复杂网络上疾病传播与免疫及动力学

合集下载

复杂网络的演化动力学及网络上的动力学过程研究

复杂网络的演化动力学及网络上的动力学过程研究

复杂网络演化动力学
复杂网络演化动力学
复杂网络的演化是一个包含多种相互作用和动态过程的系统工程。在网络演 化的过程中,节点和边的动态变化会导致网络结构和功能的改变。典型的网络演 化动力学包括自组织、相变和混沌等现象。
复杂网络演化动力学
自组织是指网络在演化过程中,通过局部相互作用和自适应机制,形成具有 特定结构和功能整体的过程。在复杂网络中,自组织往往导致网络出现层次结构 和模块化等特征。相变则是指网络在演化过程中,由于外部环境变化或内部相互 作用改变,网络结构和功能突然发生剧变的现象。而混沌则是指网络演化过程中 的不可预测性和敏感依赖性。
内容摘要
复杂网络,由许多节点和连接这些节点的边构成,在各种科学领域中都有广 泛的应用。从生物学中的神经网络到社交网络,从互联网到电力网络,复杂网络 的身影无处不在。而在这些网络中,各种动力学过程也在悄然进行。本次演示将 探讨几种复杂网络上的动力学过程的研究进展。
一、传播动力学
一、传播动力学
在复杂网络中,信息的传播是一个重要的动力学过程。从疾病病毒的传播到 谣言的扩散,从知识的学习到观点的形成,信息的传播都是在网络中进行的。研 究这种传播过程,需要对网络的拓扑结构和传播机制有深入的理解。一种常用的 方法是使用传染病模型,如 SIR模型,通过模拟疾病在人群中的传播,来预测和 控制疾病的扩散。
未来研究方向
此外,随着大数据和计算能力的不断提升,未来的研究也可以更加深入地探 讨复杂网络结构和动态演化过程对合作演化和博弈动力学的影响。
结论
结论
复杂网络上的合作演化和博弈动力学研究在理解自然、社会和技术系统中的 合作行为方面具有重要的理论和实践价值。本次演示介绍了该领域的研究现状、 主要方法、实验结果以及未来研究方向。通过深入探讨复杂网络背景下的合作演 化和博弈动力学问题,我们可以更好地理解系统中各要素之间的相互作用和演化 过程,并为解决现实问题提供有益的启示。

