雷达信 分析 模糊函数
雷达信号分析
2 0
2B T
§3.3 雷达测速精度
一、分析条件和方法 二、分析结果
1 2E
N0
2 2 t 2 t 2 dt
2
t 2 dt
三、单载频矩形脉冲信号: 2 2 T 2
3
§3.4 信号的非线性相位特性
对测量精度的影响
(t) 0 ,具有非线性相位。
时间相位常数: 2 t ' (t)a2 (t)dt 2 t ' (t) u(t) 2 dt
§4.1 模糊函数的推导 §4.2 模糊函数与分辨力的关系 §4.3 模糊函数与匹配滤波器输出响应的关系 §4.4 模糊函数的主要性质 §4.5 模糊图的切割 §4.6 模糊函数与精度的关系 §4.7 利用模糊函数对单载频矩形脉冲雷达
③径向速度为正。 一、静止点目标
s(t) (t)e j 2f0t sr (t) (t )e j2f0 (t )
二、运动点目标
sr (t) [t (t)]e j2f0[t (t)]
R(t) R0 VT
经过推导有:
Sr (t)
[t
2v t
]e
j
2f0 [t
2vt C
]
C
[t ]e j 2f0 e j 2 ( f0 fd )t
2
T /2
t(2kt)dt
T / 2
2kT2
2
[a(t)] dt
T /2
dt T / 2
3
例2: u(t) rect ( t )e jkt
T
t T
(t ) k t ' (t ) k
2
t ' (t)a 2 (t)dt
2
t/2
t (k )dt
雷达模糊函数
雷达模糊函数函数名称:radar_blur函数功能:对雷达信号进行模糊处理函数参数:- signal:雷达信号,类型为一维数组- blur_radius:模糊半径,类型为整数函数返回值:处理后的雷达信号,类型为一维数组函数实现:```pythondef radar_blur(signal, blur_radius):"""对雷达信号进行模糊处理Args:signal: 雷达信号,类型为一维数组blur_radius: 模糊半径,类型为整数Returns:处理后的雷达信号,类型为一维数组"""# 初始化结果数组result = [0] * len(signal)# 处理每个点for i in range(len(signal)):# 计算当前点的模糊范围start = max(0, i - blur_radius)end = min(len(signal) - 1, i + blur_radius)# 对当前点进行模糊处理for j in range(start, end + 1):result[i] += signal[j]result[i] /= (end - start + 1)return result```函数说明:该函数实现了对雷达信号进行模糊处理的功能。
输入参数包括一个一维数组signal表示原始的雷达信号以及一个整数blur_radius表示模糊半径。
输出结果也是一个一维数组,表示经过模糊处理后的雷达信号。
函数的实现过程如下:首先,初始化一个长度为原始信号长度的数组result,用于存储处理后的信号。
然后,遍历原始信号中的每个点,计算该点的模糊范围,并对该范围内的所有点进行加权平均处理。
最后,将处理结果存储到result数组中,并返回该数组作为输出结果。
函数测试:```pythonsignal = [1, 2, 3, 4, 5]blur_radius = 1result = radar_blur(signal, blur_radius)print(result)```输出结果:```[1.5, 2.0, 3.0, 4.0, 4.5]```说明:对于输入信号[1,2,3,4,5]和模糊半径1,经过处理后得到的输出信号为[1.5,2.0,3.0,4.0,4.5]。
“模糊函数”的几点应用
“模糊函数”的几点应用雷达模糊函数通常由雷达发射波形和滤波器特性决定。
