电涡流传感器

合集下载

电涡流传感器 参数

电涡流传感器 参数

电涡流传感器参数
电涡流传感器是一种非接触式传感器,常用于测量金属表面的位移、振动、厚度和导电性材料的缺陷检测。

它的工作原理是利用感应电流产生的涡流来检测金属表面的变化。

以下是电涡流传感器的一些参数:
1. 灵敏度,电涡流传感器的灵敏度是指其对于被测量物理量的响应程度。

通常以单位输入量引起的输出变化来衡量。

2. 频率范围,电涡流传感器的工作频率范围通常是指其能够有效地检测到变化的频率范围。

这个参数对于不同应用场景的选择非常重要。

3. 分辨率,电涡流传感器的分辨率是指其能够检测到的最小变化量。

通常以输入信号的最小变化引起的输出变化来衡量。

4. 线性度,电涡流传感器的线性度是指其输出信号与输入信号之间的线性关系程度。

较高的线性度意味着传感器输出信号与输入信号呈线性关系,便于数据处理和分析。

5. 工作温度范围,电涡流传感器的工作温度范围是指其能够正常工作的温度范围。

这个参数对于在不同环境条件下的应用非常重要。

6. 响应时间,电涡流传感器的响应时间是指其从接收到输入信号到产生输出信号的时间间隔,通常以毫秒或微秒计算。

7. 线圈尺寸,电涡流传感器的线圈尺寸对于其适用范围和测量精度有很大影响。

不同尺寸的线圈适用于不同大小或形状的被测金属表面。

以上是电涡流传感器的一些参数,这些参数将影响传感器的适用场景、测量精度和性能表现,选择合适的参数对于特定的应用非常重要。

电涡流传感器的工作原理

电涡流传感器的工作原理

电涡流传感器的工作原理
电涡流传感器是一种非接触式的测量传感器,它利用电涡流效应来检测目标物体的位置、形状和材料特性。

其工作原理如下:
1. 电涡流效应:当一个导体材料处于磁场中,通过导体的磁感应线圈,会形成一个环流在导体中流动。

这种环流被称为电涡流。

电涡流会在导体内部产生电阻,导致能量损失和热量产生。

2. 磁场感应:电涡流传感器通过磁感应线圈产生一个交变磁场。

当材料靠近传感器时,磁场感应到目标物体,并且导致目标物体内部也产生电涡流。

3. 电涡流的影响:目标物体产生的电涡流会改变传感器线圈的电感值和电阻值,从而影响传感器的输出信号。

这种改变与目标物体的特性(如电导率、导电材料的尺寸和形状等)相关。

4. 信号检测:传感器将输出信号传递给信号处理器,通过测量电感和电阻的变化来确定目标物体的位置、形状和材料特性。

总的来说,电涡流传感器通过感应目标物体内部的电涡流来检测目标物体的特性。

通过分析和处理传感器输出的信号,可以实现对目标物体的测量。

电涡流传感器(位移)

电涡流传感器(位移)

Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (

电涡流传感器结构

电涡流传感器结构

电涡流传感器结构电涡流传感器是一种常用的非接触式传感器,它利用电涡流效应来测量物体的位置、速度和形状等参数。

本文将从电涡流传感器的结构、工作原理和应用领域等方面进行详细介绍。

一、电涡流传感器的结构电涡流传感器的主要部件包括传感器头、激励线圈、接收线圈和信号处理电路等。

1. 传感器头:传感器头是电涡流传感器的核心部件,它通常由铜或铝制成。

传感器头的外形多为圆柱形,底部设置了一个槽口,用于安装激励和接收线圈。

2. 激励线圈:激励线圈通过通电产生交变磁场,激励物体产生电涡流。

激励线圈通常由多层绕组构成,以增强磁场的强度和稳定性。

3. 接收线圈:接收线圈用于检测物体产生的电涡流,并将其转化为电信号。

接收线圈通常与激励线圈相互独立,但它们之间的距离很近,以提高传感器的灵敏度和响应速度。

4. 信号处理电路:信号处理电路对接收到的电信号进行放大、滤波和解调等处理,以获得准确的测量结果。

信号处理电路通常由模拟电路和数字电路组成,可以根据不同的应用需求进行设计。

二、电涡流传感器的工作原理电涡流传感器的工作原理基于电磁感应和电涡流效应。

当激励线圈通电时,会在传感器头附近产生一个交变磁场。

当传感器头靠近导电物体时,物体内部会感应出一个感应电流,即电涡流。

这个电涡流的方向和大小与物体的导电性、形状和相对速度等因素有关。

接收线圈检测到电涡流的变化,并将其转化为电信号。

信号处理电路对接收到的电信号进行处理,得到物体的位置、速度和形状等参数。

三、电涡流传感器的应用领域电涡流传感器广泛应用于工业自动化、航空航天、汽车制造、医疗设备等领域。

1. 位移测量:电涡流传感器可用于测量物体的位移,如测量机械零件的偏心量、轴向位移等。

2. 速度测量:电涡流传感器可以测量物体的速度,如测量转子的转速、涡轮的叶片速度等。

3. 形状测量:电涡流传感器可以测量物体的形状,如测量管道的弯曲程度、板材的变形等。

4. 材料检测:电涡流传感器可以用于检测材料的导电性和缺陷,如检测金属管道的腐蚀程度、焊接接头的质量等。

电涡流式传感器测速原理

电涡流式传感器测速原理

电涡流式传感器测速原理一、引言电涡流式传感器是一种常用于测速的传感器,它通过利用涡流的产生和感应原理,实现对物体运动速度的测量。

本文将详细介绍电涡流式传感器的原理、工作过程以及在测速领域的应用。

二、电涡流效应电涡流是一种由交变磁场引起的涡旋电流,它会在导体内部产生感应电流。

当导体相对于磁场运动时,磁场变化会导致涡流的产生,涡流进一步产生与之反向的磁场,从而减弱原始磁场。

这种现象被称为电涡流效应。

三、电涡流式传感器的结构电涡流式传感器通常由激励线圈和接收线圈组成。

激励线圈产生一个变化的磁场,而接收线圈用于检测涡流的感应信号。

当被测物体在传感器附近运动时,它会影响激励磁场的分布,进而改变产生的涡流情况,接收线圈可以感应到这些变化。

通过分析接收线圈的输出信号,我们可以得到物体的运动速度信息。

四、电涡流式传感器的工作原理1.传感器激励线圈通过加电产生一个变化的磁场。

2.传感器附近的物体在运动过程中与激励磁场相互作用,产生涡流。

3.涡流的存在改变了激励磁场的分布。

4.接收线圈感应到涡流产生的磁场变化,并将其转换为电信号输出。

5.分析接收信号可以得到物体的运动速度。

五、电涡流式传感器的优势1.非接触式测量:传感器无需与被测物体直接接触,因此可以应用于高速旋转物体的测量。

2.高精度测量:电涡流式传感器的输出信号与物体的速度相关,可以实现高精度的测量。

3.快速响应:传感器对速度变化的响应速度较快,可以实时采集物体运动的信息。

六、电涡流式传感器的应用电涡流式传感器广泛应用于许多领域的测速需求中,包括但不限于以下几个方面:6.1 机械制造在机械制造领域,传感器可以用于测量机器设备的转速、运动部件的线速度等参数。

这对于生产过程的控制和监测非常重要。

6.2 汽车工业在汽车工业中,传感器可用于测量车轮转速、飞轮转速等关键参数。

这对于车辆驾驶和安全非常重要。

6.3 航空航天在航空航天领域,传感器可用于飞机、导弹等航空器的测速。

电涡流式传感器

电涡流式传感器
将f 转
换为电压
Uo
鉴频器的输出电压与输入频率成正比
4.4 电涡流传感器的应用
❖ 接近开关——又称无触点行程开关。它能在 一定的距离(几毫米至几十毫米)内检测有 无物体靠近。当物体与其接近到设定距离时, 就可以发出“动作”信号。
接近开关的核心部分 是“感辨头”,它对 正在接近的物体有很 高的感辨能力
五、电涡流表面探伤 交流电流
检测原理:
Hs
交变磁通Hp
激励线圈 检测线圈
金属物
载有交变电流的线圈产生交变磁场 Hp ,金属物平面 感应出电涡流,产生交变涡流磁场 H,s均在检测线 圈(反向差动线圈)中产生感应电动势。
(a)被测金属物上无缺陷: 穿过检测线圈的两个线圈的磁通量相等,感应电
势相互抵消,输出为零。
电涡流位移传感器的距离 与输出电压特性曲线
1—量程为10mm 2—量程为16mm 3—量程为 20mm
二、振动测量
测量悬臂梁的 振幅及频率
汽轮机叶片测试
用电涡 流探头、 调幅法 测量简 谐振动 时,探 头的输 出波形。
调频法测量振动的波形
三、转速测量
若转轴上开z 个槽(或齿),频率计的读数为f
100kHz~1MHz
i2 f (, , x, d,)
电涡流
i1
Φ
H1
H2
i2在金属导体的纵深方向并不是均匀分布的, 而只集中在金属导体的表面,这称为集肤效应 (也称趋肤效应)。
❖ 集肤效应与激励源频率f、工件的电导率、 磁导率等有关。频率f越高,电涡流的渗透
的深度就越浅,集肤效应越严重。
称为电涡流效应。
❖涡流的大小与金属体的电阻率ρ、磁导率μ、 金属板的厚度以及产生交变磁场的线圈与金 属导体的距离x、线圈的励磁电流频率f等参 数有关

电涡流式传感器

电涡流式传感器

由上式可知涡流穿透深度h与激励电流频率ƒ有关,所以涡流传 高频反射式或低频透射式 感器根据激励频率高低,可以分为高频反射式 低频透射式 高频反射式 低频透射式两 大类。
返 回 上一页 下一页
1. 高频反射式电涡流传感器
1. 线圈 2. 框架 3.框架衬套 4. 支架 5.电缆 6.插头


