2019-2020年高中数学竞赛教案讲义(9)不等式
2.1 等式性质与不等式性质(教案)-2022-2023学年高一数学教材配套教案(人教A版2019必
2.1 等式性质与不等式性质(教案)-2022-2023学年高一数学教材配套教案(人教A版2019必修第一册)一、教学目标1. 理解等式概念,掌握等式的基本性质;2. 理解不等式概念,掌握不等式的基本性质;3. 能够通过运用等式和不等式的基本性质,完成相关的数学推导和证明。
二、教学重点和难点重点:等式和不等式的基本性质的掌握。
难点:等式和不等式的性质结合应用。
三、教学方法以教师讲解和学生练习为主,结合课堂讨论、小组合作和案例分析等多种教学方法,活跃课堂氛围,培养学生自主思考和实际动手能力。
四、教学过程1. 等式性质(1)等式的定义等式是指两个数或两个代数式之间用等号连接的关系,即a=b。
(2)等式性质性质1:等式两边可以交换,即a=b等价于b=a。
性质2:等式两边可以加上(或减去)同一个数或同一个代数式,等式仍成立。
性质3:等式两边可以乘以(或除以)同一个非零数或同一个非零代数式,等式仍成立。
(3)例题①已知2x+5=7,求x的值。
解:将等式两边分别减去5,可得2x=2。
再将等式两边同时除以2,就能得到x=1。
②若a<0,b<0,则a+b<0。
解:由a<0,b<0可得a+b<0+0=0。
又因为0是非负数,所以a+b<0。
2. 不等式性质(1)不等式的定义不等式是指两个数或两个代数式之间用不等于号连接的关系,即a≠b。
(2)不等式性质性质1:不等式两边可以加上(或减去)同一个正数或同一个正代数式,不等式方向不变。
性质2:不等式两边可以乘以(或除以)同一个正数或同一个正代数式,如果是乘以,则不等式方向不变;如果是除以,则要判断所除数是否为0,如果是,则原不等式无意义,如果不是,则不等式方向反向。
(3)例题①若a<b,c>0,则ac<bc。
解:由a<b可得a-b<0。
再由c>0可得ac-bc<0。
又因为a-b<0,所以a-b的相反数-b+a>0。
高中数学不等式的模型教案
高中数学不等式的模型教案
教学目标:
1. 理解不等式的概念及性质。
2. 掌握解不等式的方法。
3. 能够运用不等式解决实际问题。
教学重点:
1. 不等式的定义。
2. 不等式的性质。
3. 解不等式的方法。
教学难点:
1. 不等式组合的运算规则。
2. 不等式解答实际问题的能力。
教学过程:
一、导入(5分钟)
教师引导学生讨论生活中的“不等式”,以引起学生的兴趣和思考。
二、讲解不等式的定义(15分钟)
1. 介绍不等式的定义和符号表示。
2. 讲解不等式的性质和性质与等号的关系。
三、解不等式的方法(20分钟)
1. 介绍解一元一次不等式的基本方法。
2. 演示解决不等式的过程,并指导学生做练习。
四、练习与讨论(15分钟)
1. 让学生做一些不等式的练习题,并讨论解题过程和答案。
2. 教师解答学生提出的问题,帮助学生理解不等式的知识点。
五、实际问题解决(15分钟)
1. 给学生提供一些实际问题,让学生运用不等式解决问题。
2. 学生自主讨论解决问题的方法,并展示解题过程。
六、总结(5分钟)
1. 教师对本节课进行总结,提出学生存在的问题和不足之处。
2. 提醒学生在日常生活中多加练习,提高不等式解决问题的能力。
作业布置:
* 完成课堂练习题目。
* 自编不等式实际问题,并解答。
教学反思:
* 对学生学习不等式过程中的困难加以理解和帮助。
* 注重学生实际问题解决能力的培养。
高中数学《不等式》教案
高中数学《不等式》教案教学内容:不等式
教学目标:
1. 理解不等式的概念和性质。
2. 掌握不等式的解法和解集表示法。
3. 能够根据不等式的性质解决实际问题。
教学重点:
1. 掌握不等式的基本概念和性质。
2. 能够利用不等式解决实际问题。
教学难点:
1. 熟练掌握各种不等式的解法。
2. 能够根据实际问题建立并解决不等式。
教学过程:
一、导入(5分钟)
1. 引入不等式的概念,并和等式做比较,引发学生思考。
二、讲解不等式的性质和解法(15分钟)
1. 讲解不等式的符号表示及性质。
2. 讲解不等式的解法,包括加减法、乘法、除法等。
三、练习与讨论(20分钟)
1. 练习不等式的基本运算和解法。
2. 让学生在小组讨论中解决不等式问题。
四、实际问题应用(10分钟)
1. 列举一些实际问题,让学生通过建立不等式解决。
五、总结与展望(5分钟)
1. 总结不等式的性质和解法。
2. 展望下节课内容,讲解高级不等式的解法。
六、作业布置(5分钟)
1. 布置练习题,巩固不等式的知识。
教学板书:
不等式
1. 定义:比较两个数的大小关系的代数式。
2. 符号表示:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。
3. 特性:加减法、乘除法性质。
教学反思:
通过本节课的教学,学生对不等式的概念和性质有了初步了解,并能够熟练解决基本的不等式问题。
下一步可以引入更复杂的不等式,挑战学生的解题能力。
高考数学复习讲义 不等式(学生版)
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
2024年新高一数学讲义(人教A版2019必修第一册)函数不等式恒成立与能成立(解析版)
专题拓展:函数不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;考点一:单变量不等式恒成立例1.(23-24高一上·广东湛江·月考)若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则a 的最小值为()A .0B .2-C .52-D .12-【答案】D【解析】若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎝⎦成立,则max (1)a x ≥-+,当12x =时,1x -+取最大值12-,故12a ≥-,故a 的最小值是12-.故选:D .【变式1-1】(23-24高一上·河南·月考)若对于任意的0x >,不等式()2310x a x +-+≥恒成立,则实数a的取值范围为()A .[)5,+∞B .()5,+∞C .(],5-∞D .(),5-∞【答案】C【解析】不等式()2310x a x +-+≥可化为,231x x a x++≥,令()231x x f x x++=,由题意可得()min a f x ≤,()1335f x x x =++≥=,当且仅当1x x =,即1x =时等号成立,()min 5a f x ≤=,所以实数a 的取值范围为(],5-∞.故选:C.【变式1-2】(23-24高一下·贵州遵义·月考)已知函数()()lg 31kf x x =+,若不等式()1f x <在()0,33x ∈上恒成立,则k 的取值范围为()A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .()0,2D .1,22⎡⎫⎪⎢⎣⎭【答案】A【解析】因为033x <<,所以131100x <+<,所以()20lg 31x <+<,由()1f x <,得()1lg 31kx <+,即()lg 311k x <+,因为不等式()1f x <在()0,33x ∈上恒成立,所以()min lg 311k x ⎡⎤⎢⎥⎢⎥⎣<+⎦,()0,33x ∈即可.由()20lg 31x <+<,得()21g 31l 1x >+,即12k ≤,所以k 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A.【变式1-3】(23-24高一下·黑龙江大庆·开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()e x f x g x +=,且()2e 0x f x m ->-≥在[]1,2x ∈上恒成立,则实数m 的取值范围为.【答案】(2e ,0-⎤-⎦【解析】因为()()e xf xg x +=,①得()()e xf xg x --+-=,又()f x 和()g x 分别为偶函数和奇函数,所以()()e xf xg x --=,②由①②相加得()2e e x xf x -=+,又()2e 0xf x m ->-≥在[]1,2x ∈上恒成立即e 0x m --<≤在[]1,2x ∈上恒成立,设()e xh x -=-,则只需()max m h x >,易知()h x 在[]1,2上为增函数,()()2max 2e h x h -==-,所以2e 0m --<≤,故答案为:(2e ,0-⎤-⎦.考点二:单变量不等式能成立例2.(23-24高一上·重庆·期末)已知函数()22f x x x =-,若存在[]2,4x ∈,使得不等式()23f x a a≤+成立,则实数a 的取值范围为.【答案】][(),30,∞∞--⋃+【解析】因为函数()22f x x x =-的对称轴为1x =,所以当[]24x ,∈时,该二次函数单调递增,所以()()min 20f x f ==,因为存在[]24x ,∈,使得不等式()23f x a a ≤+成立,所以有2300a a a +≥⇒≥,或3a ≤-,因此实数a 的取值范围为][(),30,∞∞--⋃+,故答案为:][(),30,∞∞--⋃+【变式2-1】(22-23高一上·四川南充·月考)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()2f x a a ≤-成立,则实数a 的取值范围是.【答案】(][),34,-∞-⋃+∞【解析】因为()2,x ∈+∞,所以20x ->,所以()1144(2)822f x x x x x =+=-++--812≥+=,当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()2f x a a ≤-成立,所以只要()2min f x a a ≤-,即212a a ≤-,得3a ≤-或4a ≥,所以a 的取值范围为(][),34,-∞-⋃+∞.【变式2-2】(22-23高一上·山东枣庄·月考)设函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,若1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则实数a 的取值范围是.【答案】(][),12,-∞-⋃+∞【解析】因为函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,而函数()f x 在1,12⎡⎤⎢⎥⎣⎦为减函数,在[]1,3为增函数,所以min ()(1)112f x f ==+=,即函数的最小值为2,又1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则2min ()a a f x -≥,即22a a -≥,解得:2a ≥或1a ≤-,即实数a 的取值范围是2a ≥或1a ≤-,故答案为:(][),12,-∞-⋃+∞【变式2-3】(23-24高一下·河北张家口·开学考试)已知函数()22(0)g x ax ax b a =++>在区间[]0,2上有最大值11和最小值3,且()()g x f x x=.(1)求a b 、的值;(2)若不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,求实数k 的取值范围.【答案】(1)1,3a b ==;(2)17k ≤.【解析】(1)函数()22(0)g x ax ax b a =++>图象的对称轴为=1x -,显然函数()g x 在[]0,2上单调递增,因此min ()(0)3g x g b ===,max ()(2)811g x g a b ==+=,解得1a =,所以1,3a b ==.(2)由(1)知,2()23g x x x =++,()3()2g x f x x x x==++,因此不等式2332)2)012(202(22()22x x x xx x xk f k k ⋅-⋅++≤≤-⇔≤⇔++,令12x t =,由[]1,2x ∈-,得124t ≤≤,则22321321(22)x xt t ++=++,显然函数2321y t t =++在1[,2]4t ∈上单调递增,当2t =时,max 17y =,由不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,得17k ≤,所以实数k 的取值范围是17k ≤.考点三:任意-任意型不等式成立例3.(21-22高二下·北京·月考)已知()()21,2xf x xg x m ⎛⎫==- ⎪⎝⎭,若对任意[]10,2x ∈,任意[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14m ≥B .14m ≤C .12m ≥D .12m ≤【答案】C【解析】由[]10,2x ∈,2()f x x =,所以1()[0,4]f x ∈,对任意的[]10,2x ∈,要使()()12f x g x ≥成立,即要2()0g x ≤,对任意[]21,2x ∈上成立,所以任意[1,2]x ∈,使得1()2x m ≤成立,即max 11()22x m ≥=.故选:C.【变式3-1】(22-23高一上·湖北鄂州·期中)已知()f x 是定义在[]31,3D a a =++上的奇函数,且当(]0,3x a ∈+时,()22f x x ax =+.