《统计学》实验报告(一元线性回归分析)

合集下载

一元线性回归预测实验报告

一元线性回归预测实验报告

1、实验过程和结果记录:(1)实验数据(2)人均可支配收入与人均消费性支出散点图(3)数据分析步骤4、(5)最终实验结果2、人均可支配收入为12千元时的人均消费性支出和置信度为95%的预测区间计算步骤: (1)一元线性回归方程为Y=0.72717+0.6741420X(2)将0X =12带入样本回归方程可得0Y 的预测值=0.72717+0.674142*12=8.816874千元(3)0e S =千元 结论:因此,当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)六、实验结果及分析1、实验结果:当城镇居民家庭的人均可支配收入为12千元时,人均消费性支出地点预测为8.816874千元;置信度为95%的预测区间为(8.816874-1.96*0.0542千元,8.816874+1.96*0.0542千元) 即(8.71千元,8.92千元)2、实验分析(1)相关系数:相关系数R 实际上是判定系数的平方根,相关系数R 从另一个角度说明了回归直线的拟合优度。

|R|越接近1,表明回归直线对观测数据的拟合程度就越高。

R=0.999592,接近于1,所以人均可支配收入和人均消费支出相关程度高。

(2)判定系数:该指标测度了回归直线对观测数据的拟合程度。

若所有观测点,落在直线上,残差平方和RSS=0,则R^2=1,拟合是完全的;0≤R^2≦1。

R^2越接近1,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用X 的变化来解释Y 值的部分就越多,回归直线的拟合度就越好;反之,R^2越接近0,回归直线的拟合度就越差。

所以,判定系数R^2=0.999185,表示所观测到的我国城镇居民家庭人均消费支出的值与其均值的偏差平方和中有99.92%可以通过人均可支配收入来解释。

实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

Obs F-Statistic
Prob.
25
3.13450
0.0512
6.34347
0.0040
Pairwise Granger Causality Tests 4
Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 4 Null Hypothesis: CS does not Granger Cause GDPS GDPS does not Granger Cause CS
26
6.26728
0.0073
6.14373
0.0079
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 3
Null Hypothesis:
CS does not Granger Cause GDPS GDPS does not Granger Cause CS
【实验步骤】
已知广东省宏观经济部分数据(参见附表“广东省宏观经济数据-第二章”), 要根据这些数据分别研究和分析广东省宏观经济,建立宏观计量经济模型。
本实验要求具体验证分析: (1)“国内生产总值的变化引起财政收入的变化” (2)“财政收入影响财政支出” (3)“国内生产总值对社会消费品零售额的影响模型” 并根据相应的回归模型进行经济预测、经济分析和政策评价。
广东财经大学华商学院实验报告
实验项目名称
实验二 一元线性回归模型的估计、检验、预测和应用
课程名称
计量经济学
成绩评定

实验类型:验证型□√ 综合型□设计型□ 实验日期
学生姓名

一元线性回归分析报告

一元线性回归分析报告

实验报告金融系金融学专业级班实验人:实验地点:实验日期:实验题目:进行相应的分析,揭示某地区住宅建筑面积与建造单位成本间的关系实验目的:掌握最小二乘法的基本方法,熟练运用Eviews软件的一元线性回归的操作,并能够对结果进行相应的分析。

实验内容:实验采用了建筑地编号为1号至12号的数据,通过模型设计、估计参数、检验统计量、回归预测四个步骤对数据进行相关分析。

实验步骤:一、模型设定1.建立工作文件。

双击eviews,点击File/New/Workfile,在出现的对话框中选择数据频率,因为该例题中为截面数据,所以选择unstructured/undated,在observations中设定变量个数,这里输入12。

图12.输入数据。

在eviews 命令框中输入data X Y,回车出现group窗口数据编辑框,在对应的X,Y下输入数据,这里我们可以直接将excel中被蓝笔选中的部分用cirl+c复制,在窗口数据编辑框中1所对应的框中用cirl+v粘贴数据。