根据模糊函数可知发射波形在釆用最优信号处理条件下雷达系统的分辨率、模糊度、测量精度和抑制杂波能力等性能。
模糊函数的推导采用“点目标”的数学模型。
雷达回波信号和发射信号的区别仅限于时延和多普勒频移,略去了鉴别目标的其它参数。
同时一些与发射波形无关的因素,如距离衰减、天线方向特性等也不考虑进去。
模糊函数可以作为不同用途的雷达选择波形的指南,可定量描述当系统工作于多目标环境下,发射该波形并采用相应的处理滤波器,雷达系统对不同距离、不同速度目标的分辨能力。
各种体制的雷达信号,其调制方式和参数取值不同,产生的信号形式众多。
但是按模糊图的观点来看,雷达信号可分为四种类型:正刀刃形、斜刀刃形、图钉形,钉床形。
模糊函数的推导和性质在几乎任意一本雷达基础书籍中均有介绍,可自行查看。
这里我们仅简单介绍其应用。
例如下面这二本的英文版我们以前有过分享,其中《雷达系统分析与设计第三版》的第五章和第六章给出了各种信号的模糊函数的Matlab仿真程序。
模糊函数的应用目标分辨情况模糊函数与目标环境图结合起来,可以观察目标分辨情况。
当多个目标同时存在于目标环境图上其中一个是待观测目标时,其余目标都是干扰目标。
此时可将模糊图的原点直接重合到目标环境图上。
如果干扰杂波或目标落入模糊椭圆之内,则不能分辨。
否则可以分辨。
测量精度若没有噪声(理想情况),根据匹配滤波器的输出可以精确地复现信号的模糊函数。
有主峰的位置可以精确估计目标,即目标距离和相对径向速度。
通常存在噪声,主峰的最大值位置会产生偏移,带来测量误差。
主峰越尖锐,噪声引起的主峰值的偏移越小,目标距离、速度的测量精度越高。
模糊情况有些信号除了在原点存在模糊函数的主峰外,在其它地方还按一定规律分布着尖峰-模糊瓣。
当干扰信号落入模糊瓣内,则会造成混淆。
我们设计波形时,应尽量避免回波信号落入模糊瓣内。
杂波抑制能力若已知目标环境图,它与目标环境图重叠,观察主峰与杂波干扰是否交叠,可以迅速地判断此种信号在这种环境下是否适用,也可用此法选择在此环境条件下适用的波形。
雷达模糊函数
雷达模糊函数雷达模糊函数是一种常见的信号处理技术,用于处理雷达接收到的信号并提取出目标信息。
雷达系统通过发射电磁波并接收回波来探测目标,而雷达模糊函数则可以帮助我们更好地理解这些回波信号。
雷达模糊函数在雷达信号处理中扮演着至关重要的角色。
它可以帮助我们确定目标的位置、速度和形状等信息,从而实现雷达系统的目标跟踪和识别功能。
雷达模糊函数通常包括距离模糊函数、速度模糊函数和角度模糊函数等,每种模糊函数都有其特定的应用场景和处理方法。
距离模糊函数是指雷达接收到的信号中存在距离信息上的不确定性,导致无法准确确定目标的距离。
这种模糊通常是由于雷达发射的脉冲信号在传播过程中受到多径效应、大气扰动等因素的影响所致。
为了解决距离模糊问题,我们可以采用多普勒处理、脉冲压缩等技术来提高雷达系统的分辨率和抗干扰能力。
速度模糊函数是指雷达接收到的信号中存在速度信息上的不确定性,导致无法准确确定目标的速度。
这种模糊通常是由于目标本身的运动状态、雷达系统的参数设置等因素所致。
为了解决速度模糊问题,我们可以采用脉冲多普勒处理、MTI滤波器等技术来提取目标的速度信息并实现速度测量。
角度模糊函数是指雷达接收到的信号中存在角度信息上的不确定性,导致无法准确确定目标的方位角。
这种模糊通常是由于天线指向精度、目标散射截面积等因素的影响所致。
为了解决角度模糊问题,我们可以采用波束形成、空时处理等技术来提高雷达系统的方位角分辨率和目标识别能力。
总的来说,雷达模糊函数在雷达信号处理中起着至关重要的作用。
通过对雷达接收到的信号进行模糊函数分析,我们可以更准确地获取目标信息并实现雷达系统的各种功能。
因此,深入了解雷达模糊函数的原理和应用对于提高雷达系统性能和效率具有重要意义。
希望通过本文的介绍,读者对雷达模糊函数有了更深入的了解,为相关领域的研究和应用提供参考和指导。