(1)求函数()f x 的解析式;(2)设()g x x b =-+,对任意12,x x D ∈,均有()()12f x g x ≥,求实数b 的取值范围.【答案】(1)()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩;(2)(,3]-∞-【解析】(1)因为()f x 是定义在[]313a a ++,上的奇函数,所以3130a a ++=+,解得1a =-,所以()f x 是定义在[]22-,上的奇函数,可得()00f =,当2(]0,x ∈时,()22f x x x =-.当[2,0)x ∈-时,则(0,2]x -∈,所以()()()2222f x x x x x -=---=+,因为()f x 是奇函数,所以()()22f x f x x x -=-=+,所以()22f x x x =--,所以()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩.(2)对任意12,x x D ∈,均有()12()f x g x ≥,只需min max ()()f x g x ≥,由(1)知,当2(]0,x ∈时,()222(1)1f x x x x =-=--,当1x =时,()min 1f x =-;当[2,0)x ∈-时,()222(1)1f x x x x =--=-++,当2x =-时,()min 0f x =,又由()00f =,所以函数min ()(1)1f x f ==-,因为()g x x b =-+在[2,-上为单调递减函数,所以()()max 22g x g b =-=+,所以12b -≥+,解得3b ≤-,故实数b 的取值范围为(,3]-∞-.【变式3-2】(23-24高一上·湖南永州·期末)已知函数()lg f x x =,()2e e x xg x a =-.(1)若对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,求实数a 的取值范围;(2)若函数()()()h x g x g x =+-,求函数()h x 的零点个数.【答案】(1)2a ≥;(2)答案见解析.【解析】(1)对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,只需()()12max min f x g x ≤,由()11lg f x x =在[]11,10x ∈上递增,故()1max (10)1f x f ==,由()2222ee x x g x a =-,在[)20,x ∈+∞上有2[1,)e x t ∈=+∞,所以()22g x y at t ==-且[1,)t ∈+∞,故有21at t -≥在[1,)t ∈+∞上恒成立,所以2max max 211111()[()24a t t t ≥+=+-,而1(0,1]t∈,即2a ≥.(2)由题设()2222e e e )e e e e ()(e x x x x x x x xh a x a a ----=--=+-++,令2e e x x μ-=≥+,当且仅当0x =时等号成立,则2222()2e e e e x x x x μ--+=+=+,即2222e e x x μ-+=-,所以()2()2a a h x ϕμμμ==--且[2,)μ∈+∞,令2()20a a ϕμμμ=--=,则问题等价于2122a μμμμ==--在[2,)μ∈+∞上解的个数,又12y μμ=-在[2,)μ∈+∞上递减,故(0,1]y ∈,当1a >或0a ≤时,22a μμ=-在[2,)μ∈+∞上无解,即()h x 无零点;当1a =时,22(1)(2)0μμμμ--=+-=在[2,)μ∈+∞上有2μ=,所以2e e x x μ-+==,即0x =,故()h x 有1个零点;当01a <<时,220a a μμ--=在[2,)μ∈+∞上有122aμ+=>(负值舍),又e e x x μ-=+为偶函数,此时()h x 有2个零点;综上,1a >或0a ≤时,()h x 无零点;1a =时,()h x 有1个零点;01a <<时,()h x 有2个零点;【变式3-3】(23-24高一上·北京·月考)已知函数()()()()()21122log 1log 1,6R f x x x g x x ax a =++-=-+∈.(1)求函数()f x 的定义域.(2)判断函数()f x 的奇偶性,并说明理由.(3)对)[]12,1,2x x ∀∈+∞∈,不等式()()12f x g x ≤恒成立,求实数a 的取值范围.【答案】(1)()1,+∞;(2)函数()f x 为非奇非偶函数,理由见解析;(3)11,2⎛⎤-∞ ⎥⎝⎦【解析】(1)由函数()()()1122log 1log 1f x x x =++-有意义,则满足1010x x +>⎧⎨->⎩,解得1x >,所以函数()f x 的定义域为()1,+∞.(2)因为()f x 的定义域为()1,+∞,不关于原点对称,所以函数()f x 为非奇非偶函数.(3)由“对)[]12,2,4x x ∀∈+∞∈-,不等式()()12f x g x ≤恒成立”,可得max min ()()f x g x ≤,当x ()()()()2111222log 1log 1log 1f x x x x =++-=-由()f x 在)+∞上单调递减,max ()1f x f==-,根据题意得,对[]21,2,70x x ax ∀∈-+≥法一:可转化为[]71,2,x a x x∀∈≤+,令()7h x x x =+,由()h x 在[]1,2上单调递减得,可得()min 711()2222h x h ==+=,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.法二:设函数()27g x x ax =-+,①当22a≥,即4a ≥时,()g x 在[]1,2上单调递减,可得()min ()21021g x g a ==-≥-,解得112a ≤,则1142a ≤≤;②当12a≤,即2a ≤时,()g x 在[]1,2上单调递增,可得()min ()171g x g a ==-≥-,解得8a ≤,则2a ≤;③当122a<<,即24a <<时,()g x 在[]1,2先减后增,可得()2min ()7122a ag x a =-⨯+≥-,解得a -≤≤24a <<,综上,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.考点四:任意-存在型不等式成立例4.(23-24高一下·山东淄博·期中)已知函数()3f x x =+,[]0,2x ∈,()ag x x x=+,[]1,2x ∈.对[]10,2x ∀∈,都[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的范围是.【答案】9,4⎛⎤-∞ ⎥⎝⎦【解析】函数()3f x x =+,在[]0,2x ∈上单调递增,所以min ()(0)3f x f ==,当a<0时,()ag x x x=+在区间[]1,2上单调递增,min ()1g x a =+,所以31a ≥+,解得2a ≤,又因为a<0,所以031a a <⎧⎨≥+⎩,解得a<0;当01a ≤≤时,()ag x x x=+在区间[]1,2上单调递增,其最小值为(1)1g a =+,所以有0131a a ≤≤⎧⎨≥+⎩,解得01a ≤≤,当14a <<时,()ag x x x=+在区间上单调减,在上单调增,其最小值为g =,所以有143a <≤⎧⎪⎨≥⎪⎩,解得914a <≤,当4a >时,()ag x x x =+在区间[]1,2上单调减,()min ()222a g x g ==+,此时4322a a >⎧⎪⎨≥+⎪⎩,无解;所以a 的取值范围是9,4⎛⎤-∞ ⎥⎝⎦,故答案为:9,4⎛⎤-∞ ⎥⎝⎦.【变式4-1】(23-24高一上·重庆·月考)已知函数()()4,2xf x xg x a x=+=+.若[][]121,3,2,3x x ∀∈∃∈,使得()()12f x g x ≥成立,则实数a 的范围是()A .4a ≤B .3a ≤C .0a ≤D .1a ≤【答案】C【解析】因为()44f x x x =+≥=,当且仅当4x x =,且0,x >即2x =时等号成立,所以()min 4f x =,又函数()2x g x a =+在[]2,3上单调递增,所以()2min 24g x a a =+=+,由题意可知()()min min f x g x ≥,即44a ≥+,所以0a ≤,故选:C.【变式4-2】(23-24高一上·广东佛山·期中)已知()221f x x x =--,()log a g x x =(0a >且1a ≠),若对任意的[]11,2x ∈-,都存在[]22,4x ∈,使得()()12f x g x <成立,则实数a 的取值范围是()A .,12⎛⎫ ⎪ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(D .()1,2【答案】D【解析】由题意可知:()()12max max <⎡⎤⎡⎤⎣⎦⎣⎦f x g x ,因为()221f x x x =--的图象开口向上,对称轴为1x =,且[]1,2x ∈-,可知当=1x -时,()f x 取到最大值()12f -=,由题意可得:()22<g x ,可知存在[]22,4x ∈,使得()22<g x 成立,当01a <<,可知()log a g x x =在()0,∞+上单调递减,可得()()2102<=<g x g ,不合题意;当1a >,可知()log a g x x =在()0,∞+上单调递增,可得()2g x 的最大值为()4g ,则()24log 42log =>=a a g a ,即24a <又1a >,解得12a <<;综上所述:实数a 的取值范围是()1,2.故选:D.【变式4-3】(23-24高一上·广东茂名·期中)已知函数()()()2222410,2log 123x f x x x g x x m m =-+=+++-,若对任意[]10,4x ∈,总存在[]2x ∈,使()()12f x g x ≥成立,则实数m 的取值范围为.【答案】[1,2]【解析】对任意[]10,4x ∈,总存在[]22,4x ∈,使()()12f x g x ≥成立,∴对[][]()()1212min min 0,4,2,4,x x f x g x ∈∈≥成立()22410(2)6,f x x x x =-+=-+∴ 当[]10,4x ∈时,()()1min 26f x f ==,()()2222log 123x g x x m m =+++- 在[]2,4上是增函数,∴当[]22,4x ∈时,()()()222222min 22log 212338g x g m m m m ==+++-=-+,()()22638,320,120,12m m m m m m m ∴≥-+∴-+≤∴--≤∴≤≤,故实数m 的取值范围为[1,2].故答案为:[1,2].考点五:存在-存在性不等式成立例5.(22-23高一上·北京丰台·期中)已知函数()f x ax =和221()8g x x a =+(其中0a >),若存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,则实数a 的取值范围是()A .(0,1)B .(0,1]C .22,44⎛-+ ⎝⎭D .22,44⎡+⎢⎣⎦【答案】A【解析】存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,等价于()()max min f x g x ≥在()1,1x ∈-上恒成立,由0a >得,()f x a <,()2min ()0g x g a ==,所以2a a >,解得01a <<,所以实数a 的取值范围是(0,1).故选:A.【变式5-1】(23-24高一上·河北·月考)已知()()[]()()212121,22,,0,1,f x ax g x x x a x x f x g x =+=-+∃∈>,则a 的取值范围是()A .(),2-∞B .()2,+∞C .(),1-∞D .()1,+∞【答案】A【解析】[]12,0,1x x ∃∈,()()12f x g x >,所以,()()12max min f x g x >,()()2222121g x x x a x a =-+=-+-在[]0,1上单调递减,所以()2min 21g x a =-,当0a =时,())2122212f x g x x =>=-,即22212x x >-,取210x x ==成立.当a<0时,()1max 1f x =,即211a -<,得1a <,所以a<0当0a >时,()1max 1f x a =+,即121a a +>-,得2a <,所以02a <<,综上:a 的取值范围是(),2-∞.故选:A【变式5-2】(22-23高一上·辽宁营口·期末)已知函数()4f x x x =+,()2x g x a =+,若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,则实数a 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[)3,∞-+D .