极有效利用外资,着力提高利用外资质量,加强对外资的产业和区域投向引导,三是支持有条件的企业“走出去”,按照国际通行规则到境外投资。
双人零和博弈
一、双人零和博弈的概念零和博弈又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,一方收益多少,另一方就损失多少,所以博弈各方的收益和损失相加总和永远为“零”.双方不存在合作的可能.用通俗的话来讲也可以说是:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而双方在决策时都以自己的最大利益为目标,想尽一切办法以实现“损人利己”.零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分.二、双人零和博弈的模型的建立建立双人零和博弈的模型,就是要根据对实际问题的叙述确定参与人(局中人)的策略集以及相应的收益矩阵(支付矩阵).我们记双人零和博弈中的两个局中人为A和B;局中人A的策略集为a1,…,am,局中人B的策略集为b1,…,bn;cij为局中人A采取策略ai、局中人B采取策略bj 时A的收益(这时局中人B的收益为- cij).则收益矩阵见下表表1那么下面我们通过例子来说明双人零和博弈模型的建立: 例1甲、乙两名儿童玩猜拳游戏.游戏中双方同时分别或伸出拳头(代表石头)、或手掌(代表布)、或两个手指(代表剪刀).规则是剪刀赢布,布赢石头,石头赢剪刀,赢者得一分.若双方所出相同,算和局,均不得分.试列出对儿童甲的赢得矩阵.解 本例中儿童甲或乙均有三个策略:或出拳头,或出手掌,或出两个手指,根据例子中所述规则,可列出对儿童甲的赢得矩阵见表2.表2例2 从一张红牌和一张黑牌中随机抽取一张,在对B 保密情况下拿给A 看,若A 看到的是红牌,他可选择或掷硬币决定胜负,或让B 猜.若选择掷硬币,当出现正面,A 赢p 元,出现反面,输q 元;若让B 猜,当B 猜中是红牌,A 输r 元,反之B 猜是黑牌,A 赢s 元.若A 看到的是黑牌,他只能让B 猜.当B 猜中是黑牌,A 输u 元,反之B 猜是红牌,A 赢t 元,试确定A 、B 各自的策略,建立支付矩阵.解 因A 的赢得和损失分别是B 的损失和赢得,故属二人零和博弈.为便于分析,可画出如图3的博弈树图.图3中,○为随机点,□分别为A 和B 的决策点,从图中看出A 的策略有掷硬币和让B 猜两种,B 的策略有猜红和猜黑两种,据此可归纳出各种情况下A 和B 输赢值分析的表格,见表4.图3抽到红牌正面反面抽到黑球○□□○□1/2掷硬币让B 猜1/21/2猜红猜黑猜黑猜红1/2让B 猜p-q-rst-u表4对表4中各栏数字可以这样来理解:因让A 看到红牌时或掷硬币或让B 猜.若A 决定选掷硬币这个策略,当出现正面,这时不管B 猜红或猜黑,A 都赢p 元;当出现反面,不管B 猜红或猜黑,A 都输q 元.同样A 选择让B 猜的策略后,他的输赢只同B 猜红或猜黑有关,而与掷硬币的正反面无关.又若抽到的牌是黑牌,A 的决定只能让B 猜,因而掷硬币策略对A 的胜负同样不起作用.考虑到抽牌时的红与黑的概率各为1/2,掷硬币时出现正反面的概率也各为1/2,故当A 采取“掷硬币”策略,而B 选择“猜红”策略时,A 的期望赢得为:⎪⎭⎫ ⎝⎛-q p 212121+t 21=()t q p 241+- 当A 采取让B 猜策略,B 选择“猜红”策略时,A 的期望赢得为:()()⎪⎭⎫ ⎝⎛-+-r r 212121+t 21=()t r +-21 相应可求得其他策略对A 的期望赢得值.由此可列出本例的收益矩阵,见表5.表5三、双人零和博弈的求解定理1(极小极大定理)在零和博弈中,对于给定的支付矩阵U ,如果存在混合战略1σ*=(1σ*1,…1σ*m )和2σ*=(2σ*1,…2σ*n )以及一个常数v 满足,对任意j 有∑=mi i ij a 11*σ≥v ,对任意的i 有∑=nj j ij a 12*σ≤v ,那么战略组合(1σ*,2σ*)为该博弈的Nash 均衡.