复杂网络中的动力学模型与机理分析

复杂网络中的动力学模型与机理分析

复杂网络中的动力学模型与机理分析一、引言复杂网络是近年来引起广泛关注的研究领域,它可以用来模拟和分析各种复杂系统,如社交网络、生物网络和交通网络等。

动力学模型是研究复杂网络行为的重要工具,通过对网络节点之间的相互作用进行建模,我们可以深入了解复杂网络中的动态演化过程与机理。

本文将介绍一些常用的动力学模型,并对其机理进行分析。

二、随机图模型随机图模型是最早被引入到复杂网络研究中的模型之一,它假设网络中节点之间的连接是随机生成的。

其中最经典的是随机图模型中的ER模型,它假设每一对节点间的连接概率都是相等的。

通过该模型,我们可以研究网络中的群聚现象和相变行为等,揭示了复杂网络中的一些基本特性。

三、小世界网络模型小世界网络模型克服了随机图模型中的不足,它通过引入局部连接和随机重连机制,能够同时兼顾网络的聚类特性和短路径特性。

其中比较有代表性的是Watts-Strogatz模型,它将网络的随机重连程度作为参数,可以控制网络的小世界性质。

这种模型揭示了许多实际网络中普遍存在的“六度分隔”现象。

四、无标度网络模型无标度网络模型是另一类常用的动力学模型,它假设网络中部分节点的度数比其他节点更高。

这种模型能够较好地描述现实中一些特殊的网络,如互联网和社交网络等。

其中著名的模型是BA 模型,它通过优先连接机制,使得度数较高的节点更容易获得新节点的连接。

这一模型的提出揭示了复杂网络中的“rich get richer”原则。

五、动力学机理分析除了建立动力学模型,我们还需要分析模型中的动力学机理。

常用的方法包括稳定性分析和数值模拟等。

稳定性分析可以通过线性化系统方程来推导系统的稳定性条件,从而预测网络的稳定状态。

数值模拟则利用计算机模拟的方法,通过迭代网络的动力学方程,模拟网络的演化过程并得到网络的行为特性。

六、复杂网络中的动力学现象在复杂网络中,各种有趣的动力学现象被发现并研究。

例如,网络同步现象是指网络中的节点在相互作用下,逐渐趋于统一的状态。

复杂网络中传播模型的动力学研究

复杂网络中传播模型的动力学研究

复杂网络中传播模型的动力学研究近年来,随着网络技术的飞速发展,复杂网络逐渐成为社会交流、信息传播的重要基础。

在复杂网络中,信息、疾病、新闻、观念等的传播过程涉及到广泛的领域,因此对于传播模型的动力学研究具有重要意义。

本文将就复杂网络中传播模型的动力学研究进行探讨,并重点介绍传统的SI、SIS、SIR模型以及更为复杂的影响力传播模型。

首先,传统的SI(Susceptible-Infected)模型是研究疾病在网络中传播的一个典型模型。

该模型假设节点只能处于两种状态之一:易感染者或已感染者。

在不考虑恢复的情况下,易感染者与感染者之间的传播可以用简单的传染率表示。

通过分析研究,我们可以得出结论:在稀疏网络中,传染病传播的临界点主要取决于网络的簇系数和平均节点度。

进一步的研究发现,节点的连接方式对于传播效果有着重要的影响。

其次,SIS(Susceptible-Infected-Susceptible)模型是对SI模型的改进和扩展。

该模型引入了节点的恢复过程,即已感染者可以恢复为易感染者。

SIS模型在复杂网络中传播行为的研究中更为常见。

通过对SIS模型的动力学特性分析,我们可以发现存在着感染-恢复的平衡状态,在该状态下传染病将不再蔓延。

然而,社区结构、节点度分布以及节点自身特性等因素也会对模型的传播行为产生影响。

此外,SIR(Susceptible-Infected-Recovered)模型是在SIS模型的基础上引入了免疫力的概念。

在该模型中,已感染者在免疫后不会再次被感染。

SIR模型更适用于描述疫苗接种后的传播情况。

通过对SIR模型的研究,我们可以发现疫苗的覆盖率对于控制传染病的蔓延至关重要。

此外,网络的拓扑结构也会对传播行为产生重要影响。

除了传统的SI、SIS和SIR模型,还存在着更为复杂的影响力传播模型。

影响力传播模型主要研究社交网络中信息、观点、新闻等的传播过程。

典型的影响力传播模型有独立级联模型(IC model)和线性阈值模型(LT model)。

复杂网络动力学的研究与应用

复杂网络动力学的研究与应用

复杂网络动力学的研究与应用随着互联网的发展,人们对于网络结构的研究也变得越来越深入。

通过分析网络结构中节点之间的关联关系,人们可以发现许多有趣的现象,并且将这些现象应用于各个领域,解决实际问题。

在这些研究中,“复杂网络动力学”是一个非常重要的分支。

本文将对复杂网络动力学的基本概念及其应用研究进行介绍。

一、复杂网络动力学的基本概念复杂网络动力学是研究复杂网络中节点之间的关联关系以及节点状态随时间变化的规律性的一门学科。

在这个学科中,我们需要理解一些基本概念,包括以下几个方面:1. 复杂网络:复杂网络是由大量节点和连接它们的边组成的网络。

这些节点可以代表人、物、概念等等,边则可以代表它们之间的各种联系。

2. 动力学:动力学是研究物体或系统随时间推移而发生的变化的科学。

在复杂网络中,我们可以将每个节点的状态看作是一个物体或者系统的一种状态,然后使用动力学的方法研究这些状态随时间变化的规律性。

3. 节点状态:每个节点在复杂网络中都有一种状态,这个状态可以是离散的(如颜色、布尔值等)或连续的(如温度、密度等)。

节点状态的变化将会随着时间的推移而发生。

4. 节点之间的关联关系:节点之间的关联关系可以用图形化的方式表示,即边。