[)1,+∞【答案】C【解析】若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,故只需()()min max f x g x ≤,其中()4f x x x =+在1,12x ⎡⎤∈⎢⎥⎣⎦上单调递减,故()()min 5114f x f ==+=,()2x g x a =+在[]2,3x ∈上单调递增,故()()max 38g x g a ==+,所以58a ≤+,解得:3a ≥-,实数a 的取值范围是[)3,∞-+.故选:C【变式5-3】(23-24高一上·全国·期末)已知2()21,()log (0a f x x x g x x a =--=>且0)a ≠,若存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,则实数a 的取值范围是.【答案】()1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭【解析】因为22()21(1)2f x x x x =--=--,当[]1,2x ∈-时,max min ()(1)2,()(1)2f x f f x f =-===-,因为存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,所以函数()f x 在[]1,2-上的最小值小于函数()g x 在[]2,4上的最大值.当01a <<时,函数()log a g x x =在[]2,4上单调递减,则2log 2a -<,解得02a <<;当1a >时,函数()log a g x x =在[]2,4上单调递增,则2log 4a -<,解得1a >,综上,实数a 的取值范围是()0,1,2∞⎛⋃+ ⎪⎝⎭.故答案为:()0,1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭.考点六:任意-存在型等式成立例6.(22-23高二下·黑龙江哈尔滨·期末)已知221()2,()e 1x f x x x m g x -=-+=-,若对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,则实数m 的取值范围是()A .22,e 4⎡⎤-⎣⎦B .21,e 5⎡⎤-⎣⎦C .22,e 5⎡⎤-⎣⎦D .21,e 4⎡⎤-⎣⎦【答案】D【解析】因为22()2(1)1f x x x m x m =-+=-+-,[]0,3x ∈,所以()f x 在[0,1)上递减,在(1,3]上递增,所以()f x 的最小值为(1)1f m =-,因为(0),(3)3f m f m ==+,3m m +>,所以()f x 的最大值为3m +,所以()f x 的值域为[1,3]m m -+,因为21()e 1x g x -=-在13,22x ⎡⎤∈⎢⎥⎣⎦上递增,所以()g x 的值域为2[0,e 1]-,因为对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,所以[1,3]m m -+是2[0,e 1]-的子集,所以2103e 1m m -≥⎧⎨+≤-⎩,解得21e 4m ≤≤-,即m 的取值范围21e 4m ≤≤-故选:D 【变式6-1】(23-24高一上·甘肃酒泉·期末)已知函数()2f x ax =-,()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .[1,1]-B .[]0,4C .[]1,3D .[2,2]-【答案】D【解析】因为()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩所以[)23,1x ∈-时,()[]22218,1g x x =-+∈-,[]21,3x ∈时,()[]21221,4x g x -=∈,综上()[]28,4g x ∈-.当0a >时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a --≥-⎧⎨-≤⎩,解得02a <≤;当0a =时,1()2f x =-,符合题意;当0a <时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a -≥-⎧⎨--≤⎩,解得20a -≤<;综上可得[]2,2a ∈-.故选:D.【变式6-2】(23-24高一上·江苏南通·期中)已知函数()f x 为偶函数,且[]2,0x ∈-时,()f x x =-.(1)求(]0,2x ∈时,()f x 的解析式;(2)若函数()()20g x ax a a =+-≠,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()21g x f x =成立,求实数a 的取值范围.【答案】(1)()f x x =--,(]0,2x ∈;(2)6a ≤-或2a ≥.【解析】(1)(]0,2x ∈时,[)2,0x -∈-,所以()f x x x -=--=--,因为()f x 为偶函数,所以()()f x f x -=,则()f x x =--(]0,2x ∈;(2)因为()f x 为偶函数,所以()f x 在[]2,0-和[]0,2上的值域相同,当(]0,2x ∈时,()f x x =--,令t 23x t =-,t ⎡∈⎣,所以函数化为()222314y t t t =--=--,t ⎡∈⎣,所以1t =时,min 4y =-;t =max y =-即()f x 在[]22-,上的值域为4,⎡--⎣.又对[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x =成立,所以()f x 的值域是()g x 的值域的子集,①当0a >时,()g x 在[]22-,上的值域为[]23,2a a -+则4232aa -≥-⎧⎪⎨-≤+⎪⎩,解得2a ≥②当a<0时,()g x 在[]22-,上的值域为[]2,23a a +-,则4223a a -≥+⎧⎪⎨-≤-⎪⎩,解得6a ≤-综上所述,实数a 的取值范围为6a ≤-或2a ≥.【变式6-3】(21-22高一下·上海黄浦·月考)已知函数2()f x x x k =-+,若2log ()2f a =,2(log )f a k =,1a ≠.(1)求,a k 的值,并求函数(log )a f x 的最小值及此时x 的值;(2)函数()42g x mx m =+-,若对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,求实数m 的取值范围.【答案】(1)2a =,2k =,x (log )a f x 有最小值74;(2)(,4][4,)-∞-+∞【解析】(1)因为2()f x x x k =-+,所以2()f a a a k =-+,所以()2222log 2log 44a a k a a k -+==⇒-+=,①因为2(log )f a k =,所以()2222log log l )og (f k a a a k =-+=,②由②得,()2222log log log 00a a a -=⇒=或21log a =,解得1a =或2a =因为0a >,且1a ≠,所以2a =,代入①得22242k k -+=⇒=,所以2,2a k ==,所以2()2f x x x =-+所以22222217(log )(log )(log )log 2(log )24a f x f x x x x ==-+=-+.所以当21log 2x =,即x =(log )a f x 有最小值74.(2)2()2f x x x =-+,当1[1,3]x ∈时,1()[2,8]f x ∈,因为对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,所以1()f x 的值域是2()g x 值域的子集,当0m =时,()4g x =,舍去;当0m >时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈-++,所以4248m m -+≤⎧⎨+≥⎩,所以4m ≥;当0m <时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈+-+,所以4248m m +≤⎧⎨-+≥⎩,所以4m -;综上,实数m 的取值范围是(,4][4,)-∞-+∞ .一、单选题1.(23-24高一上·河北石家庄·期中)已知函数2()224x x f x a =-⋅+,若()0f x ≥恒成立,则实数a 的取值范围为()A .(,4]-∞B .(,2]-∞C .[4,)+∞D .[2,)+∞【答案】A【解析】因为()0f x ≥恒成立,即22240x x a -⋅+≥恒成立,所以422xx a ≤+恒成立,又由4242x x +≥=(当且仅当1x =时取等号),所以4a ≤.故选:A .2.(23-24高一上·吉林长春·期中)设函数()221(1)f x x x =-+-,不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,则实数a 的取值范围是()A .5,2⎛⎤-∞ ⎥⎝⎦B .(],2-∞C .51,2⎡⎤-⎢⎥⎣⎦D .35,22⎡⎤-⎢⎥⎣⎦【答案】D【解析】因为()212f x x x +=+,()212f x x x -=+,所以()()11f x f x +=-,所以函数()221(1)f x x x =-+-关于直线1x =对称,当1x ≥时,()()2221(1)1f x x x x =-+-=-,则函数()f x 在[)1,+∞上单调递增,所以在(),1-∞上单调递减,又不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,所以12ax x -≤+在(]1,2x ∈上恒成立,即12ax x -≤+在(]1,2x ∈上恒成立,所以212--≤-≤+x ax x 在(]1,2x ∈上恒成立,所以1311--≤≤+a x x 在(]1,2x ∈上恒成立,所以max min1311⎛⎫⎛⎫--≤≤+ ⎪ ⎪⎝⎭⎝⎭a x x ,因为函数11y x =--在(]1,2x ∈上单调递增,所以max 1131122x ⎛⎫--=--=- ⎪⎝⎭,因为函数31=+y x 在(]1,2x ∈上单调递减,所以min3351122x ⎛⎫+=+= ⎪⎝⎭,所以3522a -≤≤,即35,22⎡⎤-⎢⎥⎣⎦.故选:D3.(22-23高一上·海南·期中)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()1f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【答案】D【解析】要使对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,即()f x 在[]1,3-上值域是()g x 在[]1,3-上值域的子集,2()(2)4f x x a =-+-开口向上且对称轴为2x =,则[]1,3-上值域为[4,5]a a -+;对于()5g x ax a =+-:当a<0时()g x 在[]1,3-上值域为[25,52]a a +-,此时,0254525a a a a a <⎧⎪+≤-⎨⎪-≥+⎩,可得9a ≤-;当0a =时()g x 在[]1,3-上值域为{5},不满足要求;当0a >时()g x 在[]1,3-上值域为[52,25]a a -+;此时,0255524a a a a a >⎧⎪+≥+⎨⎪-≤-⎩,可得3a ≥;综上,a 的取值范围(][),93,-∞-+∞ .故选:D4.(23-24高一上·江西南昌·月考)已知函数()4f x x x=+,()2xg x a =+.若[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,则实数a 的取值范围是()A .4a ≤-B .3a ≤-C .0a ≤D .1a ≤【答案】C【解析】设()4f x x x=+在[]1,3上的最小值为()min f x ,()2xg x a =+在[]2,3上的最小值为()min g x .因为44x x +≥=,当且仅当4x x =,且0x >,即2x =时等号成立,所以,()min 4f x =.()2x g x a =+在[]2,3上单调递增,所以()()min 24g x g a ==+.由[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,可得()()min min f x g x ≥,即44a ≥+,所以0a ≤.故选:C.5.(22-23高二上·陕西西安·期中)已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭,B .14⎛-∞⎤ ⎝,C .12⎡⎫+∞⎪⎢⎣⎭D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2x g x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min maxf xg x ≥所以102m -≤,即12m ≥.故选:C.6.