其中,v 为参与人1在均衡中所得到的期望支付,亦称该博弈的值.这个极小极大定理,其基本思想就是:参与人1考虑到对方使自己支付最小的最优反应,从中选择使自己最好的策略.参与人2也遵循同样的思路,这样才能满足Nash 均衡的互为最优反应的条件.这样我们就可以得到双人零和博弈Nash 均衡的计算方法了,如以下定理定理2 对于给定的零和博弈,如果博弈的值v 大于0,则博弈的Nash 均衡(1σ*,2σ*)为以下对偶线性规划问题的解Min ∑=mi i p 1s.t. ∑=mi i ij p a 1≥1 (j=1,…,n)i p ≥0 (i=1,…,m) 和Max ∑=nj j q 1s.t. ∑=nj j ij q a 1≤1 (i=1,…,m)j q ≥0 (j=1,…,n) 其中,Nash 均衡支付∑∑====nj jmi iqpv 1111Nash 均衡战略),,,,(1*1m i vp vp vp =σ,),,,(1*2n j vq vq vq =σ由于此定理只适用于v 大于0的情形,因此对于v 小于等于0的情形,该定理所给出的方法需做适当的修改.命题 如果支付矩阵U=mxn ij a )(的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v >0.定理3 如果支付矩阵U '=mxn ij a )('是由U=mxn ij a )(的每个元素都加上一个常数c 得到,即c a a ij ij +=',那么支付矩阵U 和U '所对应的零和博弈的Nash 均衡战略相同,博弈的值相差c.根据以上定理,可以得到如下求解一般零和博弈Nash 均衡的方法:(1) 若支付矩阵U 中的所有元素都大于零,则可以直接根据定理进行计算;若支付矩阵U 中有小于0的元素,可以通过加上一个常数使它们都大于0,然后再根据定理进行计算. (2) 求解定理中的两个对偶线性规划问题.下面通过实例来说明如何求解双人零和博弈的Nash 均衡.例3 求解下图中战略式博弈的Nash 均衡. 参与人2L M RU参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 根据前面的介绍,可知该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛224132312不难发现,该博弈的支付矩阵U=()33x ij a 的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v>0.设参与人1和参与人2的混合战略分别是1σ=(321,,vp vp vp )和2σ=(321,,vq vq vq ),利用对偶线性规划求解方法求解该战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++}s.t. 321422p p p ++≥1 32123p p p ++≥1 32123p p p ++≥1 1p ≥0,2p ≥0,3p ≥0 和Max {321q q q ++}s.t. 32132q q q ++≤1 32132q q q ++≤1 321224q q q ++≤1 1q ≥0,2q ≥0,3q ≥0求解第一个规划问题,得到1p =1/4, 2p =1/4, 3p =0,参与人1的支付v=2.因此,参与人1的混合战略1σ*=(1/2,1/2,0).同理,对对偶问题求解,得到1q =0,2q =1/4, 3q =1/4,参与人2的损失v=2,因此参与人的混合战略2σ*=(0,1/2,1/2).所以,该博弈存在一个混合战略Nash 均衡((1/2,1/2,0)(0,1/2,1/2),).例4 求解下图中的战略式博弈的Nash 均衡.参与人2L M R U 参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛--203011122 在上树支付矩阵U=33)(x ij a 中,12a <0, 21a <0.为了利用对偶线性规划模型求解博弈的解,构造支付矩阵U '=33')(x ij a ,其中a 'ij=ij a +c.