图23.作X与Y的相关图形。

为了初步分析建筑面积(X)与建造单位成本(Y)的关系,可以作以X为横坐标、以Y为纵坐标的散点图。

方法是同时选中工作文件中的对象X和Y,双击得X和Y的数据表,点View/Graph/scatter,在File lines中选择Regressions line/ok(其中Regressions line为趋势线)。

得到如图3所示的散点图。

图3 散点图从散点图可以看出建造单位成本随着建筑面积的增加而降低,近似于线性关系,为分析建造单位成本随建筑面积变动的数量规律性,可以考虑建立如下的简单线性回归模型:二、估计参数假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS法估计其参数。

Eviews软件估计参数的方法如下:在eviews命令框中键入LS Y C X,按回车,即出现回归结果。

Eviews的回归结果如图4所示。

图4 回归结果可用规范的形式将参数估计和检验结果写为:(19.2645)(4.8098)t=(95.7969)(-13.3443)0.9468 F=178.0715 n=12若要显示回归结果的图形,在equation框中,点击resids,即出现剩余项、实际值、拟合值的图形,如图5所示。

《统计学》实验报告

《统计学》实验报告
实验一:主要是要求学生熟练地掌握Excel的基本操作,为以后的统计
图做准备。
实验二:主要是要求学生利用Excel的数据处理功能,掌握Excel
制图方法,能够较为准确地显示统计数据的发布特征。
实验三:分解分析法是分析时间序列常用的统计方法。季节时间序列是趋
势变动(T)、季节变动(S)、循环变动(C)和随机变动(I)综合影响的结果,分解过程要从原始序列中消除随机变动,然后分别识别出季节变动和趋势变动的变化模式。
实验二:
(1)直方图的绘制
(2)折线图的绘制
(3)饼形图的绘制
掌握统计数据的整理方法和Excel的几种基本统计制图操作方法;进一步学习统计数据的整理方法和Excel的基本操作理论。
实验三:
1、计算一次移动平均,消除随机波动
2、中心化移动平均数。
3、计算各个季节指数
4、计算平均季节指数。
5、计算调整后的季节指数
b.“高级筛选”使用“数据-筛选-高级筛选”菜单,调用对话框来实现筛选
3、数据的排序:靠“升序排列”(“降序排列”)工具按钮和“数据-排序”菜单实现。在选中需排序区域数据后,点击“升序排列”(“降序排列”)工具按钮,数据将按升序(或降序)快速排列
4、Frequency函数
用途:以一列垂直数组返回某个区域中数据的频率分布。它可以计算出在给定的值域和接收区间内,每个区间包含的数据个数。
6、消除旅游人数序列中的季节变动。
7、对消除季节变动的旅游人数进行回归分析。
8、预测。
掌握时间序列的因素分解分析方法,将时间序列的分解分析方法理论与Excel的基本操作理论结合相结合。
实验四:
1、根据统计数据绘制散点图
2、计算相关系数
掌握实验的基本原理和方法:此分析可用于判断两组数据之间的关系。可以使用“相关系数”分析方法来确定两个区域中数据的变化是否相关,即一个集合的较大数据是否与另一个集合的较大数据相对应(正相关);或者一个集合的较小数据是否与另一个集合的较小数据相对应(负相关);还是两个集合中的数据互不相关(相关系数为零);结合使用相关分析的基本理论和Excel的基本操作理论。

统计学课内实验报告(详解+心得)1

统计学课内实验报告(详解+心得)1

一.实验目的与要求(一)目的实验一: EXCEL的数据整理与显示1. 了解EXCEL的基本命令与操作、熟悉EXCEL数据输入、输出与编辑方法;2. 熟悉EXCEL用于预处理的基本菜单操作与命令;3. 熟悉EXCEL用于整理与显示的基本菜单操作与命令。

实验二: EXCEL的数据特征描述、抽样推断熟悉EXCEL用于数据描述统计、抽样推断实验三: 时间序列分析掌握EXCEL用于移动平均、线性趋势分析的基本菜单操作与命令。