(21-22高一上·福建泉州·期中)已知函数()3f x ax =,0a >,223()2g x x a =+,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,则a 的取值范围为()A .25a <<B .02a <<C.52a <<或2a <-D .108a <≤【答案】D【解析】设任意的11,,22m n ⎡⎤∈-⎢⎥⎣⎦,且m n <,0a >,所以()()()()2233f a m n m m nm f n am a n n -=-++-=()223024n n a m n m ⎡⎤⎛⎫=-++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即()()f m f n <,所以()3f x ax =在11,22⎡⎤-⎢⎥⎣⎦上单调递增,所以()max 128a f x f ⎛⎫== ⎪⎝⎭;因为223()2g x x a =+,其对称轴为0x =,所以根据二次函数的性质可得223()2g x x a =+在11,22⎡⎤-⎢⎥⎣⎦可得到最小值2(0)g a =,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,只需()()max min f x g x ≥,所以28a a ≥,解得108a ≤≤,因为0a >,所以a 的取值范围为108a <≤,故选:D 二、多选题7.(23-24高一上·辽宁丹东·月考)12x x m -++≥对于x ∀∈R 恒成立,则m 的可能取值为()A .1B .2C .3D .4【答案】ABC【解析】设()12f x x x =-++,则()21,1123,2121,2x x f x x x x x x +≥⎧⎪=-++=-<<⎨⎪--≤-⎩,则()f x的图象如下所示:由图可知当21x -≤≤时()f x 取得最小值3,即123x x -++≥当且仅当21x -≤≤时取等号,因为12x x m -++≥对于x ∀∈R 恒成立,所以3m ≤,故符合题意的有A 、B 、C.故选:ABC8.(23-24高一上·湖南株洲·月考)已知函数()21([2,2])f x x x =-+∈-,2()2([0,3])g x x x x =-∈,则下列结论正确的是()A .[2,2]x ∀∈-,()f x a >恒成立,则a 的取值范围是(,3)-∞-B .[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,3)-∞-C .[0,3]x ∃∈,()g x a =,则a 的取值范围是[1,3]-D .[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =【答案】AC【解析】对于A ,因为()21([2,2])f x x x =-+∈-单调递减,所以min ()3f x =-,又因为()f x a >恒成立,则a 的取值范围是(,3)-∞-,故A 正确;对于B ,因为()21([2,2])f x x x =-+∈-单调递减,所以max ()5f x =,又[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,5)-∞,故B 错误;对于C ,2()2([0,3])g x x x x =-∈在[]0,1单调递减,(]1,3单调递增,所以min max ()(1)1,()(3)3,g x g g x g ==-==所以()[1,3]g x ∈-,因为[0,3]x ∃∈,()g x a =,所以a 的取值范围是[1,3]-,故C 正确;对于D ,由上述过程可知[]()3,5f x ∈-,()[1,3]g x ∈-,则不能保证[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =,例如:当2x =-时,不存在[0,3]t ∈,()()f x g t =,故D 错误.故选:AC.三、填空题9.(23-24高一上·广东·月考)已知函数1()2xf x ⎛⎫= ⎪⎝⎭与2()24(0)g x x ax a =-+>,若对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是.【答案】,2⎫+∞⎪⎪⎣⎭【解析】1()2xf x ⎛⎫= ⎪⎝⎭,函数单调递减,1(0,1)x ∈,故()11,12f x ⎛⎫∈ ⎪⎝⎭,对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,故()2g x 的值域包含1,12⎛⎫⎪⎝⎭,①当02a <<时,()()2min 142g x g a a ==-≤,解得22a ≤<,此时()()max 041g x g ==≥,成立;②当2a ≥时,函数在[]0,2上单调递减,()()max 041g x g ==≥,成立,()()min 12842g x g a ==-≤,解得158a ≥,即2a ≥;综上所述:2a ⎫∈+∞⎪⎪⎣⎭.故答案为:,2⎫+∞⎪⎪⎣⎭10.(23-24高一上·广东佛山·期中)已知函数()f x x x =,若对任意[],2x t t ∈+,不等式()()29f x t f x +≤恒成立,则实数t 的取值范围是.【答案】1⎡⎤⎣⎦【解析】因为()f x x x =,则有:当0x ≥时,()2f x x =,此时()f x 单调递增;当0x ≤时,()2f x x =-,此时()f x 单调递增,且()00f =,所以()f x 为R 上的连续函数且在R 上单调递增.又因为()()99333===f x x x x x f x ,则()()()293+≤=f x t f x f x ,可得23+≤x t x ,即23≤-t x x 对任意[],2x t t ∈+恒成立,注意到23y x x =-的图象开口向下,则()()223322t t t t t t ⎧≤-⎪⎨≤+-+⎪⎩,解得01≤≤t ,所以实数t 的取值范围为1⎡⎤⎦.故答案为:1⎡⎤⎣⎦.11.(23-24高一下·上海嘉定·月考)已知函数()()22log 1f x x =+,()12xg x m ⎛⎫=+ ⎪⎝⎭,若对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,则实数m 的取值范围为.【答案】[)1,-+∞【解析】因为[]11,1x ∈-,所以[]2111,2x ∈+,所以()[]221log 10,1x ∈+,即()[]10,1f x ∈,由[]21,1x ∈-,则211,222xm m m ⎡⎤+∈++⎢⎥⎛⎪⎭⎣⎫ ⎦⎝,即()21,22g x m m ⎡⎤∈++⎢⎥⎣⎦,因为对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,所以()()12max max f x g x ≤,则21m +≥,解得1m ≥-,即[)1,m ∈-+∞.故答案为:[)1,-+∞.四、解答题12.(22-23高一上·江西赣州·期中)函数()log a f x b x =⋅(其中a ,b 为常数,且0a >,1a ≠)的图象经过点(),4A a ,()4,8B .(1)求函数()f x 的解析式;(2)若不等式110x xm b a ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,求实数m 的取值范围.【答案】(1)2()4log f x x =;(2)2m ≤【解析】(1)由题意得log 4log 48a a b a b ⋅=⎧⎨⋅=⎩,解之得24a b =⎧⎨=⎩,故2()4log f x x =;(2)由(1)知11042x xm ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,即1142x x m ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,所以max 1142x x m ⎡⎤⎛⎫⎛⎫≤-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,因为2211111114222224x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由于[]1,2x ∈-得11,224x ⎡⎤∈⎢⎥⎣⎦,所以当122x =即=1x -时,1142x x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭有最大值为2,因此m 的取值范围为2m ≤.13.(23-24高一上·内蒙古赤峰·期末)已知函数()()21log 212x f x x =+-.(1)解不等式()112f x x >+;(2)设()()g x f x x =+,()22h x x x m =-+,若对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,求m 的取值范围.【答案】(1)(),0∞-;(2)(,2]-∞【解析】(1)因为()112f x x >+,所以()211log 21122x x x +->+,所以()22221log 211log log 22x x xx ++->⇔>,由对数函数2log y x =的单调性可知:2122x x +>,所以21x <,由指数函数2x y =的单调性可知:0x <,所以不等式的解集为(),0∞-;(2)()()21log 212x g x x =++,因为对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,所以()g x 在[]0,4上的最小值不小于()h x 在[]0,5上的最小值;因为()21log 21,2x y y x =+=均在[]0,4上单调递增,所以()21()log 212x g x x =++在[]0,4上单调递增,所以()()min 01g x g ==,因为()()22211h x x x m x m =-+=-+-,所以()h x 在[]0,1上单调递减,在[]1,5上单调递增,所以()()min 11h x h m ==-,所以11m ≥-,解得2m ≤,所以m 的取值范围为(,2]-∞.。
高中数学竞赛讲义(免费)(完整资料).doc
【最新整理,下载后即可编辑】高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
高中数学5个不等式教案
高中数学5个不等式教案
课题:高中数学不等式
目标:学生能够理解和解决各种不等式问题,掌握不等式的基本性质和解法方法。
一、引入:
通过一个简单的问题引入不等式的概念,让学生明白不等式的意义和作用。
二、基本性质:
1. 不等式的基本性质:大小关系、加减乘除,等不等式的性质。
2. 不等式的转化:加减法转化、乘除法转化等。
3. 不等式的表示:解集表示法、图示法等。
三、解不等式:
1. 一元一次不等式:解一元不等式常用的方法和技巧。
2. 一元二次不等式:解一元二次不等式的方法和步骤。
3. 复合不等式:解复合不等式的方法和技巧。
四、不等式的应用:
1. 不等式在几何中的应用:三角形不等式等。
2. 不等式在实际问题中的应用:最大最小值问题、优化问题等。
五、综合练习:
安排一些综合性的练习题,让学生运用所学知识解决问题。
六、总结:
对本节课所学的内容进行总结,强化学生对不等式知识的理解和掌握。
七、作业:
布置适量的作业,巩固所学内容。
以上是一份高中数学不等式教案范本,教师可根据实际情况和教学需要进行具体调整和安排。
高中数学的几个不等式教案
高中数学的几个不等式教案
教学目标:
1. 了解不等式的基本概念与性质
2. 掌握解不等式的方法与技巧
3. 能够独立解决不等式问题
教学内容:
1. 不等式的定义及表示方法
2. 不等式的性质
3. 解不等式的方法
4. 不等式的应用
教学步骤:
1. 热身:利用简单的不等式练习引出不等式的概念
2. 导入:介绍不等式的定义及表示方法
3. 讲解:讲解不等式的性质,如加减乘除不等式、绝对值不等式等
4. 演示:演示解不等式的方法,如化简、整理、分析不等式中的关系等
5. 练习:让学生进行一些不等式练习,巩固所学知识
6. 拓展:引导学生探讨不等式的应用领域,如最值问题、应用题等
7. 总结:总结本节课的重点内容并布置作业
教学反馈:
1. 学生完成作业后,进行批改并给予反馈
2. 收集学生对不等式学习过程中的疑问,进行解答与指导
教学资源:
1. 教材:高中数学教材中的相关章节
2. 教具:黑板、彩色粉笔、教学PPT等
3. 练习册:针对不等式的练习题
教学评估:
1. 课堂学习表现评定
2. 作业完成情况评定
3. 学生解决不等式问题的能力评定
教学总结:
通过本节课的教学,学生应该能够掌握不等式的基本概念与性质,掌握解不等式的方法与技巧,提高解决数学问题的能力。
同时,也对不等式的应用有一定的了解与认识。
(完整版)高中数学竞赛讲义(九)──不等式
(12)
a>b>0, nCN+=an>bn;⑻a>b>0, nCN+=^^>^/^;
a>0, |x|<aQ -a<x<a, |x|>a= x>a或x<-a;
a, b€ R,则|a|-|b| < |a+b| <|a|+|b|;
a, bC R,贝U (a-b)2a2+b2> 2ab;
x, y, z € R+,则x+y>2*/^, x+y+z—刊Q电
-|b| w b与师以-(|a|+|b|) wa+bq|嘛|雄|a+b| < |a|-+ |b|T面再证(10)的左边,
|a|=|a+b-b| w |a+b|+回所以|a|-|b| w |a+b所以(10)成立;(11)显然成立;下证(12)
为x+y-2而=(质-6)'>0,所以x+yP历,当且仅当x=y时,等号成立,再证另
工工
… …x+y —f+e一耳+沙,原不等式成立。
(6)放缩法,即要证A>B,可证A>C1, 01>C2,---,Cn-1>Cn, Cn>B(nCN+).