典型雷达信号的产生及其“模糊函数”仿真(含Matlab程序)
典型雷达信号的产生及其“模糊函数”仿真(含Matlab程序)雷达发射波形的选择和设计直接影响雷达的性能以及抗干扰能力。
本次课程重点从模糊函数出发,仿真分析多种典型雷达信号:线性调频脉冲信号、三角波调频连续波信号、二相编码信号(Barker码/m序列)、多相编码信号(Frank码)。
课程将给出上述典型雷达信号的产生以及模糊图的Matlab仿真程序。
雷达模糊函数模糊函数是进行雷达波形设计和分析信号处理系统性能的重要工具,根据雷达信号的模糊函数,可以确定雷达发射波形的分辨能力、测量精度、模糊情况以及抑制干扰的能力。
雷达模糊函数表示匹配滤波器的输出,描述目标的距离和多普勒频移对回波信号的影响,信号的雷达模糊函数通常被定义为二维互相关函数的模的平方。
具体表达式为:模糊函数关于多普勒频率和延迟时间的三维图形称为雷达的模糊图。
对于一种给定的波形,其模糊图可以确定该波形的一些特征,同时也可以用某个时间或者频率门限值来切割三维模糊图得到模糊等高图。
模糊图的原点处模糊函数的值等于与感兴趣目标反射的信号理想匹配时的匹配滤波器的输出。
非零时的模糊函数值表示与感兴趣目标有一定距离和多普勒的目标回波。
在二维坐标平面内,若模糊函数的绝对值逼近于冲击函数呈理想图钉型时,就可以得到理想的二维分辨率,相当于把所有能量都集中在了坐标原点附近。
这是一次精品课程(图文课程),主要包含以下几个部分:一、模糊函数的概述二、线性调频脉冲信号及其模糊函数三、三角波调频连续波信号及其模糊函数四、二相码信号(Barker码/m序列)及其模糊函数五、多相码信号(Frank码)及其模糊函数具体内容见下面截图,订阅后可查看WORD可编辑版本以及下载相关Matlab仿真程序。
具体参数设置以及仿真结果见WORD文档和Matlab源程序。
matlab 雷达信号处理 模糊函数
matlab 雷达信号处理模糊函数文章题目: Matlab雷达信号处理中的模糊函数摘要:雷达信号处理是现代雷达系统中至关重要的一个环节。
随着科技的进步,Matlab 已成为研究雷达信号处理领域的主要工具之一。
而在雷达信号处理中,模糊函数是一种常用的数学工具,用于处理雷达信号的模糊问题。
本文将一步一步回答关于Matlab雷达信号处理中模糊函数的相关问题,以帮助读者深入了解该主题。
引言:雷达信号处理是通过对雷达接收到的信号进行分析和处理,以获取目标位置、速度等信息的过程。
而在这个过程中,我们常常需要处理一些模糊问题,例如雷达信号的模糊性、模糊目标的检测等。
而Matlab作为一款功能强大、易于使用的科学计算软件,为我们提供了很多方便快捷的工具,其中包括了一些常用的模糊函数。
接下来,我们将介绍这些模糊函数的使用方法以及在雷达信号处理中的应用。
一、模糊函数基础知识1.1 定义模糊函数是一种将模糊集映射到一组实数上的函数。
可以将其看作是一种模糊逻辑的扩展,常用于描述和处理模糊性问题。
1.2 成员函数模糊函数通常由一组成员函数组成,例如三角形函数、梯形函数、高斯函数等。
每个成员函数都描述了一个特定的模糊概念。
二、Matlab中的模糊函数2.1 Matlab的模糊逻辑工具箱Matlab提供了一套强大的模糊逻辑工具箱,包括了许多常用的模糊函数、模糊控制器等。
在使用这些工具之前,我们需要先安装并加载模糊逻辑工具箱。
2.2 模糊逻辑工具箱的基本使用要使用模糊逻辑工具箱,我们需要先定义输入输出变量、成员函数以及规则库。
在定义好这些基本元素之后,我们就可以进行模糊推理和模糊控制等操作了。
三、雷达信号处理中的模糊函数应用3.1 雷达信号的模糊性处理雷达信号在传输过程中常常会受到多种因素的影响,例如气象条件、地形、杂波干扰等,导致信号的模糊性增大。
而模糊函数可以帮助我们对这种模糊信号进行处理,从而提高信号的可靠性和准确性。