边可以是有向的或无向的,他们可以带权或不带权,这些都将会对网络的动力学行为产生影响。

二、复杂网络动力学的应用研究复杂网络动力学的应用非常广泛,包括社会网络、生物网络、电子通讯网络等等。

在这些应用中,我们需要将复杂网络的基本概念应用于具体问题,并通过实验或数学模型等方法进行验证,下面将介绍几个典型的应用研究。

1. 社区发现:社区是由一些节点组成的,这些节点之间的关系比较紧密。

在社会网络中,社区通常代表一个群体、组织或者子系统。

社区发现就是要找到这些社区。

为了找到社区,我们需要使用一些算法,如贪心算法、模拟退火算法等,通过拟合数据来找到具有较高相似度的节点,并把这些节点合并为一个社区。

2. 群体动力学:群体动力学是研究多个个体之间交互行为的动力学。

复杂网络结构与动力学分析

复杂网络结构与动力学分析

复杂网络结构与动力学分析复杂网络在现代科学研究中扮演着重要的角色。

它们不仅被广泛应用于社交网络、脑神经网络、交通网络等领域的研究,还为我们理解和解释现实世界中的许多复杂现象提供了新的视角。

而对复杂网络结构与其动力学行为的分析研究,更是成为自然科学领域的一个重点课题。

一、复杂网络结构的基本特点复杂网络由大量的节点和链接组成,直观上可以看作一个由交错和连接起来的网络。

这些节点可以代表现实世界中的实体,如人和物体;而链接则代表着实体之间的关联关系。

复杂网络结构具有许多独特的特点,其中最突出的是小世界性和无标度性。

小世界性指的是在复杂网络中,任意两个节点之间的最短路径非常短,通常只需要经过几个中间节点就可以相互连接。

这种特性使得信息在复杂网络中传播非常迅速,从而产生了“六度分隔理论”等概念。

无标度性则表明,有些节点在网络中具有极高的连接数,而大多数节点只有很少的连接数。

这种分布形式与现实世界中许多分布不均的现象如富者愈富、强者愈强等具有显著的相似性。

二、复杂网络的动力学行为复杂网络的动力学行为是指网络中节点之间的相互作用和演化。

研究网络的动力学行为有助于我们理解和揭示复杂系统中的一些重要现象和规律。

典型的动力学行为包括同步、异步和相变等。

同步是指网络中的节点在演化过程中,相互之间的状态趋于一致。

这种集体性的行为在许多实际应用中十分常见,如心脏细胞之间的同步跳动。

异步则相反,节点之间的状态是不一致的。

相变则是指在一定条件下,网络的状态会发生突变,从而引发新的动力学行为。

例如,在疾病传播的研究中,随着感染率的变化,整个网络系统可能突然从无疫态转变为流行态。

三、复杂网络结构与动力学的关联复杂网络结构与其动力学行为之间存在密切的关联。

网络结构的特征会直接影响到系统的动力学行为。

例如,节点之间链接的多少和分布模式会影响到同步的发生和传播。

在一个稳定的网络中,同步可能很难实现,而在具有小世界和无标度结构的网络中,同步往往更容易发生。

复杂网络的动力学研究

复杂网络的动力学研究

复杂网络的动力学研究随着网络技术的日益发展,网络系统正变得愈加复杂。

网络中的节点和连接不仅数量庞大,而且还存在着各种不稳定和随机性,使得其行为表现出各种复杂特征。

复杂网络动力学研究就是对这些复杂网络系统进行研究和探索的学科。

一、复杂网络概述复杂网络是指由大量节点和连接组成的网络系统,其拓扑结构分布无序、随机,并且存在着较强的动态变化性和性能异质性。

复杂网络系统包括社交网络、交通网络和生物网络等。

在复杂网络中,每个节点代表一个实体,连接表示实体之间的关系。

复杂网络中的节点和连接数量可以是任意的,拓扑结构可以是随机的、规则的、分形的、层次的或具有自相似性的。

二、复杂网络动力学复杂网络动力学是研究复杂网络系统中的节点之间以及节点与连接之间的相互作用和大规模行为规律的学科。

在这个领域中,人们关注的是如何描述和预测网络中各个节点的运动、状态和发展趋势,以及分析网络中节点之间以及节点与连接之间的相互作用。

网络中的动力学模型通常包括节点动力学模型和连接动力学模型。

在节点动力学模型中,每个节点的状态和行为受到其邻居节点和外部输入的影响。

连接动力学模型描述了连接的动态演化和改变。

三、复杂网络动力学研究现状在复杂网络动力学研究领域中,人们尝试建立各种数学模型和理论,以分析和预测复杂网络的行为。

其中,著名的模型包括:1. 随机网络模型:基于随机化方法建立的复杂网络模型,包括随机图、随机网络等。

2. 小世界网络模型:模拟现实社交网络的经验法则建立的模型,包括沃茨-斯特罗格兹模型等。

3. 无标度网络模型:与生物网络的拓扑结构相似的复杂网络模型,包括巴拉巴西-阿尔伯特模型等。

此外,人们还研究了复杂网络系统的同步现象、群体行为、稳定性和控制策略等方面的问题。

在这些研究中,人们使用复杂网络动力学模型和数学方法,以及计算机仿真和实验研究等手段进行分析。

四、复杂网络动力学的应用复杂网络动力学已经被广泛应用于各个领域,包括社交网络、物理学、化学、生物学、交通运输和互联网等。

复杂网络结构及动力学模型研究与应用

复杂网络结构及动力学模型研究与应用

复杂网络结构及动力学模型研究与应用概述:复杂网络结构及动力学模型是计算机科学与应用数学领域中的重要研究方向,近年来受到广泛关注。

本文将介绍复杂网络的基本概念、典型结构以及常用的动力学模型,并重点探讨其在现实生活中的应用。

一、复杂网络的概念与特征复杂网络是由大量节点和连接节点的边所构成的网络结构,它具有以下几个重要特征:1. 尺度无关性:复杂网络的节点度数分布呈幂律分布,即存在少量节点具有极高的连接度。