实验四: 一元线性回归分析掌握EXCEL用于相关与回归分析的基本操作与命令。

(二)要求1.按要求认真完成实验任务中规定的所有练习;2.实验结束后要撰写格式规范的实验报告, 正文统一用小四号字, 必须有页码;3、实验报告中的图表制作要规范, 图表必须有名称和序号;4、实验结果分析既要简明扼要, 又要能说明问题。

二、实验任务实验一根据下面的数据。

1.1用Excel制作一张组距式次数分布表, 并绘制一张条形图(或柱状图), 反映工人加工零件的人数分布情况。

从某企业中按随即抽样的原则抽出50名工人, 以了解该企业工人生产状况(日加工零件数):117 108 110 112 137 122 131 118 134 114 124 125 123127 120 129 117 126 123 128 139 122 133 119 124 107133 134 113 115 117 126 127 120 139 130 122 123 123128 122 118 118 127 124 125 108 112 135 5091.2整理成频数分布表, 并绘制直方图。

1.3 假设日加工零件数大于等于130为优秀。

实验二百货公司6月份各天的销售额数据如下(单位:万元)257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269295(1)计算该百货公司日销售额的均值、众数、中位数;(2)计算该百货公司日销售额的极差、标准差;(3)计算日销售额分布的偏态系数和峰度系数。

线性回归分析实验报告

线性回归分析实验报告

实验一:线性回归分析实验目的:通过本次试验掌握回归分析的基本思想和基本方法,理解最小二乘法的计算步骤,理解模型的设定T检验,并能够根据检验结果对模型的合理性进行判断,进而改进模型。

理解残差分析的意义和重要性,会对模型的回归残差进行正态型和独立性检验,从而能够判断模型是否符合回归分析的基本假设。

实验内容:用线性回归分析建立以高血压作为被解释变量,其他变量作为解释变量的线性回归模型。

分析高血压与其他变量之间的关系。

实验步骤:1、选择File | Open | Data 命令,打开gaoxueya.sav图1-1 数据集gaoxueya 的部分数据2、选择Analyze | Regression | Linear…命令,弹出Linear Regression (线性回归) 对话框,如图1-2所示。

将左侧的血压(y)选入右侧上方的Dependent(因变量) 框中,作为被解释变量。

再分别把年龄(x1)、体重(x2)、吸烟指数(x3)选入Independent (自变量)框中,作为解释变量。

在Method(方法)下拉菜单中,指定自变量进入分析的方法。

图1-2 线性回归分析对话框3、单击Statistics按钮,弹出Linear Regression : Statistics(线性回归分析:统计量)对话框,如图1-3所示。

1-3线性回归分析统计量对话框4、单击 Continue 回到线性回归分析对话框。

单击Plots ,打开Linear Regression:Plots (线性回归分析:图形)对话框,如图1-4所示。

完成如下操作。

图1-4 线性回归分析:图形对话框5、单击Continue ,回到线性回归分析对话框,单击Save按钮,打开Linear Regression;Save 对话框,如图1-5所示。

完成如图操作。

图1-5 线性回归分析:保存对话框6、单击Continue ,回到线性回归分析对话框,单击Options 按钮,打开Linear Regression ;Options 对话框,如图1-6所示。