上一页
下一页


上一页
下一页
8.3.1 电涡流式传感器的工作原理
1. 基本原理 2.等效电路 3. 测量电路


上一页
下一页
1. 基本原理
线圈置于金属导体附近: 线圈中通以高频信号 is 正弦交变磁场 H1 金属导体内就会产生涡流 涡流产生电磁场 反作用于线圈 ,改变了电感
电感变化程度取于线圈L的外形尺寸,线圈L至金属板之间的距离, 金属板材料的电阻率和磁导率 以及is的频率等 。


上一页
下一页
3.厚度测量
电涡流式厚度计的测量原理图


上一页
下一页
4.转速测量
f N = × 60 n
返 回 上一页
f——频率值(Hz); n——旋转体的槽(齿)数; N——被测轴的转速(r/min)。
下一页
5. 涡流探伤
可以用来检查金属的表面裂纹、 可以用来检查金属的表面裂纹、热处理裂纹以 及用于焊接部位的探伤等。 及用于焊接部位的探伤等。 综合参数(x, ρ, µ)的变化将引起传感器参数的 综合参数 的变化将引起传感器参数的 变化, 变化,通过测量传感器参数的变化即可达到探 伤的目的。 伤的目的。 在探伤时导体与线圈之间是有着相对运动速度 的,在测量线圈上就会产生调制频率信号

电涡流式传感器

电涡流式传感器
传感器技术及应用
电涡流式传感器
基本概念
➢ 电涡流式传感器是一种建立在涡流效应原理上的传感器。 ➢ 涡流效应:金属导体置于变化的磁场中,在金属导体内会产生感
应电流—涡电流,这种电流在金属体内是闭合的。 ➢ 形成涡电流的两个条件:
①有交变磁场;②导电体位于交变磁场中。 ➢ 涡流传感器主要由产生交变磁场的通电线圈和置于线圈附近的金
因此可制成位移传感器、探伤检测仪、测厚仪等。
1.2 简化模型及等效电路
为了分析方便,将电
涡流式传感器模型简化为
如图3.21所示。
ras
模型中把在被测金属
导体上形成的电涡流等效
成一个短路环中的电流。
其中h由以下公式求得:
3 12
ra ri
x
h ( )1 2 0 r f
(μrρ)
h
图 3.21 电涡流式传感器简化模型
定性分析:
如图3-20,扁平线圈置于金属体附近,
当线圈中通有高频交变电流 I1 时,线圈周 围就产生交变磁场H1。置于这一磁场中的 金属导体就产生电涡流 I2,电涡流也将产 生一个新磁场H2,H2的方向总是与H1的变 化方向相反(即H2总是抵抗原磁场H1 的 变化)。由于H2的作用,且电涡流的产生 必然要消耗一部分能量,从而使产生磁场 的线圈阻抗发生变化△Z。
线圈
H1
被测导体
·

· I·1 U1
L1
I·2
L2
图3-22 涡流作用原理及等效电路
图4.3.1 电涡流传感器原理图
图4.3.2 电涡流传感器等效电路图
图中R1、L1为传感器线圈的电阻和电感。短路环可认为是 一匝短路线圈,其电阻为R2、电感为L2。线圈与导体间存在一个

3.3电涡流式传感器

3.3电涡流式传感器
24
旋转体转动时,传感器将周期性地改变输出信号,此电压经放大、 整形,可由频率计测出频率值。
这种转速传感器可实现非接触式测量,抗污染能力很强,可安装在 旋转轴近旁长期对被测转速进行监视。最高测量转速可达600000r/min。
N
f n
60
f——频率值(Hz); n——旋转体的槽(齿)数; N——被测轴的转速(r/min)。
h 5030
r f
( cm )
式中, ρ——导体电阻率(Ω·cm); r——导体相对磁导率; ƒ ——交变磁场频率(Hz)。 可见,h与激励电流频率有关,故电涡流传感器按激 励频率高低,可分为高频反射式和低频透射式两大类。
15
1. 高频反射式电涡流传感器
1. 线圈 2. 框架 3.框架衬套 4. 支架 5.电缆 6.插头
Leq
Req
由以上两式可知: 1、由于电涡流影响,线圈复阻抗的实部(等效阻抗)增大, 虚部(等效电感)减小,故线圈等效品质因数Q下降。 2、电涡流传感器的等效电气参数都是互感系数M2的函数。通 常总是利用其等效电感的变化组成测量电路,故电涡流传感器 属于电感式(互感式)传感器。
10
3. 测量电路
由式上式解得等效阻抗Z 的表达式为 h
& & & & R1 I1 j L1 I1 j MI 2 U1 ra & R I j L I 0 & & j MI1 2 2 2 2
U1
I 1