令c=2,那么新构造的支付矩阵为U '=⎪⎪⎪⎭⎫ ⎝⎛425231304 设参与人1和参与人2的混合战略分别是1σ=(v 'p 1, v 'p 2, v 'p 3)和2σ=(v 'q 1, v 'q 2 v 'q 3,),v 为原博弈的值,v '为新博弈的值,且v '=v+2,利用对偶线性规划求解方法求解新战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++} s.t. 32154p p p ++≥13223p p +≥1 321423p p p ++≥11p ≥0, 2p ≥0, 3p ≥0Max {321q q q ++}s.t. 3134q q +≤1 32123q q q ++≤1 321425q q q ++≤1 1q ≥0,2q ≥0,3q ≥0通过求解对偶问题,得到1p =0,2p =3/13, 3p =2/13,参与人1的支付v '=13/5, 1q =1/13, 2q =4/13, 3q =0,参与人2的损失v '=13/5.因此,参与人1的混合战略1σ*=(0,3/5,2/5), 参与人2 的混合战略2σ*=(1/5,4/5,0),原博弈的值v= v '-2=3/5.所以,博弈存在一个混合战略Nash 均衡((0,3/5,2/5),(1/5,4/5,0)).。
7 零和博弈
• 胖子进门博弈与情侣博弈有不同:双方选择不同 的纯策略,才是共同利益所在。
• 双赢是“彻底”的双赢,双赢之下没有谁占谁的便宜阵。
– 行局中人的角度,希望博弈的结果是支付尽可能大的 那个矩阵位置,而列局中人则希望博弈的结果是支付 尽可能小的那个位置。
• 行局中人:
– 对他所能选择的每个行策略,列局中人都将选择该行 中数字最小的那列。因此,行局个人应该选择在列局 中人所选择的这些每行的最小的数字中最大的数字所 对应的那行,就是选择“最小”中的“最大”,maximin。
• 常和博弈:二人常和博弈;多人常和博弈 • 非零和博弈:变和博弈(不包括常和博弈)
• 研究二人零和博弈时,只要研究一个人的支付矩阵即可。
7-2 最小最大方法
• 冯.诺依曼 • 基础想法:局中人在进行零和博弈时对他 们取得好结果的机会抱“悲观”的态度。
– 你的对手会选择一个使你获得尽可能差的支付 的策略。你的对手也会想,你会在所有可能选 择的策略中,选择一个对他最不利的策略。
• 如果是三家独立的冷饮售卖机在争生意,他们就 会转来转去转个不停,不会出现稳定的对局。 • 冷饮售卖机定位问题,改编自大半个世纪以前美 国经济学家霍特林(Harold Hotelling)提出来的杂 货铺定位问题。
• 美国经济学家和政治学家,运用霍特林模 型,说明西方两党政治的部分现象。 • 生活中的例子:等候出租车
第七章 零和博弈
• 7-1 零和博弈与非零和博弈 • 7-2 最小最大方法 • 7-3 直线交叉法 • 7-4 霍特林模型 • 7-5 对抗性排序
7-1零和博弈与非零和博弈
• n人常和博弈的偏零因子:常数的n分之一。 – 常和博弈的每个支付都减去这个博弈的偏零因 子,那么每种对局下博弈的所有参与人的支付 总和为零。 • 对于n人常和博弈G,每个支付中减去这个博弈的 偏零因子,把它转换成一个零和博弈,记作G’。 G’是G的归零博弈。
零和博弈
零和博弈零和博弈又称“零和游戏”,是博弈论的一个概念,属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”。
双方不存在合作的可能。
零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分。
零和博弈简介当你看到两位对弈者时,你就可以说他们正在玩“零和游戏”。
因为在大多数情况下,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分,那么,这两人得分之和就是:1+(-1)=0。