1 +--i--+,+---《厘(用主2).
例8求证:2 3 2*-1
【证明】
因为r: 2而=白+疝+疯>3^c~o~h=3狙瓦,所以原不等式成立。
1
例4已知实数a, b, c满足0<awbwc2,求证:。。一切 却一右)8(1-浦
高中数学竞赛解题方法篇(不等式)
高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。
希望对广大喜爱竞赛数学的师生有所帮助。
不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。
不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。
数学学科竞赛教案高中版
数学学科竞赛教案高中版
主题:高中数学竞赛备考
目标:通过本课的学习,学生能够掌握高中数学竞赛常见题型的解题技巧,提升自己的数学竞赛能力。
一、教学内容:
1. 数列与级数
2. 不等式与方程
3. 函数与极限
4. 解析几何
5. 数学归纳法
二、教学步骤:
1. 导入:通过介绍数学竞赛的重要性和意义,激发学生学习数学竞赛的兴趣。
2. 概念讲解:逐个介绍竞赛常见的数学概念和题型,帮助学生理解和掌握知识点。
3. 解题技巧:针对每种题型,讲解解题的方法和技巧,帮助学生提高解题效率。
4. 练习:提供一定数量的练习题,让学生在课堂上尝试解题,巩固所学知识。
5. 反馈:逐个讲解练习题的解法,指出学生容易犯的错误,并纠正。
6. 拓展:引导学生拓展思维,探讨数学竞赛中更深层次的问题,并提供相关资料让学生在课后继续学习。
三、教学评估:
1. 学生在课堂练习中的表现。
2. 学生对于解题技巧的掌握程度。
3. 学生在课后练习中的成绩提升情况。
四、教学反思:
根据学生的反馈和表现,及时调整教学方法和内容,不断提升教学质量,帮助学生在数学竞赛中取得更好的成绩。
高二数学竞赛班二试不等式讲义.-Schur不等式、Schur分拆
高二数学竞赛班二试讲义Schur (舒尔)不等式、Schur (舒尔)分拆班级姓名一、知识要点:定理1.Schur 不等式:若0,0,0x y z ≥≥≥,α为实数,则()()0x x y x z α--≥∑,当且仅当x y z ==或0,x y z ==的置换时,等号成立。
证明:由对称性可假定x y z ≥≥,令123x t t t =++,23y t t =+,3z t =,其中,123,,t t t 是非负实数,则左端()()()()()()x x y x z y y z y x z z y z x ααα=--+--+--12311223213212()()()()()t t t t t t t t t t t t t t ααα=+++++-++2212311232331232()[()()]0t t t t t t t t t t t t t t ααααα=+++++-+++≥定理2.Schur 不等式推广:若0,0,0x y z ≥≥≥,k 为非负实数,则(1)()()()0k yz x y x z --≥∑;(2)()()()0k x y z x y x z +--≥∑;(3)()()()()0k yz y z x y x z +--≥∑.证明:(1)()()()0()()()0k k k yz x y x z xyz x x y x z ---≥⇒--≥∑∑成立(2)由对称性可假定x y z ≥≥,令123x t t t =++,23y t t =+,3z t =,其中,123,,t t t 是非负实数,则左端()()()()()()()()()k k kx y z x y x z y z x y z y x z x y z y z x =+--++--++--1232311223123213123212()(2)()()(2)()(22)()k k k t t t t t t t t t t t t t t t t t t t t t t =++++++++-++++22123231321231232323123312312()(2)(22)[()(2)()(2)(22)]0k k k k k t t t t t t t t t t t t t t t t t t t t t t t t t t t =++++++++++-++++++≥①分01k ≤<和1k ≥讨论可证明①(3)同理可证定理3.三元齐三次对称多项式(,,)f x y z 可以唯一的表示为3.1 3.2 3.3(,,)f x y z ag bg cg =++,其中 3.1()()g x x y x z =--∑,3.2()()()g y z x y x z =+--∑,3.3g xyz =并且当,,0x y z ≥时,,,0(,,)0a b c f x y z ≥⇔≥先给出系数,,,a b c d 的简单确定方法:(1,1,0)(1,0,0),,(1,1,1)2f a f b c f ===定理4.三元齐四次对称多项式(,,)f x y z 可以唯一的表示为4.1 4.2 4.3 4.4(,,)f x y z ag bg cg dg =+++,其中24.1()()g x x y x z =--∑,4.2()()()g x y z x y x z =+--∑,4.3()()g yz x y x z =--∑,4.4()g xyz x y z =++并且当,,0x y z ≥时,,,,0(,,)0a b c d f x y z ≥⇔≥.先给出系数,,,a b c d 的简单确定方法:(1,1,1)(1,0,1)(1,0,0),(1,1,0),34f c f a f c f d b a --====+定理5.三元齐五次对称多项式(,,)f x y z 可以唯一的表示为5.1 5.2 5.3 5.4 5.5(,,)f x y z ag bg cg dg eg =++++,其中35.1()()g x x y x z =--∑,25.2()()()g x y z x y x z =+--∑,5.3()()()g yz y z x y x z =+--∑,5.4()()g xyz x y x z =--∑5.5()g xyz xy yz zx =++并且当,,0x y z ≥时,,,,,0(,,)0a b c d e f x y z ≥⇔≥.先给出系数,,,a b c d 的简单确定方法(i 为虚数单位):(1,1,0)(1,1,1)(1,,0)(1,,1)82(1,0,0),,,232(1)22f f f i c f i i b e a a f c e b d i -++-====+=+定理6.三元齐六次对称多项式(,,)f x y z 可以唯一的表示为6.1 6.2 6.3 6.4 6.5 6.6 6.7(,,)f x y z ag bg cg dg eg mg ng =++++++,其中46.1()()g x x y x z =--∑,36.2()()()g x y z x y x z =+--∑,2226.3()()()g x y y z z x =---26.4()()()g yz x y x z =--∑,6.5()()g xyz x x y x z =--∑6.6()()()g xyz y z x y x z =+--∑26.7()g xyz =并且当,,0x y z ≥时,,,,,,,0(,,)0a b c d e m n f x y z ≥⇔≥.先给出系数,,,a b c d 的简单确定方法(i 为虚数单位):(1,0,0),(1,1,0),(1,1,1)a f d f n f ===由(0,1,1)444(0,1,)222f abcd f i i a b c d -=-+-⎧⎨=--+⎩,将,a d 代入解得,b c 由(1,1,1)48448(1,1,)216668f a b d e m n f i a c d e m n -=-++-+⎧⎨-=+--+-⎩,将,,,,a b c d n 代入解得,e m 二、例题精析例1.已知,,x y z 是非负实数,且满足1x y z ++=。
2019-2020学年高一数学人教A版(2019)必修一教案:第二章一元二次函数、方程和不等式等式性质与不等式性质
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质教学设计学过程二.知识探究【师】某钢铁厂要把长度为4000mm的钢管截成500mum和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根.根据题意,应有如下的不等关系:归纳小结:数运算性质与大小顺序之间的关系2比较两个实数a,b大小的方法;(1)作差a-b-—变形—与0比较—得出结论,1.(2)作商ab———变形-一与1比较一得出结论(作商的前提是两个数同号)三、典例分析:试比较下列各组数的大小,其中x R∈(1)61x+与42x x+61x+42()x x-+6421x x x=--+422(1)(1)x x x=---24(1)(1)x x=--222(1)(1)x x=-+当1x=±时, 61x+42()x x=+;当1x≠±,61x+42()x x>+.(2) a ba b与b aa b(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负.1.由以上不等关系,可得不等式组:学生分组讨论自主探究,教师巡视指导,作出评价。
培养学生分析,抽象能力、感受不等式发现和推导过程。
引导学生共同分析解决问题,熟悉并强化理解。
分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.引导学生学会自己总结,让学生进一步体会知识的形成、发展、完善的过程.板书设计等式性质与不等式性质引入知识探究方法归纳不等式和基本性质典例分析小结课堂练习。
高中数学竞赛均值不等式讲义
⾼中数学竞赛均值不等式讲义均值不等式1.均值不等式知识点1: ⼆元均值不等式可以推⼴到n 元,即:设,,,123a a a a n 为n 个⾮负实数,则12na a a n+++≥123a a a a n ====).如何证明?知识点2: 设,,,123a a a a n 为n 个⾮负实数,n Q, 12nn a a a A n+++=,n G =, 12111n nnH a a a =++,则n n n n Q A G H ≥≥≥(等号成⽴当且仅当123a a a a n ====) 更⼀般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=11()ni i a nαα=∑,特别的,我们有:lim ()n f G αα→=,11()()ni i a f nααα==∑为关于α的增函数.知识点3:重要结论 (1)222,,,.a b c R a b c ab bc ac ∈++≥++(2) ()2,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5),,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++(6) 222;2a a a b b a b b-≥-+≥(a,b,c>0)(7) 2222221()()3a b b c c a a b c a b c ++≤++++(a,b,c>0)(8)正实数(1,2,3...)i a i n =,则2111n ni i i ia n a ==?≥∑∑(当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++知识点4:加权平均值不等式已知12+...1(0,1,2.,,,)n i w w w w i n +=>=,则对任意正实数12112212........n w w w n n n w a w a w a a a a +++≥.均值不等式的使⽤前要注意两个⽅⾯,⼀个是观察题⽬中不等式证明⽅向,另外⼀个是取等条件,根据这些信息,相应去选择均值不等式的技巧、模型,不断尝试,最终解决问题。