3.2 模糊目标的检测在雷达信号处理中,我们经常需要对目标进行检测和跟踪。
“LFMCW雷达信号多周期模糊函数分析”再研究
t n( A )o eci —W ba e yte ea osi btenS A n A . h P Fo e i o P F fh hr C i ot n db l i hp e e P FadP F T eS A rh t p s i h r tn w t
mut— liPAF o FMCW a d u e fi tc fL h so d n mb ro n a t“k i — d e’ n wo “h l- n f ・ d e ’t ru h sm— nf e g ’a d t e afk ie e g ’ h o g i
cn n o s ae( F W)rdr i a i ig e o n utp r drneatcr lt nad o t u u v L MC i w a a g l,t s l pr da dm l-e o g uoor a o n sn s ne i i i a e i a iu yd g m.A crigt tes ge e o m i i nt n( P F fh yl moua d mbg i i r t aa codn i l p r da bg t f c o S A )o e ce d l e oh n i uyu i t c t cn n o s ae( W)s n ,h P Fo eci —W e ue , n ep r da i i n — o t u u v C i w i a teS A fh hr C i d d cd adt e o m g t f c gl t p s h i b u yu
雷达模糊函数
雷达模糊函数雷达模糊函数是雷达信号处理中经常使用的一种数学模型,用于描述雷达系统中目标的位置和速度信息。
雷达系统通过发送和接收无线信号来探测目标的位置和速度,但由于各种环境因素的影响,接收到的信号往往会受到干扰和衰减,导致信号的模糊化。
雷达模糊函数就是用来描述这种信号模糊化程度的函数。
雷达模糊函数通常由雷达系统的特性和目标的运动状态等因素决定。
在雷达系统中,信号的传播会受到大气折射、多路径传播、目标散射等因素的影响,导致信号在传播过程中发生衰减和失真。
同时,目标的运动状态也会对接收到的信号产生影响,比如目标的速度越高,接收到的信号就会越模糊。
因此,雷达模糊函数可以用来描述在不同环境条件下接收到的雷达信号的模糊程度。
雷达模糊函数的形式通常是一个复杂的数学函数,包括各种参数和变量。
通过对雷达系统和目标的特性进行建模和分析,可以得到相应的雷达模糊函数,从而帮助雷达系统更准确地探测目标的位置和速度。
在实际的雷达信号处理中,工程师们会根据具体的情况选择合适的雷达模糊函数,以提高雷达系统的性能和探测精度。
除了用于描述信号模糊化程度外,雷达模糊函数还可以应用于雷达信号的处理和分析。
通过对雷达信号进行模糊函数的计算和处理,可以更好地理解和解释雷达系统的工作原理,从而为雷达系统的优化和改进提供参考。
同时,雷达模糊函数还可以用于目标跟踪、碰撞预警、地图绘制等领域,为相关应用提供支持和指导。
总的来说,雷达模糊函数在雷达信号处理中起着至关重要的作用,它不仅可以描述信号的模糊化程度,还可以用于雷达系统的优化和改进。
通过对雷达模糊函数的研究和应用,可以提高雷达系统的性能和可靠性,为雷达技术的发展和应用提供有力支持。
希望未来能够进一步深入研究雷达模糊函数的理论和应用,为雷达技术的发展做出更大的贡献。
基于移动WiMAX的被动雷达信号分析及模糊函数性质研究
21 0 0年 6月
计 算 机 应 用 研 究
Ap l a in Re e r h o o u e p i t s ac f C mp t ̄ c o
Vo. 7 No 6 12 .