回归分析 实验报告

回归分析 实验报告

回归分析实验报告1. 引言回归分析是一种用于探索变量之间关系的统计方法。

它通过建立一个数学模型来预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。

本实验报告旨在介绍回归分析的基本原理,并通过一个实际案例来展示其应用。

2. 回归分析的基本原理回归分析的基本原理是基于最小二乘法。

最小二乘法通过寻找一条最佳拟合直线(或曲线),使得所有数据点到该直线的距离之和最小。

这条拟合直线被称为回归线,可以用来预测因变量的值。

3. 实验设计本实验选择了一个实际数据集进行回归分析。

数据集包含了一个公司的广告投入和销售额的数据,共有200个观测值。

目标是通过广告投入来预测销售额。

4. 数据预处理在进行回归分析之前,首先需要对数据进行预处理。

这包括了缺失值处理、异常值处理和数据标准化等步骤。

4.1 缺失值处理查看数据集,发现没有缺失值,因此无需进行缺失值处理。

4.2 异常值处理通过绘制箱线图,发现了一个销售额的异常值。

根据业务经验,判断该异常值是由于数据采集错误造成的。

因此,将该观测值从数据集中删除。

4.3 数据标准化为了消除不同变量之间的量纲差异,将广告投入和销售额两个变量进行标准化处理。

标准化后的数据具有零均值和单位方差,方便进行回归分析。

5. 回归模型选择在本实验中,我们选择了线性回归模型来建立广告投入与销售额之间的关系。

线性回归模型假设因变量和自变量之间存在一个线性关系。

6. 回归模型拟合通过最小二乘法,拟合了线性回归模型。

回归方程为:销售额 = 0.7 * 广告投入 + 0.3回归方程表明,每增加1单位的广告投入,销售额平均增加0.7单位。

7. 回归模型评估为了评估回归模型的拟合效果,我们使用了均方差(Mean Squared Error,MSE)和决定系数(Coefficient of Determination,R^2)。

7.1 均方差均方差度量了观测值与回归线之间的平均差距。

在本实验中,均方差为10.5,说明模型的拟合效果相对较好。

实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

实验二-一元线性回归模型的估计、检验、预测和应用-学生实验报告

B. E(SLC | GDPS i ) 1 2GDPS i D. GDPS i ˆ1 ˆ2SLCi ei
(1)分别用最小二乘法估计以上三个回归模型的参数,保存实验结
果。(注:只需附上模型估计的结果即可,无需分析;模型如果常数项
不能通过检验,仍保留,本实验中不要求大家对模型进行修正。)
(请对得到的图表进行处理,“模型结果”部分不得超过本页)
7 / 20文档可自由编辑
Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:09 Sample: 1978 2005 Lags: 3 Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:06 Sample: 1978 2005 Lags: 3 Null Hypothesis: CS does not Granger Cause GDPS GDPS does not Granger Cause CS
Pairwise Granger Causality Tests Date: 03/30/16 Time: 17:10 Sample: 1978 2005 Lags: 5 Null Hypothesis: SLC does not Granger Cause GDPS GDPS does not Granger Cause SLC

数据分析线性回归报告(3篇)

数据分析线性回归报告(3篇)

第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。

本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。

二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。

2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。

(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。

(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。

三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。

2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。

(2)计算回归系数:使用最小二乘法计算回归系数。

(3)检验模型:对模型进行显著性检验、方差分析等。

四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。

(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。

2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。

(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。

3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。

(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。

(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。

本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。

二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。

三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。

该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。

在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。

其中,β0和β1是模型的参数,ε是误差项。

四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。

五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。

以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。

此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。

误差项ε的方差为0.4,说明模型的预测误差为0.4。

这表明模型具有一定的可靠性和预测能力。

六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。

一元线性回归分析实验报告doc

一元线性回归分析实验报告doc

一元线性回归分析实验报告.doc一、实验目的本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,即一个变量是否随着另一个变量的变化而呈现线性变化。