R0028,高中数学竞赛讲义---不等式习题_SOS方法
不等式SOS 方法1.设a 、b 、c 为正实数,则222a ab c b c ≥++∑∑证:左-右222a a b c b c ⎛⎫=- ⎪++⎝⎭∑222222()()a b a c ab ac b c b c +--=++∑22()()()()ab a b ca c a b c b c ---=++∑ 222211()(()()()()ab a b b c b c c a c a =-⋅-++++∑222222()()0()()()()ab a b a ab b c b c c a c a -=+≥++++∑∑∑ 2.设a 、b 、c >0,求证: 3221223a a a ab b ≥-+∑∑ ① 证:①322()02233a a ab a ab b -⇔--≥-+∑2222()022b a a b a ab b -⇔-≥-+∑ ② 当,,(0,2)a b c b c a ⎧⎫⊂⎨⎬⎩⎭时,②已成立。
下设,,(0,2)a b c b c a ⎧⎫⊄⎨⎬⎩⎭,设{}max ,,a a b c =Ⅰ。
a b c ≥≥ⅰ)2a b ≥时,∵322222a a a ab b ≥-+,32223b ba abc ≥-+(2)()0b b c b c ⇔+-≥也成立,∴32222233a ab a b ca ab b ++≥+≥-+∑ ⅱ)2bc ≥,类似可得32222323a ab a b ca ab b ++≥+≥-+∑.当a c b ≥≥,则此时必有2a b ≥.先证:32222a a ab c -+39b c ≥-322227530c bc b c b ⇔-++≥ 增量易得再证:32229223a c c a c c ca a +-+≥-+3226191420a a c ac ⇔-++≥.易得 则:3322222239223a abc c a b ca ab bc ca a ++≥+-+≥-+-+∑3.设,,a b c R +∈,求证:()2222113a a bc ab a b ≤++∑∑∑∑。
高中数学不等式及应用教案
高中数学不等式及应用教案
目标:学生能够掌握高中数学常见的不等式类型,并能够灵活运用不等式进行解题。
一、导入(5分钟)
老师通过展示一道简单的不等式题目引导学生思考,如2x + 3 > 7,然后请学生讨论这个
不等式的意义以及如何解决这个不等式。
二、概念讲解(15分钟)
1. 直接比较法:介绍不等式的大小关系,引导学生通过对不等式两边进行比较来解决问题。
2. 代数法:介绍通过代数运算来解决不等式问题,如加减乘除、移项、取对数等方法。
三、练习与讨论(20分钟)
1. 让学生通过练习题目来巩固所学的不等式解题方法。
2. 引导学生分组讨论解答过程,分享解题思路。
四、拓展应用(10分钟)
1. 给学生提供一些拓展应用题目,让学生尝试运用不等式解决实际生活中的问题。
2. 引导学生思考如何将不等式运用到其他数学领域中,如几何、概率等。
五、总结与作业布置(5分钟)
老师对本堂课所学内容进行总结,强调不等式解题的重要性和灵活性。
布置一些相关的作
业让学生进行巩固复习。
本节课的教学目标是让学生掌握不等式的基本概念和解题方法,并能够灵活运用不等式进
行解题。
通过多样化的练习和应用,帮助学生提高数学解题能力和逻辑思维能力。
高中数学第六章不等式教案
高中数学第六章不等式教案教学目标:学习并掌握不等式的基本概念,学会解决一元一次不等式和一元二次不等式;通过练习和应用,提高学生解题的能力和思维逻辑。
教学内容:1. 不等式的基本概念2. 一元一次不等式的解法3. 一元二次不等式的解法4. 不等式的综合运用教学重点和难点:一元一次不等式和一元二次不等式的解法,以及不等式的综合运用。
教学方法:讲授相结合,引导学生主动思考和解题练习。
教学过程:一、导入(5分钟)教师引导学生回顾上节课所学的不等式相关知识,激发学生对不等式的兴趣和好奇心。
二、讲解不等式的基本概念(10分钟)1. 引导学生理解不等式的定义和符号表示。
2. 介绍不等式的性质和基本性质。
三、讲解一元一次不等式的解法(15分钟)1. 讲解一元一次不等式的基本求解方法。
2. 通过例题解析,让学生掌握解题技巧和步骤。
四、讲解一元二次不等式的解法(15分钟)1. 引导学生理解一元二次不等式的定义和性质。
2. 通过例题讲解,让学生掌握一元二次不等式的解法方法。
五、综合训练(15分钟)1. 给学生提供一些练习题,让他们通过练习加深对不等式的理解。
2. 引导学生探讨不等式在生活和实际问题中的应用。
六、作业布置(5分钟)布置相应的作业,加强学生对不等式知识的巩固和提高。
七、课堂小结(5分钟)教师对今天的教学内容进行总结,并鼓励学生多多练习,提高解题的能力和思维逻辑。
教学反思:通过本节课的教学,学生应该能够掌握不等式的基本概念和解法方法,培养其解题思维和逻辑推理能力,进一步提高数学学习的兴趣和能力。
不等式高中数学教案
不等式高中数学教案教学目标:1. 能够理解不等式的概念和性质。
2. 能够解决简单的一元不等式。
3. 能够应用不等式解决实际问题。
教学重点和难点:重点:不等式的概念和性质,一元不等式的解法。
难点:应用不等式解决实际问题。
教学准备:1. 教师准备PPT课件,包括不等式的定义、性质和解法。
2. 打印不等式练习题目,用于课堂练习。
教学步骤:一、导入(5分钟)1. 引导学生回顾线性方程的解法,了解不等式的概念。
2. 提出一个简单的不等式问题,让学生思考如何解决。
二、讲解不等式的定义和性质(15分钟)1. 介绍不等式的定义,即含有不等号的等式。
2. 讲解不等式的性质,包括可加性、可乘性和转化性等。
三、解决一元不等式(20分钟)1. 讲解一元不等式的解法,包括加减法解法、乘除法解法和开平方解法。
2. 给学生提供几个简单的一元不等式练习题目,让他们尝试解答。
四、应用不等式解决实际问题(15分钟)1. 引导学生思考如何应用不等式解决实际问题,例如长度、面积和体积等问题。
2. 给学生一个实际问题案例,让他们运用所学知识进行解答。
五、总结复习(5分钟)1. 通过回顾本节课的内容,强化学生对不等式的理解和运用能力。
2. 鼓励学生积极思考和练习不等式相关的题目,提高解决问题的能力。
教学反思:通过本节课的教学,学生应该能够掌握不等式的概念和性质,能够解决简单的一元不等式,并能够应用不等式解决实际问题。
在接下来的教学中,需要继续强化学生对不等式知识的理解和应用能力,提高他们的数学思维和解决问题的能力。
2019-2020学年新人教A版必修一 基本不等式及其应用 教案
1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值. 2.函数y =x +1x的最小值是2吗?提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( × )(2)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (3)(a +b )2≥4ab (a ,b ∈R ).( √ ) (4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二 教材改编2.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80B .77C .81D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max=81.3.若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 易错自纠4.“x >0”是“x +1x≥2成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 当x >0时,x +1x≥2x ·1x =2.因为x ,1x同号,所以若x +1x≥2,则x >0,1x>0,所以“x >0”是“x +1x≥2成立”的充要条件,故选C.5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+2B .1+3C .3D .4 答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( ) A .2B .3C .4D .5 答案 D解析 由3x +y =5xy ,得3x +y xy =3y +1x=5,所以4x +3y =(4x +3y )·15⎝ ⎛⎭⎪⎫3y +1x=15⎝⎛⎭⎪⎫4+9+3y x +12x y≥15(4+9+236)=5, 当且仅当3y x =12xy,即y =2x 时,“=”成立,故4x +3y 的最小值为5.故选D.题型一 利用基本不等式求最值 命题点1 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. 命题点2 常数代换法例2(2019·大连模拟)已知首项与公比相等的等比数列{a n }中,满足a m a 2n =a 24(m ,n ∈N *),则2m +1n的最小值为( )A .1B.32C .2D.92答案 A解析 由题意可得,a 1=q , ∵a m a 2n =a 24, ∴a 1·qm -1·(a 1·qn -1)2=(a 1·q 3)2,即q m·q 2n=q 8, 即m +2n =8.∴2m +1n =(m +2n )⎝ ⎛⎭⎪⎫2m +1n ×18=⎝ ⎛⎭⎪⎫2+m n +4n m +2×18≥()4+24×18=1.当且仅当m =2n 时,即m =4,n =2时,等号成立. 命题点3 消元法例3已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b ( )A .有最大值145B .有最小值145C .有最小值3D .有最大值3答案 B解析 ∵a 2-b +4≤0,∴b ≥a 2+4, ∴a +b ≥a 2+a +4.又∵a ,b >0,∴aa +b ≤aa 2+a +4,∴-aa +b≥-aa 2+a +4,∴u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4=3-1a +4a+1≥3-12a ·4a+1=145, 当且仅当a =2,b =8时取等号.故选B.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (3)条件最值的求解通常有三种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法;三是配凑法.跟踪训练1(1)(2019·四平质检)设x >0,y >0,若x lg2,lg 2,y lg2成等差数列,则1x +9y的最小值为( ) A .8B .9C .12D .16 答案 D解析 ∵x lg2,lg 2,y lg2成等差数列, ∴2lg 2=(x +y )lg2,∴x +y =1. ∴1x +9y=(x +y )⎝ ⎛⎭⎪⎫1x +9y ≥10+2y x ·9xy=10+6=16, 当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.故选D.(2)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c的最小值是( ) A .2B .3C .4D .6 答案 B解析 ∵a ,b ,c 都是正数,且a +b +c =2, ∴a +b +c +1=3, 且a +1>0,b +c >0. ∴4a +1+1b +c =13·(a +1+b +c )·⎝ ⎛⎭⎪⎫4a +1+1b +c=13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3. 当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.故选B. 