人教 中考数学(反比例函数提高练习题)压轴题训练附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).

(1)点C的坐标________;

(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;

(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,

使得S△PEF= S△CEF,求点P的坐标.

【答案】(1)(3,0)

(2)解:∵AB=CD=3,OB=1,

∴A的坐标为(1,3),又C(3,0),

设直线AC的解析式为y=ax+b,

则,解得:,

∴直线AC的解析式为y=﹣ x+ .

∵点E(2,m)在直线AC上,

∴m=﹣ ×2+ = ,

∴点E(2,).

∵反比例函数y= 的图象经过点E,

∴k=2× =3,

∴反比例函数的解析式为y=

(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).

在y= 中,当x=3时,y=1,

∴F(3,1).

过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.

设直线EF的解析式为y=a'x+b',

∴,解得,

∴y=﹣ x+ .

设直线PM的解析式为y=﹣ x+c,

代入M(3,﹣0.5),得:c=1,

∴y=﹣ x+1.

当x=1时,y=0.5,

∴点P(1,0.5).

同理可得点P(1,3.5).

∴点P坐标为(1,0.5)或(1,3.5).

【解析】【解答】解:(1)∵D(3,3),

∴OC=3,

∴C(3,0).

故答案为(3,0);

【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解

析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接

EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.

2.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).

(1)求反比例函数与一次函数的表达式;

(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数

y= 的图象有且只有一个交点,求a的值;

(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.

【答案】(1)解:∵A、B在反比例函数的图象上,

∴2×3n=(5n+2)×1=m,

∴n=2,m=12,

∴A(2,6),B(12,1),

∵一次函数y=kx+b的图象经过A、B两点,

∴,

解得,

∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.

(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,

由,消去y得到x2+(2a﹣14)x+24=0,

由题意,△=0,(21a﹣14)2﹣4×24=0,

解得a=7±2 .

(3)(0,6)或(0,8)

【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),

由题意,PE=|m﹣7|.

∵S△AEB=S△BEP﹣S△AEP=5,

∴ ×|m﹣7|×(12﹣2)=5.

∴|m﹣7|=1.

∴m1=6,m2=8.

∴点E的坐标为(0,6)或(0,8).

故答案为(0,6)或(0,8).

【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.

3.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)

(1)试确定上述比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?

(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.

【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,

∴反比例函数解析式为y= ,正比例函数解析式为y= x;

(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;

(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,

∴OE= OA= ,点D(,2),

∴点B(3,4),

又∵点F在正比例函数y= x图象上,

∴F(,),

∴DF= 、BC=3、EA= ,

∴四边形DFCB的面积为 ×( +3)× = .

【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.

4.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC的面积;

(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负

相关文档
最新文档