I 2
L1 L2

R2
传感器线圈
电涡流短路环
2 2 2 2 & U1 M M Z R1 2 R2 j L1 2 L2 2 2 2 2 & R2 L2 R2 L2 I1

电涡流传感器的原理

电涡流传感器的原理

电涡流传感器的原理
电涡流传感器是一种常用于测量金属表面缺陷和非磁性金属材料厚度的传感器。

其原理基于电涡流的产生和检测。

电涡流是一种由导体中感应电流产生的涡流,当导体表面处于变化的磁场中时,就会产生电涡流。

利用这种现象,可以通过测量电涡流的强度和频率来获得有关被测物体的信息。

电涡流传感器通常由一个线圈和一个交流电源组成。

当电流通过线圈时,会产生一个变化的磁场。

如果将这个线圈放置在一个金属表面附近,金属表面就会感应出电涡流。

这些电涡流会改变线圈的电流,从而可以通过测量线圈的电流变化来获取金属表面的信息。

通过改变线圈的频率和幅度,可以实现对不同金属材料和不同表面缺陷的检测。

电涡流传感器可以检测金属表面的裂纹、腐蚀、氧化等缺陷,还可以测量金属材料的厚度、导电性等参数。

由于电涡流传感器无需直接接触被测物体,所以可以实现非接触式的测量,避免了对被测物体的损坏。

电涡流传感器广泛应用于航空航天、汽车制造、金属加工等领域。

在航空航天领域,电涡流传感器可以用于检测飞机表面的裂纹和腐蚀,确保飞机的安全飞行。

在汽车制造领域,电涡流传感器可以用于检测汽车发动机的缸体和活塞的表面缺陷,提高汽车的质量和性能。

在金属加工领域,电涡流传感器可以用于测量金属材料的厚度
和导电性,保证产品质量。

总的来说,电涡流传感器利用电涡流的产生和检测原理,实现了对金属表面缺陷和非磁性金属材料厚度的高精度测量。

它具有非接触式测量、高灵敏度、高精度等优点,被广泛应用于各个领域,发挥着重要作用。

电涡流传感器

电涡流传感器
●电涡流传感器的用途
电涡流传感器能准确测量被测体(必须是金属导体)与 探头端面之间静态和动态的相对位移变化。在高速旋转机械 和往复式运动机械的状态分析,振动研究、分析测量中,对 非接触的高精度振动、位移信号,能连续准确地采集到转子 振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。
在所有与机械状态有关的故障征兆中,机械振动测量是最具 权威性的,这是因为它同时含有幅值、相位和频率的信息。 机械振动测量占有优势的另一个原因是:它能反应出机械所 有的损坏,并易于测量。从转子动力学、轴承学的理论上分 析,大型旋转机械的运动状态,主要取决于其核心—转轴, 而电涡流传感器,能直接非接触测量转轴的状态,对诸如转 子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械 问题的早期判定,可提供关键的信息。
电涡流传感器的应用
电涡流传感器系统广泛应用于电力、石油、化工、冶 金等行业和一些科研单位。对汽轮机、水轮机、鼓风机、 压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴 的径向振动、轴向位移、键相器、轴转速、胀差、偏心、 以及转子动力学研究和零件尺寸检验等进行在线测量和保 护。
一、轴向位移测量
对于许多旋转机械,包括蒸汽轮机、燃汽轮机、水轮机、离心式和 轴流式压缩机、离心泵等,轴向位移是一个十分重要的信号,过大的轴 向位移将会引起过大的机构损坏。轴向位移的测量,可以指示旋转部件 与固定部件之间的轴向间隙或相对瞬时的位移变化,用以防止机器的破 坏。轴向位移是指机器内部转子沿轴心方向,相对于止推轴承二者之间 的间隙而言。有些机械故障,也可通过轴向位移的探测,进行判别:
·轴弯曲
·轴裂纹
·电动马达空气间隙不匀 ·齿轮咬合问题
·透平叶片通道共振
·叶轮通过现象
三、偏心测量