通过实际数据进行分析,理解一元线性回归模型的应用及其局限性。

二、实验原理一元线性回归是一种基本的回归分析方法,用于研究两个连续变量之间的关系。

其基本假设是:因变量与自变量之间存在一种线性关系,即因变量的变化可以由自变量的变化来解释。

一元线性回归的数学模型可以表示为:Y = aX + b,其中Y是因变量,X是自变量,a是回归系数,b是截距。

三、实验步骤1.数据收集:收集包含两个变量的数据集,用于建立一元线性回归模型。

2.数据预处理:对数据进行清洗、整理和标准化,确保数据的质量和准确性。

3.绘制散点图:通过散点图观察因变量和自变量之间的关系,初步判断是否为线性关系。

4.建立模型:使用最小二乘法估计回归系数和截距,建立一元线性回归模型。

5.模型评估:通过统计指标(如R²、p值等)对模型进行评估,判断模型的拟合程度和显著性。

6.模型应用:根据实际问题和数据特征,对模型进行解释和应用。

四、实验结果与分析1.数据收集与预处理:我们收集了一个关于工资与工作经验的数据集,其中工资为因变量Y,工作经验为自变量X。

经过数据清洗和标准化处理,得到了50个样本点。

2.散点图绘制:绘制了工资与工作经验的散点图,发现样本点大致呈线性分布,说明工资随着工作经验的变化呈现出一种线性趋势。

3.模型建立:使用最小二乘法估计回归系数和截距,得到一元线性回归模型:Y = 50X + 2000。

其中,a=50表示工作经验每增加1年,工资平均增加50元;b=2000表示当工作经验为0时,工资为2000元。

4.模型评估:通过计算R²值和p值,对模型进行评估。

在本例中,R²值为0.85,说明模型对数据的拟合程度较高;p值为0.01,说明自变量对因变量的影响是显著的。

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。

⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。

⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。

该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。

式(1)称为变量y对x的⼀元线性回归理论模型。

⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。

ε表⽰其他随机因素的影响。

⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。

E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。

统计学实验报告

统计学实验报告

《统计学》实验一一、实验名称:数据的图表处理二、实验日期:三、实验地点:管理学院实验室四、实验目的和要求目的:培养学生处理数据的基本能力。

通过本实验,熟练掌握利用Excel, 完成对数据进行输入、定义、数据的分类与整理。

要求:就本专业相关问题收集一定数量的数据(>30),利用EXCEL进行如下操作:1.进行数据排序2.进行数据分组3.制作频数分布图、直方图和帕累托图,并进行简要解释4.制作饼图和雷达图,并进行简要解释五、实验仪器、设备和材料:个人电脑(人/台),EXCEL软件六、实验过程(一)问题与数据在福州市有一家灯泡工厂,厂家为了确定灯泡的使用寿命,在一批灯泡中随机抽取100个进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 (二)实验步骤1、将上表数据复制到EXCEL中;2、将上述数据调整成一列的形式;3、选择“数据-排序“得到III小到到的一列数据M KTOSO R txixl - .xls23 4 5 6,.0(100)651 65862他6« DE按枚湃65M60 2 660-670 5 6TM80614 690-70026 700-710 1823 T.001 13.00S 27.00B 53.00S71.00* 6©710-720 13 671 720-730 10673 730-740674 740-7503676 其也67784.00S94.00XX. 口100.00«26 26. 18 44. OW14 52・DOS1371. Oi兀 si. oca 5 92・财3 95. CC« 3 98.COSi 2 100. CCT 0 100. WS计算lgl00/lg2=6. 7,从而确定组数为K 二1+ lgl00/lg2=&这里为了方便取为10组;确定组距为:(max-min) /K= (749-651)/10=9. 8 取为 10;5、 确定接受界限为 659 669 679 689 699 709 719 729 739 749,分别 键入EXCEL 表格中,形成一列接受区域:6、 选“工具一一数据分析一一直方图”得到如下频数分布图和直方图表1 灯泡使用寿命的频数分布表当文畑P 坝過叨柚入①命式妙 IftD 擬⑪粗口4)轉比迫—:一 - t> ax x 心―・・?. > - 'I \i jSGW ■ * " ^LOGlOdOO)使用寿命 65】 6丸661 664 665 674 676 67?阳网-6&0 2 2.0% 涮叩0 5 7.00%巩H806 13.(10* ⑻W90L4 27.0 曲 G90-700 26 53. Qg TOO-7LO 18 Tl.Qg 58. dW 7i.oca 2L.0% 37 Om 32. (IW us.oca 4、选择“插入-函数(fx)-数学与三角函数-LOG1O"□ HirbsbnTxtt?! 5Ef+¥3?K <xE3]左诗⑴ 观⑥ «®C£)益入『 枢式卽 XAH ) 好即 密口辺..4 3 3」丄妙Bl “心吉・/;-・。

统计学上机实验报告

统计学上机实验报告

21统计学实验报告实验一 数值型数据的整理某班33名学生的英语考试成绩:名学生的英语考试成绩:84、49、75、54、81、54、56、57、70、67、59、70、61、63、77、79、64、65、74、66、68、72、90、73、76、63、79、80、72、82、61、85、67实验步骤;第一步,计算取值范围。