这正是“零和游戏”的基本内容:游戏者有输有赢,一方所赢正是另一方所输,游戏的总成绩永远是零。
零和游戏原理之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。
从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的“零和游戏”常这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个“邪恶进化论”式的弱肉强食的世界。
但20世纪人类在经历了两次世界大战,经济的高速增长、科技进步、全球化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。
人们开始认识到“利己”不一定要建立在“损人”的基础上。
通过有效合作,皆大欢喜的结局是可能出现的。
但从“零和游戏”走向“双赢”,要求各方要有真诚合作的精神和勇气,在合作中不要耍小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则“双赢”的局面就不可能出现,最终吃亏的还是自己。
零和博弈的例子一、零和博弈首先来明确定义。
毫无疑问期货交易是一种零和博弈,因为:输家损失=赢家收益+交易成本(市场运行成本、信息成本等)而在股票市场要获得资金等式的平衡,除了以上各项外,还要把上市公司的融资(资金从股市流出)和现金分红(资金流入股市)考虑在内。
14零和博弈
由于一党改变政策的结果具有不确定性, 所以在选民偏好是双峰的情况下,两党竞 争的结果是两党都不改变自己的政策立场。
因此,在这种情况下,哪个政党上台执政, 所推行的政策会大不相同的。
于是,与单峰偏好下的两党竞争不同,在 双峰偏好下,两党制的社会往往是政局不 稳,社会不安定。
多峰偏好下的多党竞争
假定每个选民对于他的候选人或政党所持 的态度都有一个表现在这个维度范围上的 他最偏好的位置,也就是假定选民的偏好 是单峰值的。候选人离这个位置越远,这 个投票者就越不愿意对他投赞成票。
单峰值下的两党竞争
根据中位选民定理:
如果每个选民都投票,并且对最接近选民 的最偏好位置的政党投赞成票,那么,两 党竞争的结果是两党都采取中间投票者的 最偏好位置;如果是通过集体选择来确定 一个对公共物品的支出规模,那么这个规 模就与中间投票者所偏好的支出规模相一 致。
则容易?选民的偏好分布有三个峰值如果最初只有两个政党ab的话任何一个政党改变它的政策立场都将是得不偿失于是从获得选票最大化考虑任何一个政党都不改变政策立场于是适应另一部分选民偏好的需要第三党c便形成了
八、零和博弈(王则柯,P259-301)
(一)零和博弈的含义 1、零和博弈 扑克牌对色游戏:二人玩牌,其中一人作
新政党的产生不一定是为了在竞选中获胜, 而是为对现有的政党政策施加影响,或为 了阻止某个政党改变其政策立场。
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
零和博弈
有两个玩家进行博弈游戏,玩家一可以选择策略A或策略B,玩家二可以选择策略C、策略D和策略E中的一个。 玩家的最终选择决定他们的收益大小,收益矩阵如下:
例如,当玩家一选择策略A,玩家二选择策略D时,玩家一失去10分,玩家二得到10分。 无论玩家一选择策略A或者B,对玩家二而言,选择策略C总是比选择策略E的收益要高,所以玩家二永远都不 会选择策略E。因此,我们可以视玩家二的策略集为{C,D}。 纳什均衡:设玩家一选择策略A的概率为p,玩家二选择策略C的概率为q。 设玩家一和玩家二的收益分别为u1和u2,则 u1=20pq-20(1-p)q-10p(1-q)+20(1-p)(1-q) u2=-20pq+20(1-p)q+10p(1-q)-20(1-p)(1-q) 令∂u1/∂p=0和∂u2/∂q=0,计算可得p=4/7,q=3/7 因此,该博弈的混合策略纳什均衡:玩家一以4/7概率选择策略A,以3/7概率选择策略B;玩家二以3/7概率 选择策略C,以4/7概率选择策略D,以0概率选择策略E。
零和博弈和共赢思维