题型二 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4(2018·重庆诊断)已知圆O 的方程为x 2+y 2=1,过第一象限内圆O 外的点P (a ,b )作圆O 的两条切线PA ,PB ,切点分别为A ,B ,若PO →·PA →=8,则a +b 的最大值为( )A .3B .3 2C .4 2D .6答案 B解析 根据题意,结合向量数量积的定义式, 可求得PO →·PA →=|PA →|2=8,所以可求得|PO |2=9, 即a 2+b 2=9,结合基本不等式, 可得a +b ≤2(a 2+b 2)=32, 当且仅当a =b =322时取等号,故选B.命题点2 求参数值或取值范围例5(2018·中山模拟)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a的最小值为( ) A .2 B .4 C .6 D .8答案 B解析 已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵1+a +y x +axy≥a +2a +1, 当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.思维升华求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练2(1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53答案 C解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12 ≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +b ab的最小值是( ) A .10 B .9 C .8 D .3 2答案 B解析 由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b , 由函数f (x )的图象在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2a +b =2,所以8a +b ab =1a +8b =12⎝ ⎛⎭⎪⎫1a +8b (2a +b )=12⎝⎛⎭⎪⎫10+b a +16a b ≥12⎝ ⎛⎭⎪⎫10+2b a ·16a b =12(10+8)=9,当且仅当b a =16a b ,即a =13,b =43时等号成立, 所以8a +bab的最小值为9,故选B.利用基本不等式求解实际问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法构建模型解决问题.过程主要包括:在实际情景中从数学的视角发现问题、提出问题、分析问题、建立模型、确定参数、计算求解、检验结果、改进模型,最终解决实际问题.例某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2, ∴x =3-2m +1, 每万件产品的销售价格为1.5×8+16xx(万元),∴2019年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1⇒m =3(万元)时, y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.素养提升 利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8答案 B解析 f (x )=x 2+4|x |=|x |+4|x |≥24=4,当且仅当x =±2时,等号成立,故选B.2.若x >0,y >0,则“x +2y =22xy ”的一个充分不必要条件是( ) A .x =y B .x =2y C .x =2且y =1 D .x =y 或y =1答案 C解析 ∵x >0,y >0,∴x +2y ≥22xy ,当且仅当x =2y 时取等号.故“x =2且y =1”是“x +2y =22xy ”的充分不必要条件.故选C. 3.(2018·潍坊模拟)已知正数a ,b 满足a +b =1,则4a +1b的最小值为( )A.53 B .3 C .5 D .9答案 D解析 由题意知,正数a ,b 满足a +b =1, 则4a +1b =⎝ ⎛⎭⎪⎫4a +1b (a +b )=4+1+4b a+ab≥5+24b a ·ab=9,当且仅当4b a =a b ,即a =23,b =13时等号成立,所以4a +1b的最小值为9,故选D.4.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A .8 B .6 C .4 D .2答案 C解析 由lg a +lg b =lg(a +b ),得lg(ab )=lg(a +b ),即ab =a +b ,则有1a +1b=1,所以a+b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4,故选C.5.已知函数f (x )=e x 在点(0,f (0))处的切线为l ,动点(a ,b )在直线l 上,则2a +2-b的最小值是( ) A .4 B .2 C .2 2 D. 2答案 D解析 由题意得f ′(x )=e x ,f (0)=e 0=1,k =f ′(0)=e 0=1.所以切线方程为y -1=x -0,即x -y +1=0,∴a -b +1=0,∴a -b =-1,∴2a+2-b≥22a ·2-b =22a -b=22-1= 2⎝ ⎛⎭⎪⎫当且仅当a =-12,b =12时取等号,故选D. 6.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0) C.2aba +b≤ab (a >0,b >0) D.a +b2≤a 2+b 22(a >0,b >0)答案 D解析 由AC =a ,BC =b ,可得圆O 的半径r =a +b2,又OC =OB -BC =a +b 2-b =a -b 2, 则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b 22, 再根据题图知FO ≤FC ,即a +b 2≤a 2+b 22,当且仅当a =b 时取等号.故选D.7.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.答案 6解析 由xy +x -y -10=0,得x =y +10y +1=9y +1+1, ∴x +y =9y +1+1+y ≥29y +1·(1+y )=6, 当且仅当9y +1=1+y ,即y =2时,等号成立. 8.(2019·吉林梅河口二中模拟)设正项等比数列{a n }的前n 项和为S n ,若S 7-S 5=3(a 4+a 5),则4a 3+9a 7的最小值为________. 答案 4解析 设正项等比数列{a n }的公比为q (q >0),∵S 7-S 5=a 7+a 6=3(a 4+a 5),∴a 7+a 6a 5+a 4=q 2=3. ∴4a 3+9a 7=4a 3+9a 3q 4=4a 3+1a 3≥24a 3·1a 3=4, 当且仅当4a 3=1a 3,即a 3=12时等号成立. ∴4a 3+9a 7的最小值为4. 9.(2018·肇庆模拟)已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,且△ABC 的面积为334,则a 的最小值为________. 答案 3解析 由题意得b 2+c 2-a 2=bc ,∴2bc cos A =bc ,∴cos A =12,∴A =π3. ∵△ABC 的面积为334,∴12bc sin A =343,∴bc =3. ∵a 2=b 2+c 2-bc ,∴a 2≥2bc -bc =bc =3(当且仅当b =c 时,等号成立),∴a ≥ 3.10.已知a ,b 为正实数,且(a -b )2=4(ab )3,则1a +1b的最小值为________. 答案 2 2解析 由题意得(a -b )2=(a +b )2-4ab ,代入已知得(a +b )2=4(ab )3+4ab , 两边同除以(ab )2得⎝ ⎛⎭⎪⎫a +b ab 2=4(ab )3a 2b 2+4ab a 2b 2 =4⎝ ⎛⎭⎪⎫ab +1ab ≥4·2ab ·1ab =8, 当且仅当ab =1时取等号.所以1a +1b≥22, 即1a +1b的最小值为2 2. 11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧ x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020,当且仅当5y x =2x y时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103. ∴1x +1y 的最小值为7+21020. 12.某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 的值最大,则x ,y 的值各为多少?解 (1)由题意可得xy =1800,b =2a ,则y =a +b +3=3a +3,所以S =(x -2)a +(x -3)b =(3x -8)a=(3x -8)y -33=1808-3x -83y (x >3,y >3). (2)方法一 S =1808-3x -83×1800x=1808-⎝ ⎛⎭⎪⎫3x +4800x ≤1808-23x ×4800x=1808-240=1568,当且仅当3x =4800x, 即x =40时等号成立,S 取得最大值,此时y =1800x=45, 所以当x =40,y =45时,S 取得最大值.方法二 设S =f (x )=1808-⎝ ⎛⎭⎪⎫3x +4800x (x >3), 则f ′(x )=4800x 2-3=3(40-x )(40+x )x 2, 令f ′(x )=0,则x =40,当0<x <40时,f ′(x )>0;当x >40时,f ′(x )<0.所以当x =40时,S 取得最大值,此时y =45.13.(2018·郑州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B,b =4,则△ABC 面积的最大值为( )A .4 3B .2 3C .3 3 D. 3 答案 A解析 ∵2a -c b =cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C=sin(B +C )=sin A .又sin A ≠0,∴cos B =12. ∵0<B <π,∴B =π3. 由余弦定理得b 2=16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时等号成立.∴S △ABC =12ac sin π3≤12×16×32=4 3. 故△ABC 面积的最大值为4 3.故选A.14.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD →+AE →=xAB →+yAC →,则1x +4y的最小值为( )A .32B .2C .52D .92答案 D解析 设AD →=mAB →+nAC →,AE →=λAB →+μAC →,∵B ,D ,E ,C 共线,∴m +n =1,λ+μ=1, ∵AD →+AE →=xAB →+yAC →=()m +λAB →+()n +μAC →, 则x +y =m +n +λ+μ=2,∴1x +4y =12⎝ ⎛⎭⎪⎫1x +4y ()x +y =12⎝⎛⎭⎪⎫5+y x +4x y ≥12⎝ ⎛⎭⎪⎫5+2y x ·4x y =92,当且仅当x =23,y =43时,等号成立.故1x +4y 的最小值为92,故选D.15.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p ·a q ,则f (n )=S n -1·(S n -1+2)+256a n的最小值为_______. 