J n 2 1 u. 00
基 于 移 动 Wi X 的 被 动 雷 达 信 号 分 析 及 MA 模 糊 函数 性 质 研 究 冰
a p iai n f s y h e wa eo m n y i d mo s ae h t m b l MAX s n o l r vd ih r rn e r sl t n a d p l t rt .T v fr a a s e n t td ta o i Wi c o i l l s r e i a c u d p o i e hg e a g e ou i n gl o
作 为 被 动 雷 达 照 射 源 的 可 行 性 , 移 动 Wi A 被 动 雷达 设 计 提 供 理 论 基 础 。 为 M X
关键 词 :被 动 雷达 ;移动 Wi X;波形 分析 ; 糊 函数 MA 模
中图分类 号 :T 9 N5
文献标 志码 :A
文章 编号 :10 —6 5 2 1 )6 2 2 . 3 0 1 3 9 ( 0 0 0 .2 6 0
d i1 . 9 9 ji n 10 —6 5 2 1 .6 0 5 o:0 3 6 /.s . 0 1 3 9 .0 0 0 . 6 s
Sg a tu t r n mbg i u cin fau e fmo i in lsr cu e a d a iu t f n t e t rso bl y o e
A b t a : Th sp p ra ay e b l i AX h sc lly rtc iue nd t mp cso a e a a tr n pa sv a r s r ct i a e n lz d mo ie W M p y i a a e e hnq s a he i a t fv r d p r mee so s ie rda i
一种雷达信号模糊函数特征提取与识别方法
Xi n g Qi a n g ,Z h u We i g a n g 。 ,Ra n Da
( 1 . De p a r t me n t o f Gr a d u a t e Ma n a g e me n t o f Eq u i p me n t Ac a d e my,Be i j i n g 1 0 1 4 1 6 , Ch i n a ;
0 引 言
现代 雷 达 向着 软 件化 、 智能 化 、 多用 途 方 向发 展 , 兼 有 多功能 、 多种工作 状态 和 工作 体制 ; 同时为 了提高
2 . De p a r t me n t o f Op t i c a l a n d El e c t r o n i c E q u i p me n t o f Eq u i p me n t Ac a d e my,Be i i i n g 1 0 1 4 1 6 , Ch i n a )
Ab s t r a c t : M od e r n r a da r de v e l o ps f or t he i nt e l l i g e nt ,s o f t wa r e ,mu l t i — f u nc t i o na l an d v e r s a t i l e d i r e c t i on,
分 析 。 结 果 验 证 了该 方Байду номын сангаас法 的 可 行 性 。
关 键词 : 雷达 ; 特征 提取 ; 识别; 流行 学 习 中图分 类号 : TN9 7 4 文献 标识 码 : A
Re s e a r c h o n a me t ho d f o r r a d a r s i g na l a mb i g u i t y f u n c t i o n f e a t ur e
OFDM雷达信号模糊函数分析
2 1 年 8月 01
南京理 工 大学 学报
Ju n l f a j g U i ri f ce c n eh ooy o ra o N ni nv s yo in ea d T c n l n e t S g
Vo . 5 13 No 4 . Au g.2 1 01
形设计的问题 , 推导 了O D 雷达信号的单周期模糊 函数 , 出了单周期模糊 函数与调制码字 FM 给
序 列 的关 系。讨 论 了多周期模 糊 函数 , 分析 了其 旁瓣特 性 , 出一 种抑 制 O D 信 号 雷达 多普 提 FM
勒旁瓣的相参脉冲 串处理方法。以 B r r a e 码作为调制码 字序列 , 出了仿真结果。与传统方 k 给
r d r sg a r e e t d. i p r a h rqu r sn ie tc mp tto fte mo u a e in l n a a in la epr s n e Th sa p o c e ie o d r c o u ai n o d l td sg asa d h
r un ydvs n m lpe n O D f q e c iio ut l ig( F M) rd r s nl i d r e n t rl i si wt te e i i x aa i a s ei d ad i ea o hp i h g s v s tn h
t e a i u t sd r e r m h d lt g s q e c . h mb g i i e v d fo t e mo u ai e u n e y i n
Ke r s:a r sg la ly i o o o a e u n y dv so l p e i g; mb g i u ci n y wo d r da ina na ss; ah g n lf q e c iiin mu t lx n a i u t f n to r i y
调频中断连续波雷达信号模糊函数及其分辨特性
花 汉兵 , 建 新 王
( 南京理工大学 电子工程 与光电技 术学院 , 江苏 南京 20 9 ) 104
摘 要 : 对 高频 地 波雷达 特 点 , 针 结合 模 糊 函数 理 论 , 导 了调 频 中断 连 续 波 ( MI W) 号 的 推 F C 信 模糊 函数 。 分析 了影 响单基 地调 频 中断 连 续波 雷 达信 号 的距 离和 多普 勒 分 辨 率 的 因素 。对 于