2. 小世界性:任意两个节点之间的平均最短路径长度较短,网络具有快速的信息传播能力。

3. 聚类特性:网络中的节点倾向于形成聚类,即存在多个密集连接的子群。

二、复杂网络的典型结构1. 随机网络:节点之间的连接随机分布,节点度数呈高斯分布。

2. 规则网络:节点之间的连接按照固定的规则形成,例如正方形晶格、环形结构等。

3. 无标度网络:节点度数分布呈幂律分布,少数节点具有极高的度数。

三、常用的动力学模型1. 随机游走模型:节点按照一定概率随机地选择与之相连的节点进行信息传递。

2. 光波传播模型:模拟信息在复杂网络中的传播过程,节点之间的边具有传播概率,节点接收到信息后可能以一定的概率继续传播。

3. 病毒传播模型:模拟疾病在人群中的传播过程,节点之间的边表示人与人之间的接触关系,节点可能具有感染病毒的概率,疾病传播具有阈值效应。

四、复杂网络在现实生活中的应用1. 社交网络分析:借助复杂网络理论,可以研究社交网络中的信息传播、群体行为等。

例如,利用动力学模型可以预测疾病在社交网络中的传播趋势,从而制定有效的防控策略。

2. 物流网络优化:将物流系统中的节点与边抽象为复杂网络结构,可以利用复杂网络模型优化物流运输路径以及货物分配策略,提高物流效率。

3. 金融风险管理:通过构建金融网络模型,可以研究金融系统中的风险传播和系统性风险。

借助动力学模型,可以模拟金融市场的波动、投资者行为以及系统性风险的爆发。

五、研究挑战与展望复杂网络与动力学模型的研究仍面临一些挑战,例如难以准确地刻画真实系统中的复杂网络特征,设计适用于不同领域的动力学模型等。

复杂网络与动力学系统的相互作用分析

复杂网络与动力学系统的相互作用分析

复杂网络与动力学系统的相互作用分析复杂网络和动力学系统是现代科学研究中的两个重要领域,它们之间的相互作用引起了学术界的广泛关注。

复杂网络是由大量节点和边连接而成的结构复杂的网络系统,如社交网络、互联网等;而动力学系统研究的是随时间演化的物理、生物、社会等系统。

本文将从网络结构与系统动力学两个方面,分别介绍复杂网络与动力学系统之间的相互作用分析。

一、复杂网络结构与动力学系统复杂网络的结构特性对动力学系统的行为产生重要影响。

首先,网络中节点的连接模式决定了信息传播的路径和速度。

例如,在社交网络中,人际关系的网络结构决定了信息的传播和影响力的扩散。

其次,网络的拓扑特性如度分布、聚集系数和小世界性等,会影响到动力学系统的同步、稳定性和异质性等方面。

例如,度分布趋向幂律分布的复杂网络更容易出现小世界现象,其异质性会导致动力学系统的行为更加复杂多样。

二、动力学系统对复杂网络的影响动力学系统的演化行为与网络结构紧密相关。

一方面,动力学系统的状态更新规则会影响到网络的连接权重和结构演化。

例如,在生物网络中,蛋白质相互作用网络的演化与基因调控网络的动力学系统之间存在着相互影响。

另一方面,动力学系统的演化与网络的拓扑特性相互作用,决定了系统的稳定性和动态行为。

例如,环境系统中的演化模型会导致系统中出现周期性、混沌或稳定的行为态,而网络的小世界结构则能够增强系统的同步性和稳定性。

三、复杂网络与动力学系统的相互演化模型为了更好地研究复杂网络与动力学系统的相互作用,学者们提出了许多相互演化模型。

其中一类常见的模型是基于节点状态和连接权重之间的相互调整。

例如,节点的状态更新规则可以根据节点的邻居节点的状态和连接权重进行调整,而连接权重则会根据节点的状态来进行更新。

另一类模型则是将动力学系统的状态更新规则建立在网络结构的基础上,通过网络的拓扑特性来决定节点和连接之间的相互作用规则。

四、应用领域与前景复杂网络与动力学系统的相互作用分析不仅在科学研究中有重要意义,也在多个领域具有广泛应用。

几类复杂网络传播动力学的研究

几类复杂网络传播动力学的研究

几类复杂网络传播动力学的研究复杂网络传播动力学的研究是研究在复杂网络中信息、疾病、观念等现象的传播过程和规律的学科。

在复杂网络中传播动力学的研究已经成为重要的交叉学科。

以下是几类复杂网络传播动力学的研究。

1.信息传播动力学:信息传播动力学是研究在复杂网络中信息的传播过程和规律的学科。

信息传播模型是研究的重点之一、例如,研究病毒式传播模型,模拟信息在网络中的传播路径,分析信息传播速度和范围,研究信息传播的影响因素。

另一个研究方向是研究信息传播的影响力,包括研究哪些节点对信息传播有较大的影响力,以及如何选择种子节点来优化信息传播效果。

2.疾病传播动力学:疾病传播动力学是研究在复杂网络中疾病的传播过程和规律的学科。

在这个领域,研究者主要关注传染病传播模型。

例如,研究SIS模型(易感者-感染者-易感者),通过建立数学模型和仿真实验来研究传染病的传播速度和规模,以及如何控制传染病的传播。

此外,疾病传播动力学还研究了网络结构对疾病传播的影响,如何通过调整网络结构来控制疾病传播等问题。

3.观念传播动力学:观念传播动力学是研究在复杂网络中观念的传播过程和规律的学科。

观念可以包括政治观点、文化观念、舆论等。

观念传播动力学研究的一个重要问题是如何模拟观念在网络中的传播过程。

在此基础上,研究者可以通过仿真实验和数学模型研究观念的传播速度和范围,研究网络结构对观念传播的影响等问题。

观念传播动力学的研究对于理解公共舆论形成和影响具有重要意义。

4.传播思维网络的动力学:传播思维网络的动力学是研究在复杂网络中思维的传播过程和规律的学科。

传播思维网络的研究主要关注信息、疾病、观念等传播过程中的个体心理状态和行为变化。

通过建立数学模型和仿真实验,研究者可以研究思维的传播速度和规模,研究网络结构对思维传播的影响等问题。

传播思维网络的研究对于理解人类行为和决策过程具有重要意义。

总之,复杂网络传播动力学的研究包括信息传播动力学、疾病传播动力学、观念传播动力学和传播思维网络动力学等多个方向。

复杂网络结构与信息传播动力学

复杂网络结构与信息传播动力学

复杂网络结构与信息传播动力学复杂网络结构和信息传播动力学是关于网络中信息传播的重要主题,它们在诸多领域中都有广泛的应用,特别是在社交媒体、病毒传播和市场营销等方面。

本文将回答以下几个问题:什么是复杂网络结构?复杂网络结构与信息传播动力学有什么关系?复杂网络结构如何影响信息传播动力学?一、复杂网络结构是指由节点和边构成的网络结构。

节点代表网络中的个体,例如个人、公司或者网站等;边代表节点之间的连接关系,例如社交关系、传输通道或者合作关系等。

复杂网络结构可以用图论来描述,其中节点是图中的顶点,边是图中的边。

复杂网络通常具有以下特点:拓扑结构复杂、节点之间的连接方式多样、网络中节点的度分布具有幂律特性等。

常见的复杂网络模型有随机网络模型、小世界网络模型和无标度网络模型等。

二、复杂网络结构与信息传播动力学之间存在密切的关系。

信息传播动力学研究的是在网络中信息如何传播的过程,包括信息在网络中的传播路径、传播速度、传播规模等。

而网络的拓扑结构是影响信息传播的重要因素之一。

不同的网络拓扑结构会导致信息传播的速度、范围和影响力不同。

例如,在随机网络中,信息传播的速度较慢,范围较小,因为网络中存在较多的短程连接和随机连接;而在无标度网络中,少数节点具有较高的度,这些节点成为信息传播的重要枢纽,使得信息能够迅速传播到整个网络。

三、复杂网络结构对信息传播动力学的影响主要体现在以下几个方面。

1. 信息传播速度:网络的拓扑结构会影响信息在网络中的传播路径。

在小世界网络中,节点之间具有较短的平均路径长度,信息传播速度较快;而在无标度网络中,由于少数节点具有较高的度,信息可以通过这些节点迅速传播,传播速度也较快。

相比之下,在随机网络中,信息传播速度较慢。

2. 信息传播范围:网络的拓扑结构也会影响信息在网络中的传播范围。

在无标度网络中,少数高度连接的节点可以将信息迅速传播到整个网络,使得信息传播范围较广;而在随机网络中,由于节点之间的连接是随机的,信息传播范围较小。

复杂网络理论在疾病传播分析中的应用

复杂网络理论在疾病传播分析中的应用

复杂网络理论在疾病传播分析中的应用复杂网络理论是一种研究复杂系统和网络结构的学科,它可以揭示非线性和相互作用的网络动力学过程。

疾病传播是一个复杂的过程,涉及到个体之间的相互作用和信息传递。

本文将探讨复杂网络理论在疾病传播分析中的应用,并介绍一些相关的研究成果。

1.网络模型复杂网络理论提供了一种建模疾病传播的方法。

传统的传播模型如SIR模型只考虑人口的分层关系,而复杂网络模型可以更精确地描述人际关系的复杂度。

例如,可以利用社交网络数据构建联系网络,将每个个体表示为网络的节点,边表示个体之间的联系。

这样,研究人员可以更好地分析传染病在网络中的传播路径和传染链。

2.节点和边的属性在复杂网络模型中,节点和边可以具有不同的属性。

节点属性可以包括个体的年龄、性别、疫苗接种情况等,而边属性可以表示个体之间的接触频率、亲密度等。

通过分析节点和边的属性,研究人员可以更好地理解不同因素对传播过程的影响。

3.网络拓扑结构复杂网络模型可以提供关于网络拓扑结构的信息,例如节点的度分布、聚集系数和平均路径长度等。

这些拓扑结构指标可以揭示个体之间的关联程度和信息传播的速度。

通过分析网络的拓扑结构,研究人员可以预测疾病在网络中的传播速度和范围。

4.传播机制复杂网络理论可以揭示疾病在网络中的传播机制。

例如,网络上的高度连接节点(也称为“超级传播者”)可能成为传播病毒的主要渠道。

此外,网络中的节点之间还可能存在群聚效应,即相似节点之间更容易相互传播疾病。

通过研究传播机制,研究人员可以提出相应的干预措施,以控制疾病传播。

5.预测和干预基于复杂网络模型,研究人员可以进行疾病传播的预测和干预。

例如,他们可以通过模拟疾病在网络中的传播过程,评估不同策略对传播控制的效果。

这些策略可以包括隔离病例、提高疫苗覆盖率、改善个体卫生意识等。

通过预测和干预,可以为疾病控制提供科学依据。

总结起来,复杂网络理论在疾病传播分析中的应用具有重要意义。

它可以提供关于网络结构、传播机制和干预策略的深入理解,为疾病控制提供科学支持。

复杂网络上传染病动力学概述(张海峰)