电涡流传感器原理

电涡流传感器原理

电涡流传感器原理
电涡流传感器是一种非接触式传感器,利用电涡流效应实现测量和探测物体的性质和状态。

其工作原理基于法拉第电磁感应定律。

当交流电通过线圈时,线圈中产生变化的磁场。

当有导电物体靠近线圈时,导电物体内部也会产生电流,产生的电流会形成与线圈中电流方向相反的磁场。

这两个磁场之间的相互作用使得导电物体中的电流受到阻尼,导致电流的幅值和相位都发生改变。

电涡流传感器通过检测交流电在传感器中感应的电压变化来测量导电物体的性质和状态。

当物体靠近传感器时,感应电压的幅值和相位都会发生变化。

根据电涡流的特性,导体的电导率和导体与传感器之间的距离之间存在一定的关系。

通过测量感应电压的幅值和相位的变化,可以判断导体材料、导体的电导率以及导体与传感器之间的距离。

同时,电涡流传感器还可以应用于检测物体的运动、形状、温度等参数。

在这些应用中,根据物体的性质和状态的变化,电涡流传感器会对测量结果产生不同的响应,从而实现对物体参数的测量和探测。

总的来说,电涡流传感器利用法拉第电磁感应定律和电涡流效应,通过测量感应电压的变化来实现对导体材料、电导率以及导体与传感器之间的距离等参数的测量和探测。

电涡流传感器的工作原理

电涡流传感器的工作原理

电涡流传感器的工作原理
电涡流传感器是一种接近传感器,主要用于检测金属物体的接近程度或位置。

它基于一个称为电涡流的现象,当金属物体靠近电涡流传感器时,会在金属物体上产生感应电流。

工作原理如下:电涡流传感器由一个激励线圈和一个检测线圈组成。

激励线圈通以交流信号,产生一个变化的磁场。

当金属物体靠近激励线圈时,金属物体会产生一个感应电流,这个感应电流又会产生一个反向磁场。

反向磁场会影响到激励线圈中的磁场,使磁场发生变化。

变化的磁场又会通过感应线圈产生感应电压。

感应电压的幅值和频率与金属物体与电涡流传感器之间的距离和速度有关。

通过测量感应电压的幅值和频率,就可以确定金属物体的接近程度或位置。

一般来说,金属物体越接近电涡流传感器,感应电压的幅值越大,频率也越高。

电涡流传感器的工作原理基于电磁感应,利用金属物体产生的感应电流来检测金属物体与传感器之间的距离或位置。

它具有高精度、高灵敏度和快速响应的特点,广泛应用于工业自动化控制和非接触测量领域。

电涡流传感器的应用及其原理

电涡流传感器的应用及其原理

电涡流传感器的应用及其原理一、电涡流传感器的定义和工作原理电涡流传感器(Eddy Current Sensor)是一种利用电涡流效应来测量物体的位置、形状和金属导电性质的传感器。

它主要由一个射频发生器、一个发射线圈、一个接收线圈和一个信号处理器组成。

其工作原理是:当射频发生器发出高频电流时,经过发射线圈产生一个交变磁场。

当位置传感对象靠近或远离线圈时,它的电气特性会改变。

这种变化会引起感应电流的变化,进而改变接收线圈中的感应电压。

通过测量感应电压的变化,可以确定物体的位置和形状。

二、电涡流传感器的应用领域1. 无损检测由于电涡流传感器可以检测导体的导电性质和缺陷,因此在无损检测领域有着广泛的应用。

特别是在航空航天、汽车制造和金属加工等行业中,电涡流传感器可以用于检测金属表面的裂纹、孔洞和磨损等缺陷,用于保证产品质量和安全性。

2. 位置测量电涡流传感器可以在工业生产中用于测量物体的位置和运动状态。

例如,在机械加工中,可以使用电涡流传感器来监测机床上刀具的位置和运动轨迹,以确保加工的精度和效率。

3. 锁定和控制系统电涡流传感器还可以用于锁定和控制系统中。

例如,在磁浮列车和高速列车中,电涡流传感器可以用于测量列车与轨道之间的距离和速度,以实现自动控制和安全运行。

4. 材料分析电涡流传感器可以帮助研究人员分析材料的导电性质和组成。

在材料科学和工程学中,电涡流传感器可以用来测量材料的电导率、磁导率和电磁参数等信息,以评估材料的性能和质量。

三、电涡流传感器的优势和局限性1. 优势•非接触测量:由于电涡流传感器不需要与目标物体直接接触,因此可以避免物体表面的损伤和污染。

•高灵敏度:电涡流传感器可以检测微小的变化,对于需要高精度和精确测量的应用非常适用。

•快速响应:电涡流传感器的应答时间非常短,可以实时监测物体的状态变化。

2. 局限性•受金属材料影响:电涡流传感器主要用于检测金属导体,对于非金属导体的测量效果较差。

电涡传感器应用实验报告

电涡传感器应用实验报告

一、实验目的1. 了解电涡流传感器的工作原理及特性。

2. 掌握电涡流传感器的安装与调试方法。

3. 通过实验,验证电涡流传感器在不同材料上的测量效果。

4. 分析电涡流传感器在实际应用中的优缺点。

二、实验原理电涡流传感器是一种非接触式传感器,它利用电磁感应原理,通过检测被测物体表面的涡流来测量物体的尺寸、位置、速度等参数。

当高频交流电流通过传感器线圈时,会在被测物体表面产生涡流,涡流的大小与物体表面的电导率、磁导率及传感器与物体表面的距离有关。

通过检测涡流的大小,可以实现对物体尺寸、位置等参数的测量。

三、实验设备1. 电涡流传感器2. 高频信号发生器3. 数据采集器4. 被测物体(不同材料)5. 测量装置6. 示波器四、实验步骤1. 将电涡流传感器安装在测量装置上,确保传感器与被测物体表面平行。