计算取值范围。

可以利用Excel “分析工具库”中的“描述统计”工具,直接计算出原始数据的取值范围及其他测度。

在“工具”菜单中,单击“数据分析”命令,调出“分析工具”列表框。

然后在“分析工具”列表框中,选中需要使用的“描述统计”工具。

工具。

然后选择数据输出方向然后选择数据输出方向用鼠标单击“确定”,完成取值范围的计算,计算机输出计算结果如图所第二步确定组数和组距。

第二步确定组数和组距。

由确定组数的经验公式,可计算出参考是组数H=1+lg33/lg2,约等于5,组数确定后,可以根据取值范围、组数和组距之间的数量关系,计算出组距的取值d=41/5,取整之后组距为10。

第三步,计算频数分布第三步,计算频数分布计算频数分布,就是按照分组将原始数据一一分配到各组中,然后计算出落在各组中数据的个数。

这里,采用了Excel 的COUNTIF 函数。

函数。

第四步,计算组中值。

第四步,计算组中值。

利用运用组中值=(上限+下限)/ 2计算各闭口组的组中值,运用重合组限设置缺少下限的“组的组中值=该组上限—邻组组距/2”计算“60(分)以下”组的组中值。

组的组中值。

第五步,绘制统计表绘制统计表第六步第六步 ,绘制统计图,绘制直方图和折线图,绘制统计图,绘制直方图和折线图为了便于折线图的绘制,对上图的分组略加调整,将原“60(分)以下”组改成“40—60(分)”组,即在原图的两端各加一个频数为0的最大和最小分组,分别为“40(分)以下”组和“100(分)以上”组。

(分)以上”组。

选中数据及计量单位所在单位格,用鼠标单击“图表导向”快捷键,在“表图导向—4步骤之1—图表类型”对话框中,选择“标准类型”选项卡,选定“柱形图”中的第一个子图表类型“簇状柱形图”最后单击完成。

一元线性回归分析实验报告

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用院(系):专业班级:学号姓名:指导老师:成绩:完成时间:一元线性回归在公司加班制度中的应用一、实验目的掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境SPSS21.0 windows10.0 三、实验题目一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。

经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示y3.51.04.02.01.03.04.51.53.05.01. 画散点图。

2. x 与y 之间大致呈线性关系?3. 用最小二乘法估计求出回归方程。

4. 求出回归标准误差σ∧。

5. 给出0β∧ 与1β∧的置信度95%的区间估计。

6. 计算x 与y 的决定系数。

7. 对回归方程作方差分析。

8. 作回归系数1β∧的显著性检验。

9. 作回归系数的显著性检验。

10. 对回归方程做残差图并作相应的分析。

11. 该公司预测下一周签发新保单01000x =,需要的加班时间是多少?12.给出0y的置信度为95%的精确预测区间。

13.给出()E y的置信度为95%的区间估计。

四、实验过程及分析1.画散点图如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。

2.最小二乘估计求回归方程用SPSS求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:0.1180.004y x=+3.求回归标准误差σ∧ANOVA a模型平方和自由度均方 F 显著性1 回归16.682 1 16.682 72.396 .000b残差1.843 8 .230总计18.525 9a. 因变量:yb. 预测变量:(常量), x由方差分析表可以得到回归标准误差:SSE=1.843故回归标准误差:2=2SSEnσ∧-,2σ∧=0.48。

(2023)一元线性回归分析研究实验报告(一)

(2023)一元线性回归分析研究实验报告(一)

(2023)一元线性回归分析研究实验报告(一)分析2023年一元线性回归实验报告实验背景本次实验旨在通过对一定时间范围内的数据进行采集,并运用一元线性回归方法进行分析,探究不同自变量对因变量的影响,从而预测2023年的因变量数值。

本实验中选取了X自变量及Y因变量作为研究对象。

数据采集本次实验数据采集范围为5年,采集时间从2018年至2023年底。

数据来源主要分为两种:1.对外部行业数据进行采集,如销售额、市场份额等;2.对内部企业数据进行收集,如研发数量、员工薪资等。

在数据采集的过程中,需要通过多种手段确保数据的准确性与完整性,如数据自动化处理、数据清洗及校验、数据分类与整理等。

数据分析与预测一元线性回归分析在数据成功采集完毕后,我们首先运用excel软件对数据进行统计及可视化处理,制作了散点图及数据趋势线,同时运用一元线性回归方法对数据进行了分析。