复杂网络上传染病动力学概述(张海峰)
有很大的浮动性,当 N,导致 k2 ,从而 c 0 ➢特别地,作为SF网络的一个典型例子,考虑 BA无标度网络。
-
BA无标度网络的传播临界值
BA无标度网络:(1) 增长特性,(2) 优先连接特性(富者更富, 或马太效应)
➢ 度分布 Pk2m2k3,平均度
➢ 将平均度 k 2m ,度分布
1 k
-
无标度网络中的疾病传播
Ⅰ. 无标度网络:具有幂律度分布的网络,即:Pk ∝ k ;
网络中节点的度没有明显的特征长度
Ⅱ. 解析模型
无标度网络的度分布是呈幂律分布,因而度具有很大的
波动性,定义一个相对感染密度 k ( t ) :度数为k的感染节点
数占总节点数的比例。当t趋于无穷大时,相对稳态感染密
度记为 k 。
平均感染密度: (t)=P(k)k(t)
k
稳态平均感染密度:= P(k)k
k
-
同样感我染们密能度采的用变M化F方理程论为来:求 k ( t ) 的变化率得:度为k的节点相对
k tt kt k 1 kt t
t :任意一条给定的边与一个被感染节点相连的概率
k P( k )
任意一条给定边指向度为k的节点的概率为 (与度为k节点关联的边数与总边数的比值)
• SIS模型:易染个体被感染后,可以被治愈但无免疫力(还可以再被感染)(感冒等) ➢ SIR模型:易染个体被感染后,可以被治愈且有免疫力(不会被感染,也不会感染其它
节点,相当于已经从传播网络中被清除了)(天花等) ➢ SI模型:易染个体被感染后,不能被治愈(艾滋病等) ➢ SIRS模型:易染个体被感染后,可以被治愈且有记
- = c
。1
k
结论:
➢ 在均匀网络中存在一个有限的正的传播临界值λc。

复杂网络中的动力学模型研究

复杂网络中的动力学模型研究

复杂网络中的动力学模型研究一、引言随着计算机技术、互联网技术与通信技术的快速发展,网络科学迅速崛起。

网络科学研究的核心是研究网络结构和动力学行为之间的关系,即网络动力学。

网络动力学的研究成果已经在许多领域得到了广泛应用,如社交网络、生物网络、交通网络等。

复杂网络作为网络科学中的一个重要分支领域,其研究重点是研究由大量元素相互连接所形成的网络结构及其在不同系统中表现出来的复杂性。

本文将介绍复杂网络中的动力学模型研究。

二、复杂网络简介复杂网络是由大量元素相互连接所形成的网络结构,其网络结构是由节点和边构成的。

节点代表网络中的元素,边代表节点间的相互作用关系。

在复杂网络中,节点数量众多、相互关联复杂、结构多样、动态变化等特点显著,具有不可预测、不稳定、过渡性和非线性等特性。

复杂网络通常被分为静态网络和动态网络。

静态网络指网络拓扑结构保持不变时的网络,动态网络则是网络拓扑结构会随时间变化而变化的网络。

研究动态网络的动力学模型,可以更好地理解复杂网络的演化及其在不同系统中表现出来的复杂性。

三、动力学模型动力学模型是表述系统时空变化规律及其背后因果机制的一种数学模型。

3.1 传染病模型传染病模型在研究复杂网络中的动力学模型中得到广泛的应用。

传染病模型分为SIR模型、SI模型、SIS模型等。

SIR模型中,假设人群分为易感人群(S)、感染人群(I)和康复人群(R)。

疾病传播主要通过S和I之间的交互。

当S个体与I个体相遇时,易感个体会被感染,成为感染个体。

同时,感染个体在一段时间后会愈合,成为康复个体。

这一模型能够模拟传染病在人群中的传播过程。

3.2 博弈论模型博弈论是对策略和利益相关者之间决策行为进行分析和研究的一种数学模型。

在复杂网络中的动力学模型研究中,博弈论常被应用于网络中节点之间的互动行为研究中。

博弈论模型分为纳什均衡模型、演化博弈模型、动态博弈模型等。

在复杂网络中的动力学模型研究中,演化博弈模型是最常用的模型之一。

复杂网络中的动力学行为研究

复杂网络中的动力学行为研究

复杂网络中的动力学行为研究近年来,随着计算机技术的快速发展,复杂网络成为了一个备受研究者关注的领域。

复杂网络中的动力学行为研究,成为了人们关注的热点之一。

本文将介绍复杂网络中的动力学行为研究的基本概念和一些重要进展。

一、复杂网络的基础复杂网络是由很多个节点(如人、电脑、物体等)和它们之间的联系构成的。

这些联系可以用图来表示,其中节点就是图中的点,联系则是点与点之间的线段。

在复杂网络中,每个节点有自己的动态变化,比如和其他节点相互影响并改变自己的状态。

例如,在社交网络中,一个人会受到他的朋友和关注者的影响,改变自己的思想或行动,这就是网络中的动力学行为。

二、动力学行为的基础网络中的动力学行为指的是节点和联系的变化。

节点的变化可以是真实的或者虚构的,如在社交网络中,人们分享自己的状态,可以是真实的也可以是虚构的。

网络中联系的变化则代表网络的演化过程。

在网络中,每个节点会按照一定的规则进行状态的更新,这个规则被称为动力学。

动力学的好处是令模型更加真实,反映了网络中节点和联系的真实变化。

三、动力学行为的研究方法在动力学行为的研究中,最常见的方法是建立模型。

这些模型基于网络的特点和节点的动态行为,以便研究网络的变化规律。

例如,霍普菲尔德-肖恩模型(Hodgkin-Huxley model)是经典的神经元模型,被广泛用于神经元的研究中。

它通过描述神经元膜上的电势,来研究神经元的兴奋和抑制等现象。

另外,根据不同的研究目标,动力学模型还可以分为离散模型、连续模型,并涉及到方程的求解方法等问题。

四、动力学行为的研究成果复杂网络中的动力学行为研究已经有了很多重要的成果。

例如,启发式算法和图像识别技术的进步,使我们更好地理解了复杂网络的结构与功能。

而在动力学模型方面,则有了更加成熟的理论和方法。

例如,动态核自显著分析(DNMF)可以帮助我们从数据中提取更加有效的信息,而分形度量方法可以帮助我们检测出及时未处理的异常模型。

复杂网络中的动力学传播模型与应用研究

复杂网络中的动力学传播模型与应用研究

复杂网络中的动力学传播模型与应用研究复杂网络是由大量相互连接的节点构成的系统,节点之间的连接关系和信息传播对于网络的稳定性和功能性起着重要作用。

动力学传播模型是研究复杂网络中信息、疾病、观点等在网络中传播和扩散的数学模型。

本文将探讨复杂网络中的动力学传播模型及其在实际应用中的研究。

一、复杂网络中的传播模型1. SI模型SI模型是一种简单的动力学传播模型,它假设在网络中,只有两种节点状态:易感染(Susceptible)和感染(Infected)。