零和博弈和共赢思维
零和博弈和共赢思维是对价值支付系统的两种不同的方法。
零和博弈基于从不同参与者(通常是反对方)之间获取纯粹的积极性,旨在最大化达到双赢的结果。
而共赢思维则侧重于寻求一个最优解,使双方都能够从中获益。
零和博弈是一种博弈理论形式,指的是两个或多个人之间进行的竞争,每一方都试图不做出给对方好处,并从中获得更大的收益。
零和博弈中,每一方都试图最大限度地获取收益,而不考虑对方的受益情况,因此它被认为是“零和”,即没有共同受益。
一个典型的零和博弈场景就是卖方和买方之间最优的价格定价,双方必须评估和比较彼此的利益,最终确定价格。
共赢思维是一种价值支付系统,旨在寻求通过双方之间的折衷而交换利益,以达到双赢的局面。
共赢思维与零和博弈有所不同,它要求参与者不仅要考虑自己的利益,还要考虑对方的利益,尽可能地使双方都能受益。
共赢思维的基本因素是一致的利益,其中参与者必须以共赢的态度投入,考虑到双边的利益而不仅仅考虑自己的份额。
零和博弈与共赢思维作为相互补充的价值支付系统,可以给双方带来更多的获益,在价值创造的过程中,双方都能获得更大的收益。
两人有限零和博弈例题
两人有限零和博弈例题【实用版】目录1.零和博弈的定义与特点2.两人有限零和博弈的例子3.求解两人有限零和博弈的方法4.结论正文一、零和博弈的定义与特点零和博弈,又称为对抗博弈,是指在博弈过程中,参与者的利益总和为零的一种博弈形式。
在零和博弈中,一个参与者的收益总是与另一个参与者的损失相等。
这种博弈具有对抗性、非合作性和利益冲突的特点,常见于竞争、争端和冲突等场景。
二、两人有限零和博弈的例子假设有两个参与者 A 和 B,他们需要从两个数字(如 1 和 2)中选择一个数字,选择的数字决定了他们的收益。
假设 A 选择数字 1,B 选择数字 2,则 A 的收益为 3,B 的收益为 -1;反之,若 A 选择数字 2,B 选择数字 1,则 A 的收益为 -1,B 的收益为 3。
在这个例子中,A 和B 的收益总和为零,因此这是一个两人有限零和博弈。
三、求解两人有限零和博弈的方法对于两人有限零和博弈,求解的方法通常是使用博弈论中的纳什讨价还价解法。
具体步骤如下:1.确定参与者的支付矩阵:根据博弈的规则,建立参与者的支付矩阵,描述不同选择组合下的收益。
例如,在上述例子中,支付矩阵为:A B1 3, -12 -1, 32.计算参与者的一阶策略:纳什讨价还价解法的第一步是计算参与者的一阶策略,即参与者在已知对方选择情况下的最优选择。
通过求解支付矩阵中的最优策略,可以得到 A 和 B 的一阶策略分别为 1 和 2。
3.计算参与者的二阶策略:在已知对方一阶策略的情况下,参与者需要选择一个能够最大化自己收益的策略。
根据一阶策略,A 和 B 的二阶策略分别为 1 和 2。
4.得出最终结果:通过计算二阶策略,可以得出 A 和 B 在两人有限零和博弈中的最优选择分别为 1 和 2,此时他们的收益分别为 3 和 -1。
四、结论通过以上分析,我们可以得出在两人有限零和博弈中,参与者需要根据博弈的规则和自身的利益,选择合适的策略来最大化收益。
零和博弈什么意思
零和博弈什么意思零和博弈是博弈论中的一个基本概念,指的是参与者之间的利益增减之和总是为零。
在零和博弈中,一个参与者的利益增加必然伴随着其他参与者的利益减少。
这种博弈情境下,参与者的利益是相互对立的,一方的收益来自于另一方的损失。
在零和博弈中,参与者之间的竞争是非常激烈的。
每个参与者都会努力争取最大的利益,而这就导致了参与者之间的竞争变得更加复杂和激烈。
在这种情况下,参与者需要通过优化自身的策略,以最大化自己的利益。
零和博弈可以描述为一个牺牲与收益的对立关系。
一方的收益必然伴随着另一方的损失,因此,在零和博弈中,参与者之间的利益是完全对立的。
这也意味着当一个参与者获得了更多的利益时,其他参与者的利益就会相应减少。
零和博弈的一个典型例子是赌博。
在赌博中,赌桌上总的概率是一定的,每个参与者之间的利益增减总和为零。
一位赌徒只有在另一位赌徒输掉赌注时才能赢得。