结果表明X自变量与Y因变量之间存在一定的线性关系,回归结果较为良好。

预测模型建立通过把数据拆分为训练集和测试集进行建模,本次实验共建立了三个模型,其中模型选用了不同的自变量。

经过多轮模型优化和选择,选定最终的预测模型为xxx。

预测结果表明,该模型能够对2023年的Y因变量进行较为准确的预测。

实验结论通过本次实验,我们对一元线性回归方法进行了深入理解和探究,分析了不同自变量对因变量的影响,同时建立了多个预测模型,预测结果较为可靠。

本实验结论可为企业的业务决策和经营策略提供参考价值。

同时,需要注意的是,数据质量和采集方式对最终结果的影响,需要在实验设计及数据采集上进行充分的考虑和调整。

实验意义与不足实验意义本次实验不仅是对一元线性回归方法的应用,更是对数据分析及预测的一个实践。

通过对多种数据的采集和处理,我们能够得出更加准确和全面的数据分析结果,这对于企业的经营决策和风险控制十分重要。

同时,本实验所选取的X自变量及Y因变量能够涵盖多个行业及企业相关的数据指标,具有一定的代表性和客观性。

一元线性回归实验报告

一元线性回归实验报告

实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。

二实验要求:应用教材P61第12题做一元线性回归分析并做预测。

三实验原理:普通最小二乘法。

四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。

五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内生产总值GDP的统计资料。

单位:亿元(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。

六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。

(2)双击桌面快速启动图标,启动EViews6程序。

(3)点击File/New/ Workfile…,弹出Workfile Create对话框。

在WorkfileCreate对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。

图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。

实训三 一元线性回归分析

实训三 一元线性回归分析

8 - 11
统计学
STATISTICS (第三版)
散点图
(销售收入和广告费用的散点图)
8 - 12
3.1 变量间的关系 3.1.3 用相关系数度量关系强度
统计学
STATISTICS (第四版)
相关系数
(correlation coefficient)
1. 度量变量之间关系强度的一个统计量 2. 对两个变量之间线性相关强度的度量称为简单相 关系数 3. 若相关系数是根据总体全部数据计算的,称为总 体相关系数,记为 4. 若是根据样本数据计算的,则称为样本相关系数 ,简称为相关系数,记为 r

8 - 16
统计学
STATISTICS (第三版)
相关系数的性质
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小 性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个 变量之间不存在线性相关关系,并不说明变量之 间没有任何关系 性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系
STATISTICS (第八章)
相关系数的计算
(例题分析)
8 - 20
统计学
STATISTICS (第八章)
相关系数的计算
(例题分析)
解:用函数计算 CORREL(Array1,Array2) 或PEARSON(Array1,Array2) r=0.9306 由于相关系数为较大的正值,说明销售收入与 广告费用之间有较强的正线性相关关系,即随 着告费用的增加,销售收入也随之增加。

《统计学》实验报告(一元线性回归分析)

《统计学》实验报告(一元线性回归分析)

南昌航空大学经济管理学院学生实验报告实验课程名称:统计学实验时间 2012.12.24 班级学号 11091125 姓名戴文琦成绩实验地点 G804实验性质: □基础性 ■综合性 □设计性实验项目名 称一元线性回归分析指导老师王秀芝一、实验目的:掌握用SPSS 软件进行一元线性回归分析。

二、实验要求:在《中国统计年鉴》中选择合适的数据进行一元线性回归分析(注明数据来源)。

注意回归分析要有经济意义。

三、实验结果及主要结论根据该表进行拟合优度检验。

由于判定系数(0.983)较接近1,因此,认为拟合优度较高,被解释变量可以被模型解释的部分较多,不能被解释的部分较少。

由表中数据,被解释变量的SST 为2.462×107,SSR 为2.379×107,SSE 为835127.295,MSR 为2.379×107,MSE 为167025.459,F 统计量的观测值为142.428,对应的概率P 值近似为0。