该模型认为感染节点可以直接传播给易感染节点,但易感染节点无法恢复,即一旦被感染,将一直保持感染状态。

2. SIS模型SIS模型是传染病传播模型中的一种,与SI模型相似,不同之处在于感染节点可以恢复为易感染状态。

该模型假设节点会经历感染和恢复的循环,使得感染状态在网络中持续传播。

3. SIR模型SIR模型是另一种常见的传染病传播模型,相比于SI和SIS模型,SIR模型引入了“恢复”状态。

在该模型中,被感染节点经过一段时间后会进入恢复状态,从而不再感染他人。

该模型适用于研究传染病在网络中的传播规律。

二、复杂网络中的应用研究1. 疾病传播复杂网络中的动力学传播模型可以应用于研究和预测疾病在人群中的传播。

通过构建适当的传播模型和网络结构,可以预测疾病的传播速度、范围和路径,为疾病防控和治疗提供指导。

2. 社交媒体分析在社交媒体中,信息和观点可以通过网络迅速传播。

利用复杂网络中的动力学传播模型,可以研究社交媒体中不同信息在网络中的传播路径和影响力。

这对于舆情分析、网络营销和信息推荐等领域具有重要意义。

3. 网络安全随着互联网的发展,网络安全问题日益突出。

复杂网络中的动力学传播模型可以应用于研究网络攻击和恶意软件的传播机制。

通过模拟恶意行为在网络中的传播路径,可以提前预警和防范潜在的网络安全威胁。

4. 创新传播策略在市场营销中,传播是一项重要的工作。

利用复杂网络中的动力学传播模型,可以研究和优化传播策略。

复杂网络结构及其动力学特征研究

复杂网络结构及其动力学特征研究

复杂网络结构及其动力学特征研究随着互联网的普及和信息技术的发展,复杂网络已成为研究的热点领域之一。

复杂网络是由大量节点和边组成的网络结构,它可以用来描述社交网络、生物网络、交通网络等各种复杂系统,是人们对自然和人类社会现象的表征方式之一。

复杂网络的结构特征复杂网络的结构特征很多,但是最常见的是度分布、聚类系数、平均路径长度和模块度。

- 度分布:度是指一个节点有多少个邻居。

度分布描述了每个度值出现的频率,它是网络中重要的统计量之一。

在社交网络中,节点的度代表了该节点的影响力。

- 聚类系数:聚类系数描述了节点周围的邻居之间相互连接的强度。

在社交网络中,聚类系数越高,意味着一个人的朋友圈子更为紧密。

- 平均路径长度:平均路径长度是指网络中任意两个节点之间最短路径的平均长度。

在社交网络中,平均路径长度越短,表示人与人之间更为紧密联系。

- 模块度:模块度指网络中节点分布的不均匀性。

在社交网络中,模块度代表了社群结构的分布情况。

以上这些结构特征可以量化地表征复杂网络的结构,它们是研究网络动力学特征的重要前提。

复杂网络的动力学特征复杂网络的动力学特征包括同步、吸引子、震荡等。

- 同步:同步指网络中节点之间输出的数据达到一致,是复杂网络中最为重要的动力学特征之一。

同步现象在生物学、物理学以及社会科学等领域都有应用。

- 吸引子:吸引子指网络中的节点在演化过程中的稳定状态,是研究网络演化过程的重要方法。

吸引子一般是一组满足某些条件的节点状态。

- 震荡:震荡指网络中节点的输出数据在时间上存在周期性变化。

年轻人之间的交友网络常常表现出周期性的震荡,比如流行单曲的口碑传播现象。

复杂网络的应用复杂网络的研究涉及到生物学、物理学、数学、社会学等多个领域,应用广泛。

例如在生物学领域,研究神经元组成的复杂网络结构,可以模拟出人脑的信息传输过程,从而帮助研究人类智力的产生和发挥。

在物理学领域,研究微小颗粒之间的网络结构,可以模拟出粒子之间的碰撞过程,从而帮助人们更好地了解物理学中的基本粒子。

复杂网络中的信息传播与动力学模型研究

复杂网络中的信息传播与动力学模型研究

复杂网络中的信息传播与动力学模型研究在当今数字时代,信息传播已经成为了社会生活的一部分。

除了传统的媒体渠道外,人们可以通过互联网快速传播和获取信息。

这种信息传播模式不仅改变了社交交流方式,还对社会、经济、政治等方面产生了深远的影响。

因此,研究复杂网络中的信息传播方式和动力学模型成为了一项重要的研究领域。

复杂网络是由大量节点和连接它们的边组成的网络结构。

节点可以是个体、组织、机构等,边代表它们之间存在的相互作用关系。

通过研究复杂网络,我们可以深入了解信息在网络中的传播方式,并探索影响信息传播的因素。

在研究复杂网络中的信息传播时,一个重要的问题是如何建立动力学模型来描述和预测信息传播过程。

动力学模型可以帮助我们理解信息在网络中的传播路径、速度和影响力等方面的特征。

一个经典的动力学模型是传染病模型。

传染病模型基于人们之间的传染关系来研究疾病的传播方式。

同样地,我们可以将信息传播类比为一种“传染病”,其中信息的“传染者”是初始发布者,而信息的“受感染者”是其他节点在收到信息后进一步传播的节点。

通过建立合适的动力学模型,我们可以模拟信息传播的传染过程,并利用数学和计算方法分析传播的速度、范围和影响。

除了传染病模型外,还有其他类型的动力学模型可以用于研究复杂网络中的信息传播。

例如,扩散模型可以描述在网络中信息的扩散过程,但它不涉及节点之间的相互作用关系。

反馈模型则更加关注节点之间的相互作用,并研究节点之间的反馈机制对信息传播的影响。

通过研究复杂网络中的信息传播和动力学模型,我们可以获得很多有用的信息。