这种情况下,每个赌徒都希望自己是幸运者,在自身的利益最大化之前,他们必须先让其他人的利益减小。
然而,零和博弈并不是博弈论中的唯一情形。
在其他类型的博弈中,参与者之间可以实现双赢的结果。
这种情况下,参与者之间可以通过合作来实现各自的利益最大化,而不需要通过互相竞争来获得利益。
虽然零和博弈在某些情况下可以成为一种参与者之间的竞争策略,但博弈论的研究表明,在某些情况下,通过合作和协商可以实现更好的结果。
这也是博弈论在经济学、政治学和国际关系等领域中广泛应用的原因之一。
通过博弈论的分析,可以帮助参与者选择最佳策略,并找到最优解。
总结一下,零和博弈是博弈论中的一个基本概念,它描述了参与者之间的利益增减总和为零的情况。
在零和博弈中,参与者的利益是相互对立的,一方的收益必然伴随着对手的损失。
虽然零和博弈在某些情况下可以是参与者之间的竞争策略,但博弈论的研究表明,在某些情况下,通过合作和协商可以实现更好的结果。
对于各种类型的博弈情境,博弈论提供了一种理论框架,可以帮助参与者选择最佳策略,并达到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二人零和博弈的特点:1、有且只有两个参与者2、一方的收益为另一方的损失3、一方的收益为另一方的损失4、双方具有完全信息5、双方同时行动零和博弈(zero-sum game),又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈。
指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”,双方不存在合作的可能。
也可以说:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而双方都想尽一切办法以实现“损人利己”。
零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分。
零和博弈主要的局限性:一是在各种社会活动中,常常有多方参与而不是只有两方;二是参与各方相互作用的结果并不一定有人得利就有人失利,整个群体可能具有大于零或小于零的净获利。
对于后者,历史上最经典的案例就是“囚徒困境”。
在“囚徒困境”的问题中,参与者仍是两名(两个盗窃犯),但这不再是一个零和的博弈,人受损并不等于我收益。
两个小偷可能一共被判20年,或一共只被判2年。
早在2000多年前这种零和游戏就广泛用于有赢家必有输家的竞争与对抗。
“零和游戏规则”越来越受到重视,因为人类社会中有许多与“零和游戏”相类似的局面。
与“零和”对应,“双赢”的基本理论就是“利己”不“损人”,通过谈判、合作达到皆大欢喜的结果。
零和游戏之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后往往隐藏着失败者的辛酸和苦涩。
从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的零和游戏场。
这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个邪恶进化论式的弱肉强食的世界。
我们大肆开发利用煤炭石油资源,留给后人的便越来越少;研究生产了大量的转基因产品,一些新的病毒也跟着冒了出来。
通过有效合作皆大欢喜的结局是可能出现的。
但从零和游戏走向双赢,要求各方面要有真诚合作的精神和勇气,在合作中不耍小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则双赢的局面就不可能出现,最终吃亏的还是合作者自己。
从20世纪以来,人类在经历了两次世界大战、经济的高速增长、科技进步、全球一体化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。
在竞争的社会中,人们开始认识到“利己”不一定要建立在“损人”的基础上。
领导者要善于跳出“零和”的圈子,寻找能够实现“双赢”的机遇和突破口,防止负面影响抵消正面成绩。