根据表中数据进行回归方程的显著性检验。

如果显著性水平α为0.05,由于概率P 值小于显著性水平α,应拒绝回归方程显著性检验的原假设(β1=0),认为回归系数不为0,被解释变量与解释变量的线性关系显著,可建立线性模型。

根据表中数据进行回归系数的显著性检验。

可以看出,如果显著性水平α为0.05,变量回归系数显著性t 检验的概率远远小于显著性水平α,因此拒绝原假设(β1=0),认为回归系数与0存在显著差异,即不为0。

根据上述结果写出的一元线性回归方程如下1:x y214.0858.2437ˆ+= 原数据:按收入等级分城镇居民家庭平均每人全年现金消费支出 (2011年)Model SummaryModel R R Square Adjusted R Square Std. Error of theEstimate 1.983a.966.959408.68748a. Predictors: (Constant), 现金消费支出 (元)ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 2.379E7 1 2.379E7 142.428 .000aResidual 835127.295 5 167025.459 Total 2.462E7 6a. Predictors: (Constant), 现金消费支出 (元)b. Dependent Variable: 食品 Coefficients aModelUnstandardizedCoefficients Standardized CoefficientstSig.BStd. ErrorBeta1(Constant) 2437.858 349.6876.972.001现金消费支出(元).214.018.98311.934 .000a. Dependent Variable: 食品1未考虑异方差问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
Sig.
(Constant) 2437.858 349.687
1 现金消费支 出(元)
.214
.018
.983
6.972 .001 11.934 .000
a. Dependent Variable: 食品
根据表中数据进行回归系数的显著性检验。可以看出,如果
显著性水平α为0.05,变量回归系数显著性t检验的概率远远
度检验。由于判定系 数(0.983)较接近 1,因此,认为拟合
1 .983a .966 .959 408.68748 优度较高,被解释变
a. Predictors: (Constant), 现金消费支出 量可以被模型解释的
(元)
部分较多,不能被解
释的部分较少。
ANOVAb
Model
Sum of Squares
量的
b. Dependent Variable: 食品
SST

2.462×107,SSR为2.379×107,SSE为835127.295,MSR为
2.379×107,MSE为167025.459,F统计量的观测值为
142.428,对应的概率P值近似为0。根据表中数据进行回归方
程的显著性检验。如果显著性水平α为0.05,由于概率P值小
性回归分析。
二、实验要求:在《中国统计年鉴》中选择
合适的数据进行一元线性回归分析(注明数据来
源)。注意回归分析要有经济意义。
三、实验结果及主要结论
Model Summary
根据该表进行拟合优
Model
R
R Adjusted R Square Square
Std. Error of the
Estimate
南昌航空大学经济管理学院学生实验报告 实验课程名称:统计学


实验时 间 2012.12.24
级 11091125 姓


文 琦
成 绩

实验地 点
G804
实验性质: □基础性 综合性 □设计性

实验项 目
名 称
一元线性回归分析
指 导 老
王 秀 芝

一、实验目的:掌握用SPSS软件进行一元线
于显著性水平α,应拒绝回归方程显著性检验的原假设(β1
=0),认为回归系数不为0,被解释变量与解释变量的线性
关系显著,可建立线性模型。
Coefficientsa
Model
Unstandardized
Coefficients
B
Std. Error
Standardized Coefficients
Beta
小于显著性水平α,因此拒绝原假设(β1=0),认为回归系 数与0存在显著差异,即不为0。
1
根据上述结果写出的一元线性回归方程如下 : 原数据:按收入等级分城镇居民家庭平均每人全年现金消费 支出 (2011年)描述[1]未考虑异方差问题。
df
Mean Square
F Sig.
Regression 2.379E7 1 2.379E7 142.428 .000a
1 Residual 835127.295 5 167025.459
由表 中数 据, 被解
Total
2.462E7 6
释变
a. Predictors: (Constant), 现金消费支出 (元)
相关文档
最新文档