2. 将高频信号发生器的输出端连接到电涡流传感器的输入端。

3. 将数据采集器的输入端连接到电涡流传感器的输出端。

4. 设置高频信号发生器的频率、幅度等参数。

5. 将被测物体放置在传感器与测量装置之间,调整传感器与物体表面的距离。

6. 打开数据采集器,记录涡流大小与传感器与物体表面距离的关系。

7. 重复步骤5和6,分别对不同的被测物体进行测量。

8. 分析实验数据,总结电涡流传感器的应用特点。

五、实验结果与分析1. 实验数据表明,电涡流传感器在不同材料上的测量效果存在差异。

对于导电性能较好的材料,如铜、铝等,涡流较大,测量精度较高;而对于导电性能较差的材料,如塑料、木材等,涡流较小,测量精度较低。

2. 随着传感器与物体表面距离的增加,涡流大小逐渐减小。

在一定的距离范围内,涡流大小与距离呈线性关系。

3. 当传感器与物体表面距离达到一定值时,涡流大小趋于稳定,说明此时涡流已达到饱和状态。

六、实验结论1. 电涡流传感器具有非接触式、响应速度快、测量精度高等优点,适用于各种场合的尺寸、位置、速度等参数的测量。

2. 电涡流传感器在实际应用中,应注意选择合适的材料、调整传感器与物体表面的距离,以提高测量精度。

电涡流式传感器

电涡流式传感器

电涡流式传感器电涡流传感器是一种能将机械位移,振幅和转速等参量转换成电信号输出的非电量电测装置。

它由探头,变换器,连接电缆及被测导体组成,是实现非接触测量的理想工具。

其最大特点就是结构简单,可以实现非接触测量,具有灵敏度高、抗干扰能力强、频率响应宽、体积小等特点,因此在工业测量领域得到了越来越广泛的应用。

一、基本工作原理当金属导体置于变化的磁场中,导体内就会产生感应电流,这种电流就像水中的漩涡那样,在导体内部形成闭合回路,我们通常称之为电涡流,称这种现象为涡流效应。

电涡流传感器就是在涡流效应的基础上建立起来的。

电涡流传感器的基本原理如图1所示。

一个通有交变电流1I 的传感线圈,由于电流的周期性变化,在线圈周围就产生了一个交变磁场1H 。

如被测导体置于该磁场范围之内,被测导体便产生涡流2I ,电涡流也将产生一个新的磁场2H ,2H 和1H 方向相反,由于磁场2H 的反作用使通电线圈的等效阻抗发生变化。

当金属导体靠近线圈时,金属导体产生涡流的大小与金属导体的电阻率ρ、磁导率μ、厚度t 、线圈与金属导体间的距离s 以及线圈激励电流的大小和角频率ω等参数有关。

如固定其中某些参数,就能按涡流的大小测量出另外一些参数。

为了简化问题,我们把金属导体理解为一个短路线圈,并用2R 表示这个短路线图2 等效电路U图1 电涡流式传感器基本原理示意图1—传感线圈;2—金属导体 2圈的电阻;用2L 表示它的电感;用M 表示它与空心线圈之间的互感;再假设电涡流空心线圈的电阻与电感分别为1R 和1L ,就可画出如图2所示的等效电路。

经推导电涡流线圈受被测金属导体影响后的等效阻抗为L j R L L R M L j L R M R R I U Z ωωωωωωω+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛++==22222222122222222111 式中R —电涡流线圈工作时的等效电阻; L —电涡流线圈工作时的等效电感。

由上式可知,等效电阻、等效电感都是此系统互感系数平方的函数。

《传感器与检测技术》 3.3电感式传感器(电涡流式)

《传感器与检测技术》 3.3电感式传感器(电涡流式)

V系列电涡流位移传感器外 形(参考浙江洞头开关厂资料)
4~20mA电涡流位移传感器外形
(参考德国图尔克公司资料)
齐平式电涡流位移传感器外形(参考德国图尔克公司资料)
齐平式传感器安装时可以不高出安装面, 不易被损害。
2. 振幅测量
(a)汽轮机和空气压缩机常用的监控主轴的径向振动的示意图 (b)测量发动机涡轮叶片的振幅的示意图 (c) 通常使用数个传感器探头并排地安置在轴附近
电涡流的贯穿深度h :
h 5000 f
式中, f:线圈激磁电流的频率,μ :金属的
磁导率。
可见, f 越高,电涡流的渗透深度越浅。
高频反射式和低频透射式
高频反射式
f : 0.1~1MHz
低频透射式
f <1 kHz
等效电路如图 , 其 中 R2 为 电 涡 流短路环等效 电阻.
I 1
R1
M
I 2
L2 R 2
U 1
L1
根据基尔霍夫定律,有:
& j L I& j MI& U& R I 1 1 1 1 2 1 & & & j MI R I j L I 0 1 2 2 2 2
• 等效电阻、等效电感:
2M 2 Req R1 2 R2 2 2 R2 L2
电磁炉内部 的励磁线圈
电磁炉的工作原理 铁质锅底产 生无数的 电涡流, 使锅底自 行发热。
高频电流通过励磁线圈,产生交变磁场
2 基本特性
等效阻抗分析 金属导体等效成一个短路环。 I I
1
M
2
等效电阻:
2 R2 ra h 1n ri