答案 30解析 当q =1时,a p +1=a p ·a 1=2a p , ∴数列{a n }是首项为2,公比为2的等比数列,∴a n =2n ,S n =2(2n-1)2-1=2n +1-2, ∴S n -1=2n -2,S n -1·(S n -1+2)=(2n -2)·2n,∴f (n )=(2n -2)2n +2562n =2n -2+2562n ≥2256-2=30,当且仅当2n =16,即n =4时,等号成立,f (n )min =30.16.已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为46, 求该正三棱柱外接球表面积的最小值.解 设BC =a ,CC 1=b ,则ab =46,底面三角形外接圆的半径为r , 则a sin60°=2r ,∴r =33a . 所以R 2=⎝ ⎛⎭⎪⎫b 22+⎝ ⎛⎭⎪⎫33a 2=b 24+a 23≥2b 24·a 23=29612=42, 当且仅当a =32b 时,等号成立. 所以该正三棱柱外接球表面积的最小值为 4π×42=162π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学竞赛教案讲义(9)不等式一、基础知识不等式的基本性质:(1)a>ba-b>0; (2)a>b, b>ca>c ; (3)a>ba+c>b+c ; (4)a>b, c>0ac>bc ;(5)a>b, c<0ac<bc; (6)a>b>0, c>d>0ac>bd;(7)a>b>0, n ∈N +a n >b n; (8)a>b>0, n ∈N +; (9)a>0, |x|<a-a<x<a, |x|>ax>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b ∈R ,则(a-b)2≥0a 2+b 2≥2ab;(12)x, y, z ∈R +,则x+y ≥2, x+y+z 前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a ≤b ,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y ≥,当且仅当x=y 时,等号成立,再证另一不等式,令,因为x 3+b 3+c 3-3abc=(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥,等号当且仅当x=y=z 时成立。
二、方法与例题1.不等式证明的基本方法。
(1)比较法,在证明A>B 或A<B 时利用A-B 与0比较大小,或把(A ,B>0)与1比较大小,最后得出结论。
例 1 设a, b, c ∈R +,试证:对任意实数x, y, z, 有x 2+y 2+z 2.))()((2⎪⎪⎭⎫ ⎝⎛++++++++≥xz b a c yz a c b xy c b a a c c b b a abc例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|.(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。
例3 已知a, b, c ∈R +,求证:a+b+c-3≥a+b(3)数学归纳法。
例5 对任意正整数n(≥3),求证:n n+1>(n+1)n.(4)反证法。
例6 设实数a 0, a 1,…,a n 满足a 0=a n =0,且a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0,…, a n-2-2a n-1+a n ≥0,求证a k ≤0(k=1, 2,…, n-1).(5)分类讨论法。
例7 已知x, y, z ∈R +,求证:.0222222≥+-++-++-yx x z x z z y z y y x(6)放缩法,即要证A>B ,可证A>C 1, C 1≥C 2,…,C n-1≥C n , C n >B(n ∈N +). 例8 求证:).2(12131211≥<-++++n n n例9 已知a, b, c 是△ABC 的三条边长,m>0,求证:(7)引入参变量法。
例10 已知x, y ∈R +, l, a, b 为待定正数,求f(x, y)=的最小值。
例11 设x 1≥x 2≥x 3≥x 4≥2, x 2+x 3+x 4≥x 1,求证:(x 1+x 2+x 3+x 4)2≤4x 1x 2x 3x 4.(8)局部不等式。
例12 已知x, y, z ∈R +,且x 2+y 2+z 2=1,求证:例13 已知0≤a, b, c ≤1,求证:≤2。
(9)利用函数的思想。
例14 已知非负实数a, b, c 满足ab+bc+ca=1,求f(a, b, c)=的最小值。
2.几个常用的不等式。
(1)柯西不等式:若a i ∈R , b i ∈R , i=1, 2, …, n ,则.)())((211212∑∑∑===≥ni i i ni in i i b a ba等号当且仅当存在λ∈R ,使得对任意i=1, 2, , n, a i =λb i ,变式1:若a i ∈R , b i ∈R , i=1, 2, …, n ,则.)()()(212112∑∑∑===≥ni i ni i ni iib a b a等号成立条件为a i =λb i ,(i=1, 2, …, n)。
变式2:设a i , b i 同号且不为0(i=1, 2, …, n),则.)(1211∑∑∑===≥ni ii ni i ni iiba ab a等号成立当且仅当b 1=b 2=…=b n .(2)平均值不等式:设a 1, a 2,…,a n ∈R +,记H n =na a a n11121+++ , G n =,A n =na a a Q n a a a n n n 2222121,+++=+++ ,则H n ≤G n ≤A n ≤Q n . 即调和平均≤几何平均≤算术平均≤平方平均。
其中等号成立的条件均为a 1=a 2=…=a n .【证明】 由柯西不等式得A n ≤Q n ,再由G n ≤A n 可得H n ≤G n ,以下仅证G n ≤A n . 1)当n=2时,显然成立;2)设n=k 时有G k ≤A k ,当n=k+1时,记=G k+1.因为a 1+a 2+…+a k +a k+1+(k-1)G k+1≥k k k k k k G a k a a a k 11121-++⋅+ ≥==+-++k kk k k k k G k G a a a k 22121112122 2kG k+1,所以a 1+a 2+…+a k+1≥(k+1)G k+1,即A k+1≥G k+1. 所以由数学归纳法,结论成立。
(3)排序不等式:若两组实数a 1≤a 2≤…≤a n 且b 1≤b 2≤…≤b n ,则对于b 1, b 2, …, b n的任意排列,有a 1b n +a 2b n-1+…+a n b 1≤≤a 1b 1+a 2b 2+…+a n b n .【证明】 引理:记A 0=0,A k =,则 =(阿贝尔求和法)。
证法一:因为b 1≤b 2≤…≤b n ,所以≥b 1+b 2+…+b k . 记s k =-( b 1+b 2+…+b k ),则s k ≥0(k=1, 2, …, n)。
所以-(a 1b 1+a 2b 2+…+a n b n )= +s n a n ≤0.最后一个不等式的理由是a j -a j+1≤0(j=1, 2, …, n-1, s n =0), 所以右侧不等式成立,同理可证左侧不等式。
证法二:(调整法)考察,若,则存在。
若(j ≤n-1),则将与互换。
因为))(()()()(nnnni n j bn i n j n j n n j i n i j n n b b a a b a a b a a b a b a b a b a --=-+-=+-+≥0,所 调整后,和是不减的,接下来若,则继续同样的调整。
至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。
例15 已知a 1, a 2,…,a n ∈R +,求证;≥++++-1221322221a a a a a a a a n n n a 1+a 2+…+a n .注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。
三、基础训练题1.已知0<x<1,a, b ∈R +,则的最小值是____________.2.已知x ∈R +,则的最小值是____________.3.已知a, b, c ∈R ,且a 2+b 2+c 2=1, ab+bc+ca 的最大值为M ,最小值为N ,则MN=___________. 4.若不等式对所有实数x 成立,则a 的取值范围是____________. 5.若不等式x+a 的解是x>m ,则m 的最小值是____________. 6.“a+b=4”是“不等式|x-a|+|x-b|<8的解集是{x|-2<x<6}”的____________条件.7.若a, b ∈R +,则a+b=1,以下结论成立是__________.① a 4+b 4≥;②≤a 3+b 3<1;③;④;⑤;⑥8.已知0<<,若,则=____________.9.已知,p=(x 1-)2+(x 2-)2+…+(x n -)2, q=(x 1-a)2+(x 2-a)2+…+(x n -a)2, 若,则比较大小:p___________q.10.已知a>0, b>0且ab, m=a a b b , n=a b b a, 则比较大小:m_________n.11.已知n ∈N +,求证:.123121122+≥+++n n n 12.已知0<a<1,x 2+y=0,求证:log a (a x+a y) ≤log a 2+.13.已知x ∈R ,,求证: 四、高考水平训练题1.已知A=asin 2x+bcos 2x, B=acos 2x+bsin 2x(a, b, x ∈R),设m=AB, n=ab, P=A 2+B 2, q=a 2+b 2,则下列结论成立的有]__________.(1)m ≥n, p ≥q;(2)m ≤n, p ≤q ;(3)m+p ≥n+q ;(4)m+q ≥n+p.2.已知a, b, c, d ∈R ,M=4(a-b)(c-d), N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小:M________N.3.若R +,且,,将从小到大排列为________.4.已知△ABC 的三边长a, b, c 满足b+c ≤2a, a+c ≤2b ,则的取值范围是________.5.若实数x, y 满足|x|+|y|≤1,则z=x 2-xy+y 2的最大值与最小值的和为________. 6.设函数f(x)=(x ∈[-4,2]),则f(x)的值域是________.7.对x 1>x 2>0, 1>a>0,记axa ax y a ax a x y +++=+++=11,11212211,比较大小:x 1x 2________y 1y 2.8.已知函数的值域是,则实数a 的值为________.9.设a ≤b<c 是直角△ABC 的三边长,若不等式恒成立,则M 最大值为________.10.实系数方程x 2+ax+2b=0的一个根大于0且小于1,另一个根大于1且小于2,则的取值范围是________.11.已知a, b, c ∈R +且满足 a+b+c ≥abc ,求证:下列三个式子中至少有两个成立:.2236,2236,2236≥++≥++≥++ba c a cbc b a 12.已知a, b ∈R +且,求证:对一切n ∈N +,(a+b)n-a n-b n≥22n-2n+1. 13.已知a, b, c ∈R +,求证:.23≥+++++a c b c b a b a c 14.设x, y, z 是3个不全为零的实数,求的最大值。