首先,我们可以深入了解信息传播的特征和行为,从而为我们设计更有效的信息传播策略提供指导。

其次,我们可以预测信息传播的速度和范围,并提前采取措施来控制和调控信息的传播。

此外,我们还可以发现网络结构对信息传播的重要性,并根据这些发现来优化网络拓扑结构。

尽管复杂网络中的信息传播和动力学模型研究具有很多潜在的应用价值,但是在实际领域中的应用还存在一些挑战。

复杂网络中的动力学问题

复杂网络中的动力学问题

复杂网络中的动力学问题在当今日益复杂、互联的社会中,网络已经成为了人们生活、工作和社交的重要平台。

除了各种社交网络,还有物联网、金融网络、生态网络等各种复杂网络,这些网络中存在着许多动力学问题。

本文将探讨复杂网络中的动力学问题,并探讨一些这方面的研究进展。

一、复杂网络基本概念复杂网络,简单来说就是由大量节点和连接组成的复杂结构。

它包括了各种网络,如社交网络、物联网、生态网络等等。

最简单的复杂网络就是图形模型,由节点和边组成。

节点表示网络中的元素,比如人、物品、化学物质等等;边则表示两个元素之间的关系,这个关系可以是社交关系、制品之间的关联或者生物之间的相互作用等。

二、复杂网络的动力学问题复杂网络中存在着许多动力学问题。

在许多网络中,节点之间存在着相互影响、相互作用、相互影响的关系。

这些影响和作用是非线性的,从而产生许多复杂的动态现象。

比如,在社交网络中,节点之间的影响和情绪会相互传递,可能会导致社交网络中出现群体行为、社交演化等等。

在物联网中,节点之间可能会发生变化,节点的运行状态也会相互影响,可能会导致整个物联网的崩溃。

在金融网络中,节点之间的交互作用和经济环节的复杂性,可能导致金融网络中出现系统性风险。

三、如何研究复杂网络的动力学问题为了更好地理解复杂网络中的动力学问题,许多学者提出了不同的研究方法。

其中,最重要的是基于网络的动力学方法。

该方法是通过分析网络节点之间的连接和相互作用关系,来分析网络节点之间的动态行为。

通过该方法,可以发现复杂网络中的许多动态现象,如社交网站上的舆论演变、网络协同、金融风险和物联网演化等。

基于网络动力学的研究方法可以为社会解释动态现象提供有力工具,例如支持决策制定、社会协调和社会风险管理等。

四、复杂网络中的动力学问题研究进展随着科技的发展,越来越多的关于复杂网络中的动力学问题的研究涌现出来。

其中,一些重要的研究如下:1、社交演化社交演化是指在网络中,相互作用的个体之间逐渐发展和形成新的关系。

复杂网络中的传播动力学模型研究

复杂网络中的传播动力学模型研究

复杂网络中的传播动力学模型研究一、引言复杂网络是由大量节点和节点之间的连接所组成的一种网络结构,它的研究已经渗透到社会、生物、工程等众多领域。

而网络中的信息传播机制是复杂网络研究的重要方向之一,因为它不仅可以帮助我们理解真实世界中的信息传播现象,还能够为社交媒体、疾病传播等问题提供解决方案。

本文旨在介绍复杂网络中的传播动力学模型研究。

二、传播动力学模型的基本概念1. 信息传播信息传播是指在网络中,信息从一个节点传播到其他节点的过程。

传统的信息传播研究主要关注信息的传播速度、范围和影响力等方面。

而复杂网络中的信息传播则更加注重个体节点的影响力、传播路径和传播过程中的动力学行为。

2. 传播动力学模型传播动力学模型是研究信息在复杂网络中传播过程的数学模型。

常用的传播动力学模型包括SIS模型、SIR模型和SEIR模型等。

其中,SIS模型描述了在一个网络中,感染者可以被治愈并恢复为易感者;SIR模型考虑了感染者在被治愈后具有免疫性;SEIR模型在SIR模型的基础上增加了潜伏期的考虑。

三、传播动力学模型研究的方法1. 基于传统传播动力学模型的研究基于传统传播动力学模型的研究主要关注传播速度、范围和影响力等方面的问题。

通过对网络中不同节点的状态转换规则进行建模,可以研究信息在网络中的传播路径和传播过程中的动力学行为。

2. 基于机器学习的传播动力学模型研究基于机器学习的传播动力学模型研究主要利用机器学习算法来分析网络中节点之间的联系和信息传播的规律。

通过使用大数据和机器学习算法,可以挖掘出网络中隐藏的模式,进而预测信息传播的趋势和影响。

四、传播动力学模型在社交媒体中的应用社交媒体已经成为信息传播的重要平台,而传播动力学模型在社交媒体中的应用也日益受到关注。

通过分析用户在社交媒体上的行为和关系,可以建立起用户之间的社交网络模型,并且预测用户之间的信息传播路径和传播效果。

五、传播动力学模型在疾病传播中的应用疾病传播是一个复杂的过程,而传播动力学模型可以帮助我们更好地理解疾病的传播规律和影响因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 k kP (k) (将 的值代入) k k 1+ k
k
s
回忆:传播临界值 c 必须满足的条件:当 c 时,可以得 到 的一个零解。当 c 时,可以得到 的一个非零解。
有一个平凡解
0
如果该方程要存在一个非零稳定解 0 ,需要满足如下条 件: d 1 k
如果有效传播率λ<λc,病毒
感染个体数呈指数衰减,无法大
范围传播,最终将不能传播,
此时网络称为吸收相态。
4.无标度网络中的疾病传播
Pk ∝ k ; Ⅰ. 无标度网络:具有幂律度分布的网络,即:

网络中节点的度没有明显的特征长度
Ⅱ. 解析模型
无标度网络的度分布是呈幂律分布,因而度具有很大的

Ⅱ. 传播模型研究的主要参量
① 感染密度(感染水平或者波及范围)ρ(t) ρ(t):传播过程中,感染节点总数占总节点数的比例。ρ:传播到稳态时
(t )感染密度的值,称为稳态感染密度。
② 有效传播率λ(=/) λ非常小(很小,很大),传播达稳态时, 所有节点都会变成健康节点,这种情况下就认为疾病 没有在网络上传播开来,并记该疾病的稳态感染密度 ρ =0。 反之,当λ足够大时,疾病将一直在网络中存在而不会完全消失,只是染病节 点的数目有时多有时少,这时稳态感染水平(波及范围) ρ
d
即有:
(
kP (k) )| k 1+ k
k
0
Байду номын сангаас
1
1 d k kP (k) [ ( ) | 0] k k d 1+ k
(k) k kP
k
k
k 2P (k)
k
k
k2 1 k
k c k2
复杂网络的传播机理与 动力学分析
张玉林2010.11.28
♦复杂网络中疾病传播与免疫
复杂网络的传播临界值理论 复杂网络的免疫策略与技术
复杂网络的传播临界值理论
主要内容:
1. 疾病传播的基本知识
2. SIS和SIR传播模型
3. 均匀网络中的SIS模型, WS模型为例进行解析
4.无标度网络中的SIS模型, BA模型为例进行解析
k 0 2 k 只要有效传播率λ>0,病毒就能传播开来,并将达到一稳定
感染水平 值: ~ exp(1/ m ) ,这反映了无标度网络对 抵抗病毒的脆弱性。
报告内容
复杂网络的传播临界值理论 复杂网络的免疫策略与技术
免疫策略与技术
主要内容
1. 随机免疫与集中接种
2.目标免疫与优先免疫
(3) R(removed) —免疫状态:被治愈,具有免疫能力, 不具有传染能力,不会再次被感染(移除状态)
Ⅲ. 传染病模型
科学家通过用基本状态之间的相互转换来建立不同的传播模型:
SIS模型:易染个体被感染后,可以被治愈但无免疫力(还 可以再被感染)(感冒等) SIR模型:易染个体被感染后,可以被治愈且有免疫力(不 会被感染,也不会感染其它节点,相当于已经从传播网络中 被清除了)(天花等) SI模型:易染个体被感染后,不能被治愈(艾滋病等)
当传播达到稳态时,变化率为0,所以令上式右端为0; t t k t 1 t 0
t
即:-ρ+<k>ρ[1-ρ]=0 ρ(1-λ<k>+λ<k>ρ)=0; ρ(ρ- k )=0;
1 1 当λ< k 时,ρ k 必大于0,所以ρ=0;
结论:对于SF(无标度)网络,节点度数具
有很大的浮动性,当 N ,导致 k 2 , 从而 c 0 特别地,作为SF网络的一个典型例子,考虑 BA无标度网络。
BA无标度网络的传播临界值
BA无标度网络:(1) 增长特性,(2) 优先连接特性(富者更富, 或马太效应) 度分布 Pk 2m k ,平均度 k kPk dk 2m, 其中m是网络最小度 将平均度 k 2m ,度分布 Pk 2m k ,以及 k k 带入 1 k 1 kPk k ,可得:
1/ m
1/ m
结论:
BA无标度网络在SIS模型下的 c 0; 只要有效传播率 λ>0,病毒就能传播开来,并将达到一个稳定感染水 平 ,这反映了无标度网络对抵抗病毒的脆弱性
BA网络中,疾病传播的时间演化 N=106,从下至上λ从0.05到0.065
WS网络与BA网络的比较
总结
波动性,定义一个相对感染密度 k (t ):度数为k的感染节点 数占总节点数的比例。当t趋于无穷大时,相对稳态感染密 度记为 k 。
平均感染密度: (t )= P(k )k (t )
k
稳态平均感染密度: = P(k )k
k
同样我们能采用MF理论来求 k (t ) 的变化率得:度为k的节点相对感 染密度的变化方程为:
运用平均场的方法可得:被感染个体密度ρ(t)的变化率
t t k t 1 t t
被感染节点以单位速率恢复健康 单个感染节点产生的新感染节点的平均密度,它与有效传 播率、节点的平均度〈k〉,健康节点相连概率1-ρ(t)成比 例,(其他的高阶校正项忽略了)。
k k[1 k ]( ) 0;
传播达稳态时, t 记为
k ( ) k 1 k ( )
1
1 1 k
( (t )):给定一条边,这条边指向一个已感染节点的概率
此概率值不依赖于出发点的度,而仅于 (t ) 有关;并且趋于稳 态时, 又是λ的函数,因此趋于稳态时( (t )) 可以表示 为 ( ) 。 节点的度越高,被感染的概率越高
SIR模型传播方程 设s,i,r分别表示群体中S,I,R个体所占
的比例,则疾病传播的动力微分方程组为:
ds is dt di dr is ri, ri dt dt
注: (1) 传播网络是完全图,但实际网络中,只有接触才能被感染 (2) , 并不是对每个节点都一致,而是服从分布 Pi , Pj , Newman对其进行了研究。
SIRS模型:易染个体被感染后,可以被治愈且有免疫力,但
免疫期是有限的,还会再次回到易染状态。(乙肝?)
疾病传播模型的描述
Ⅰ. 模型的传播规则:
① 初始时随机选择网络中一个或若干节点为染病节点(I),其 余为健康节点(S) ② 在每一个时间步t: 如果一个健康节点具有染病邻居,则它依某 个事先设定的概率变成染病节点,这一概率叫 做染病概率(β);同时每一个染病节点都依 某个事先设定的痊愈概率(γ)变成健康节点。 ③ 在每个时间步,这些演化规则在整个网络中被并行地执行。 染病概率越大,痊愈概率越小,疾病就越有可能感染更多的人, 因此,定义染病概率和痊愈概率的比值为有效传播率 并用这个参数综合地衡量疾病自身特征。
1 1 2m ln1 m m
2
e1/ m 将( ) (1 e1/ m ) 1 代入上式中 m
化简后得:
2e e 1 1/ m (1) e 1/ m 1/ m 1 e 1 e ln
当λ=0时,有 0; 当λ>0时,有 0
1. 疾病传播
I. 传染病:数理学家在研究传播行为时,往往并不区 别研究对象,他们把可以在网络中传播开来的东西 叫做传染病。 II. 在传播过程中,个体处于三个基本状态: (1) S(susceptible)—易感状态:不会传染他人,可能被 传染(也就是健康状态)
(2) I(infected) —感染状态:已患病,具有传染性
下面我们计算 ( ) :给定端点的一条边,其另一个端 点为染病节点的概率时,必须考虑到网络的非均匀性。 kP ( k) 任意一条给定边指向度为k的节点的概率为 sP ( s ) (与度为k节点关联的边数与总边数的比值) s kP ( k) k 则任意一条给定边指向度为k的感染节点的概率为 sP( s ) s 从而, kP (k)k kP (k)k ( ) k sP(s) k k
1. SIS模型在均匀网络中,存在一个传播临界值 c
当 c 时,疾病在时间演化过程中逐渐衰减,最终被灭;
当 时,疾病在时间演化过程中传播开来,并稳定于某 c ~ c 一 值(稳态感染密度):
1 0。 k
c 2. SIS模型在SF网络中,传播临界值:
3. 均匀网络中的SIS模型
Ⅰ. 均匀网络: Ⅱ. 解析模型
三个假设: ① 均匀混合假设:感染强度和感染个体密度 t 成比例。即: , 和为常数(均匀混合)。不失一般性,可假设=1, 因为这只影响疾病传播的时间尺度; ② 均匀性假设:均匀网络中,每个节点的度都等于网络的平均 度<k>; ③ 规模不变假设:假设病毒的时间尺度远小于个体的生命周期, 即不考虑个体的出生和自然死亡

0。把稳态感染
密度从零向正实数变化的那个点所对应的有效传播率称作传播阈值(临界 值) λc。它是衡量网络上的传播行为最重要的参量之一。
Ⅲ. 模型传播动力学方程
SIS模型传播方程
设s,i分别表示群体中S,I个体所占
的比例,则SIS传播的微分方程组为:
ds is i, dt di is i dt
2 3
m
2
3
2m 2 k k 3 1 k k 1+ k k ( ) kP (k) k k 1+ k 2m 1 1 m( ) . k k 1+ k
k
k
1 1 1 1 1 . . dk m k k 1+ k m k 1+ k 1 1 1 m ( )d ( k ) ln m k 1+ k m
相关文档
最新文档