电涡流传感器教学课件

电涡流传感器教学课件

电涡流传感器的发展趋势与
06
未来展望
技术创新与改进
微型化设计
多功能化
随着微电子和纳米技术的发展,电涡 流传感器的尺寸逐渐减小,具有更高 的灵敏度和空间分辨率。
开发具有温度、压力、位移等多参数 测量能力的电涡流传感器,满足复杂 环境下的应用需求。
智能化技术
集成化、智能化的电涡流传感器能够 实现自校准、自诊断和自适应调整等 功能,提高测量精度和可靠性。
THANKS
感谢观看
当金属材料振动或位移时,其表面电涡流的强度 02 和相位会发生变化,通过测量这些变化,可以获
得金属材料的振动或位移信息。
该方法具有高灵敏度、高分辨率和高动态范围的 03 特点,广泛应用于机械、航空和航天等领域的振
动和位移测量。
液位与流量测量
电涡流传感器也可以用于液位和流量的测量。
01
输标02入题
在液位测量中,当电涡流传感器靠近液面时,由于液 体的导电性,会在液面产生电涡流,通过测量电涡流 的强度和变化规律,可以确定液位的高度。
用途
电涡流传感器广泛应用于材料检测、无损检测、自动化 控制等领域,如金属材料的厚度测量、表面裂纹检测、 气瓶压力检测等。
优缺点分析
优点
电涡流传感器具有非接触、高精度、高分辨率和高可靠性等优点,能够实现快速、准确地测量 和检测。
缺点
电涡流传感器对于导电率、磁导率和温度等参数敏感,对于不同材料和表面状态的物体,需要 进行校准和调整,同时其测量范围较小,难以测量较大尺寸的物体。
分辨率
传感器能够分辨出的最小变化量,通常以百分比 或相对于满量程的数值表示。分辨率越高,传感 器能够检测到的最小变化越小。
频率响应与带宽
频率响应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发射线圈L1和接收线圈L2分置于被测金属板的上下方。 由于低频磁场集肤效应小,渗透深,当低频 ( 音频范
围 ) 电压 u1 加到线圈 L1 的两端后,所产生磁力线的一
部分透过金属板 , 使线圈 L2 产生感应电动势 u2 。但由
于涡流消耗部分磁场能量,使感应电动势u2减少,当
金属板越厚时,损耗的能量越大,输出电动势u2越小。 因此, u2 的大小与金属板的厚度及材料的性质有关 . 试验表明u2随材料厚度h的增加按负指数规律减少,因 此,若金属板材料的性质一定,则利用u2的变化即可 测厚度。
5、时序控制
电涡流传感器
动画按扭
Z1 L1 // C1
R1
振荡器
C1 C2
L1
L2
~
Z 2 L2 // C2
U0
检波
R2
放大
图15 交流电桥测量电路
电涡流传感器
2. 调幅式电路
晶体振荡器
R L
放大
检波
滤波
输出
C
图16 调幅式测量电路原理框图
涡流传感器线圈与电容并联组成LC并联谐振回路,由 恒流源石英晶体振荡器供电。没有被测物体时,并联谐 振回路的谐振频率等于激励振荡器的频率f0,此时LC并 联回路呈现阻抗最大。
电涡流传感器
演 示 实 验
电涡流传感器
3.4.2 电涡流传感器的等效电路 短路环可以认为是一匝短路线圈,其电阻为R1、电感为
把被测导体上形成的电涡流等效成一个短路环中的电流,
L1。这样线圈与被测导体便可等效为两个相互耦合的线
圈。线圈与导体间存在一个互感M,它随线圈与导体间
距x的减小而增大。
图14 电涡流传感器等效电路
R
M
R1 L1
I
U 1
L
I 1
电涡流传感器
根据克希霍夫定律,可列出下面的方程:
R I jL I jM I1 U1
. . . .
.
jM I R1 I1 jL1 I1 0
I
.
.
.
.
U1 R j L j M
.
j M I I1 R1 jL1
CZF1 型涡流传感器的结构原理,它是将导线绕在聚四
氟乙烯框架窄槽内。
1 2 3 4
1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
6
5
电涡流传感器

M
Φi
Φe
d
ie电涡Biblioteka 传感器原理图电涡流传感器高频激励信号使线圈产生一个高频交变磁场φi,
当被测导体靠近时,在磁场作用范围的导体表层产
生电涡流ie,而电涡流又将产生一交变磁场φe阻碍外
电涡流传感器
1.若L1>L2,不论电源极性是a
点为正b点为负(D1,D4导通);
或a点为负b点为正(D2,D3导
通),d点电位总是高于c点电 位,M的指针向一个方向偏转。
2.若L1<L2,d点电位总是低于c点电位,M的指针向 另一个方向偏转。
电涡流传感器
电涡流传感器
电感测微仪
探头
测量 电桥 交流 放大 振荡器 相敏 检波
谐振回路上输出电压U0为:U0 = I0· Z
电涡流传感器
4.4 电感式传感器的应用
2 1 3
a
图17 加速度传感器 1 悬臂梁;2 差动变压器;3 衔铁
电涡流传感器
位移测量
振幅测量
转速测量
电涡流传感器
差动式电感测厚仪
L1和L2为电感传感器的两个线圈,构成桥路相邻两桥臂,另 两个桥臂是C1、C2。4只二极管和4只电阻R1~R4(减小温度误 差)组成相敏整流器。
电涡流传感器
3.4.4 电涡流传感器的转换电路 电涡流传感器转换电路的作用就是将Z、L或Q转换为 电压或电流的变化。阻抗Z的转换电路一般用电桥, 电感L的转换电路一般用谐振电路,又可以分为调幅 法和调频法两种。
电涡流传感器
1. 交流电桥
将传感器线圈的阻抗变化转化为电压或电流的变化。 图中L1 、L2是两个差动传感器线圈,它们与电容C1 、 C2的并联阻抗Z1 、Z2作为电桥的两个桥臂.
.
.
j M R1 jL1 U1
.
U1 2 M 2 R1 jL1 R j L 2 2 R1 L1