批评下属如何才能做到使其接受而不抵触,发展经济如何才能做到不损害环境,开展竞争如何使自己胜出而不让对方受到伤害,这些都是每一个为官者应该仔细思考的问题。
有效合作,得到的是皆大欢喜的结局。
从零和走向正和,要求各方要有真诚合作的精神和勇气,遵守游戏规则,否则“双赢”的局面就不会出现,最终吃亏的还是合作者自己。
4意义编辑对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈:好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。
在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着),和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解”或“平衡“,也就是对参与双方来说都最”合理“、最优的具体策略?怎样才是合理?应用传统决定论中的“最小最大”准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解”。
通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。
当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。
用通俗的话说,这个著名的最小最大定理所体现的基本“理性”思想是“抱最好的希望,做最坏的打算”。
零和博弈以下有一些重要的观念是你在了解该交易是否为零和游戏所必须先知道的。
这个分类决定于我们对玩家利润与亏损的定义有多宽广。
它本身的分类对我们并不重要,但是对发起人就很重要了。
要介绍这观念的发展,我们先讨论扑克游戏,然后我们再切入操作,因为扑克相对于操作是一种很好的比喻。
扑克扑克是一种零和游戏扑克在朋友之间、在扑克俱乐部、或是锦标赛都可以玩,我们来探讨这些游戏之间的异同。
一般来说朋友之间玩扑克是一种典型的零和游戏。
无论那一个人赢,就会有其它的人输,这之间的输赢总和是零。
扑克俱乐部里面玩的就不太一样了,因为俱乐部对赌注总额会收取一个固定比率的费用,比方说是1%,则这将形成负和游戏。
也就是输赢的总和小于零(如果加上俱乐部的抽成就为零了)玩家们集合亏损给俱乐部。
如果我们定义俱乐部也是这个赌局特殊型态玩家的话,这个赌局又变成了零和游戏。
换句话说,我们计算赢家所赢的和输家所输的扣除俱乐部抽成的总和,那又变成一个零和游戏了,扣除了付俱乐部的抽成之后,不管是谁赢,其它人就是输家。
锦标赛中的扑克赌局是由赞助商提供奖品,因此它是一个正和游戏(如果它的奖金超过所有参赛者的报名费的话),若我们计算总奖项的净值,那么扑克仍然是一个零和游戏。
扣除了奖项之后,无论是谁赢,其它人都是输。
无论在什么场合玩扑克,这种赌局根本上的特性都存在,它就是一个零和游戏(假设这是一个基准),以这个观点看来,上述三种型态都是相同的,玩家们经常不关心它的基准为何,而持续玩相同的策略。
人们玩扑克要依靠这个基准的理由,撇开技术的差异性,那就是在锦标赛中大部分的玩家是赢家,而俱乐部中大部分的玩家是输家。
扑克是一种正和游戏到目前为止,我们只凭金钱的贡献来定义扑克赌局中的赢家和输家。
若要来解释为什么俱乐部中的玩家平均来说是输,这种定义太过于狭隘。
仔细考虑人们玩扑克的四个理由,前两个理由包含外部的利益,第三个理由包含无益的及不理性的行为,第四点为预期润。
第一可能也是最重要的一点,许多人玩扑克的原因是因为他们单纯地就是想玩(或是学着如何玩)。
这些玩家愿意玩,即使一开始就预期会输,这个玩乐的外部利益可以解释为什么朋友之间纵使经常会输给技术较好的人,也会经常性地聚在一起玩。
当玩家从扑克中取得此种衍伸乐趣时,扑克就是一种正和游戏。
第二,有些玩家玩扑克是因为他们可能尚未学会如何玩,或是仍无法成为一个技术较好的玩家来经由扑克赚钱。
这些新手玩家们可能缺乏信息或是能力有限,但是绝不会不理性。
如果他们了解到他们无法经由玩扑克赚钱,他们就会放弃。
要学习是否能由扑克当中赚钱的代价相当昂贵,这些知识是藉由玩扑克可以获得的相当有价值的外部利益。
新手玩家经常被称为笨蛋,而“笨蛋在每一分钟都会诞生”。
然而,直到他们学习到并评价这个教训,这些人并不是笨蛋。
第三,有些玩家无法学习,或是无法接受他们无法藉由玩扑克来赚钱。
这些玩家所追求的微小利润从来就没有实现过,他们经常是不理性的,而且可能有点情绪化。
这些玩家是真正的笨蛋,因为他们拒绝去学习他们该学的东西,或是坚持花最高昂的代价去学习一些无用的方法。
最后,有些玩家玩扑克是因为他们是真正的行家,这些具有高超技术的玩家总是赢走其它玩家们的钱。
他们所赢的可以超过所需的支出,这些支出包含给俱乐部的抽成,以及他们如果做别的工作可以得到的薪水,以及要维持专业与竞争力所产生的费用。
这些玩家从那些愿意把钱输给他们的技术较差的玩家手中获利(也许是俱乐部)。
这些人通称为“郎中”,因为他们捕食较弱的玩家。
较弱的玩家通常避免与郎中同局,为了避免被认出来,这些郎中总是经常变换地方来捕食。
如果郎中无法寻得猎物,或由于猎物们成功地避开他们,或由于猎物们一下子就放弃了,这些郎中也很难以生存。
交易交易是一种零和游戏像扑克一样,交易的分类可以分为零和游戏、负和游戏、或是正和游戏,完全取决于我们如何定义利润和亏损。
倘若我们只以获利和亏损来当作基准衡量交易,那么它必然是一个零和游戏。
举例来说,假设操作利润和亏损被定义为与基本价值相对应(基本上它无法观察),那么当买方和卖方交易,他们会设定一个价格,如果这个价格高于基本价值,卖方就取得买方支出的利益。
在市场上若没有其它交易员的亏损,不会有任何一个交易员获利的。
既然我们无法确定地观察出基本价值,亦即交易员也无法确知他们的利润及亏损,则他们交易时间中的不确定性就不会改变零和游戏的本质。
如果所用的基准对买方和卖方是相同的,那么用来定义利润和亏损的基准并不影响零和游戏的本质。
这个基准决定我们如何来解释利润和亏损。
当我们用基本价值作为基准,我们解释价格和基本价值间的不同点为基本操作利润或亏损,不幸地,在没有定义以及估计基本价值之前,这些利润和亏损无法被估计。
就这个观点而言,操作利润和亏损的定义是以应用于买卖双方的一般基准为基础。
一般常见的基本价值基准产生了零和游戏。
一般报酬基准产生的游戏可以很容易地经由调整来成为零和游戏。
不管如何,没有其它交易员的亏损,是不会有任何交易员有所获利的。
基于这个论点,交易就是一个零和游戏。
交易是一种正和游戏理性的交易员不会去玩那种只能得到操作利润的纯零和游戏,如果所有的交易员都一样,所有的预期报酬率都是零,就不会有人从交易中获得利益。
如果有些交易员技术较其它人好,这些技术较好的交易员愿意交易,但那些技术差的不愿意,那么就没有人交易了。
要解释为什么理性的交易员要交易,首先我们要先认清有些人交易不是只为了预期报酬。
人们交易为了避险、为了将资金移转、为了交换财产、为了赚取绝对的报酬、为了学习他们是否可以藉由操作赚钱、或是得到赌博的乐趣。
这些外部利益使得交易成为一种正和游戏。
如果这些交易的外部利益够好,即使交易员自认会输,还是会去交易。
技术好的交易员就可从这些技术较差,但是基于外部利益而进场交易的交易员手中来获利。
市场价格有效地整合信息,而技术较好的交易员根据他们获得的信息来交易以获取利润。
如果操作利润超过获得信息的成本,这种行为具有获利性。
如果没有人基于外部利益而进场交易,技术好的交易员就无法藉由交易来获利。
他们将会放弃他们的研究,进而放弃交易,则价格的效率性将不复见。
价格效率是依据技术好的交易员与那些愿意交易或是不理性的输家所创造的,技术好的交易员使得价格产生效率,而那些输家就对他们研究的努力而付费。
6应用编辑零和游戏与金融市场零和博弈是博弈过程的最基本模型。
理想的零和博弈对于金融市场有重要意义。
在金融市场实际趋势运行中,理想零和博弈的全过程接近于一个半圆。
当然,所谓半圆,与观察者制定坐标的数值单位有关,如果大幅压缩时间单位,这个半圆看起来就象抛物线;如果大幅扩展时间单位,路线又象一段扁扁的圆弧。