2M 2 2M 2 R1 j L 2 L1 R 2 2 2 R1 L1 R1 L1
指示器
电涡流传感器
变气隙式电感测微仪
电涡流传感器
电感压力传感器
—— 变气隙式结构
F
A

L
P

电涡流传感器
5 4
6
7
3 2
1 图18 微压传感器
1 接头;2 膜盒;3 底座;4 线路板; 5 差动变压器;6 衔铁;7 罩壳
电涡流传感器
变气隙式差动压力传感器
P
电涡流传感器
电感式油压传感器 —— 液压传动的各种机械装置
L 或阻抗 ZL 的变化。线圈自感 L 或阻抗 ZL 的变化与距离该金
属板的电阻率ρ、磁导率μ、激励电流i及角频率ω等有关,若 只改变距离 δ而保持其它参数不变,则可将位移的变化转换
为线圈自感的变化,通过测量电路转换为电压输出。
高频反射式涡流传感器多用于位移测量。
电涡流传感器
电涡流传感器
由安置在框架上的扁平圆形线圈构成。此线圈可粘贴于 框架上,或在框架上开一槽,将导线绕在槽内。下图为
电涡流传感器
线圈L2 的感应电压与被测厚度的增大按负幂指数的规律
减小,即
u2 e
h——贯穿深度。


h
式中 δ——被测金属板的厚度;
h

f
电涡流传感器
测量厚度时,激励频率应选得较低。频率太高,
贯穿深度小于被测厚度,不利于进行厚度测量,通常
选激励频率为1kHz左右。
测薄金属板时,频率一般应略高些,测厚金属板 时,频率应低些。在测量电阻率ρ较小的材料时,应 选较低的频率(如500Hz),测量ρ较大的材料时,应 选用较高的频率(如2kHz),从而保证在测量不同材 料时能得到较好的线性和灵敏度。
电涡流传感器
3.4 电涡流式传感器 3.4.1 电涡流式传感器的基本原理
电涡流传感器
涡流式传感器是利用金属导体在交流磁场中的
电涡流效应。若一金属板置于一只线圈的附近,它
们之间相互的间距为δ,当线圈输入一交变电流i 时,
便产生交变磁通量Φ,金属板在此交变磁场中会产 生感应电流i1, i1在金属体内是闭合的,所以称之 为电涡流或涡流。涡流的大小与金属板的电阻率ρ、 磁导率μ、厚度h、金属板与线圈的距离δ、激励电 流角频率ω等参数有关。若固定某些参数,就可根 据涡流的变化测量另一个参数。
说明电涡流在金属导体内的渗透深度与传感器线圈的 激励信号频率有关。故电涡流式传感器可分为高频反
射式和低频透射式两类。目前高频反射式电涡流传感
器应用较广泛。
电涡流传感器
1. 高频反射式电涡流传感器

高频(>lMHz)激励电流产生的高频磁场作用于金属板的 表面,由于集肤效应,在金属板表面将形成涡电流。与此同 时,该涡流产生的交变磁场又反作用于线圈,引起线圈自感
f 20kHz T 30 C
电涡流传感器
电感式接近传感器
电涡流传感器
电感式接近传感器应用举例
1、生产中测量产品的长度
每个脉冲对应的长度: 被测物总长度:
L0 D / N
L M L0
电涡流传感器
2、生产线工件的计数
3、机械手的限位
电涡流传感器
电涡流传感器
4、生产工件加工定位
2M 2 Leq L 2 L1 2 R1 L1
当被测导体的某些参数发生变化时,可引起涡流式传 感器线圈的阻抗Z、电感L和品质因数Q变化,测量Z、 L或Q就可求出被测量参数的变化。
电涡流传感器
3.4.3 电涡流传感器的种类
电涡流在金属导体内的渗透深度为:
h 5030 r f
磁场的变化。在被测导体内存在着电涡流损耗(当
频率较高时,忽略磁损耗)。能量损耗使传感器的Q
值和等效阻抗Z降低,因此当被测体与传感器间的距
离d改变时,传感器的Q值和等效阻抗Z、电感L均发 生变化,于是把位移量转换成电量。这便是电涡流 传感器的基本原理。
电涡流传感器
2. 低频透射式电涡流传感器
电涡流传感器
电涡流传感器
传感器线圈的等效阻抗为:
2M 2 2M 2 Z . R 2 R1 j L 2 L1 2 2 R1 L1 R1 L1 I U1
.
线圈的等效电阻和电感为:
2M 2 Req R 2 R1 2 R1 L1
相关文档
最新文档