fnt no e un ymouae t rpe ot u u a e F C s nls e vdbsdo e u c o f q e c d lt i e u tdcni o s v ( MI W)i a i d r e ae nt i r f dn r n w g i h
p i cpl fa rn i e o mbiu t u to Ra g e ou in a d Do p e e ou in wh c n l e e mo sai g iy f ncin. n e r s l to n p lr r s l to ih i fu nc no ttc F CW a a i n l r a ay e MI r d r sg a a e n l z d.Fu t e mo e,t a i ut f n to o sa i o mu ittc rh r r he mb g i y u cin f bit t c r h sai F CW a a i n l s c nc r e t he b sai nge W he h a g ti n t e v cn t ft e MI r d r sg as i o e n d wih t ittc a l . n t e t re s i h ii iy o h ba e ie,h h p fa iu t u ci n i tec e n h a g tr s l to se i e t e r de sl n t e s a e o mb g iy f n to s sr t h d a d t e tr e e ou i n i vd n l d g a d. y Ma h mai a n l ssa d smu ai n r s ls s w h tt e r s l t n i e ae o t e FMI in l t e t la ay i n i lto e u t ho t a h e o ui s r ltd t h c o CW sg a f r a d af ce y t e tr e o i o Th a g tr s l to f t e F CW a a in li ihe o m n fe td b h a g tp st n. e tr e e ou i n o h MI i r d r sg a s h g r
雷达导引头波形模糊函数仿真分析
随着军事技术的发展,尤其是采用数字射频存
2.1
模糊函数的定义
储(Digital Radio Frequency Memory,DRFM)干扰产
模糊函数(Ambiguity Function)是波形设计及
生技术的干扰机的广泛应用,空空导弹雷达导引头
分析的重要工具,在分析导引头速度分辨率、距离
面临着越来越严峻的生存挑战。为适应日益复杂
(3)
即表明雷达信号的模糊曲面对称于原点。
2)关于模糊函数的最大值,有如下特点:
A(tF D ) £ A(00 ) = E
(4)
即假设波形能量为 E ,当设计的滤波器对于
距离和多普勒均匹配,滤波器相应输出最大值。如
果滤波器不匹配,那么响应值将小于波形能量的最
大值。
2
¥
| A(tF ) | dtdF
In this paper, for several kinds of radar seeker complex waveform, the ambiguity functions and ambiguity figure are simulated and an⁃
alyzed. The results show that each waveform has its own advantages and disadvantages, in practical application, the comprehensive
分辨率、副瓣性能以及速度和距离模糊方面有着非
的战场环境,实现综合电子战条件下的精确打击,
常重要的作用,此外,它还可以用来分析距离-多普
需要提高导引头的抗干扰能力。通过复杂波形优
勒耦合。
化设计进行抗干扰是导引技术发展的一个重要趋
雷达信号分析(第4章)模糊函数
ò
¥
-¥
u(t )u * (t - t )e j 2 pxtdt
2
c(t, x ) = V (-t, x )
¥
( f n ) V (t, x) = ò-¥ u * ( f )u( f - x)e j 2 pf tdf ( f 1 )
| ( , ) |
色检
( f )
f(t, 0) =
ò
¥
2
-¥
u(t )u (t + t )e
*
j 2 pxt
dt = C (t )
2
òò D(t, 0) =
c(t, 0) d td x c(0, 0)
2
2
ò =
¥
-¥
C (t ) d t
2
2
C (0)
2
= At
f(0, x ) =
ò
¥
-¥
u(t )u * (t + t )e j 2 pxtdt = K (x )
2、模糊函数(平均模糊函数)的概念
在感兴趣的时间间隔和多普勒频移上的固有“模糊 性”的度量,对随机信号采用平均模糊函数。
3、研究模糊函数的条件
窄带信号 点目标 无加速度 fd f0
一、从二维分辨力导出
1、条件
距离速度不同(二维) 目标2大于1 距离速度取正 不考虑噪声(分辨) 回波强度一样
¥ -¥
2
D(0, x ) =
òò
c(0, x ) d t d x c(0, 0)
2
2
=
ò
K (x ) d t K (0)
2
2
= Ax
4.3 模糊函数与匹配滤波器输出响应的关系
基于模糊函数的双基地雷达信号检测分析
L ujn ,C e ul n T n io n。 i o hnG o a g , agXamig G u i (1 ay U i9 9 1 H l a io i 2 0 1 2 ay U i9 15 S na5 2 0 ; .N v nt 4 4 , uu oLann 15 0 ;.N v nt 2 5 , a y 7 0 0 d g
240 ) 6 0 1
【 摘要】 在双基地雷达系统 中, 于纽曼 一皮 尔逊准则的似然比检测不但与发射信号的波形有 关, 基
而且还 与双基 地 雷达 系统的几何 布站 及 目标的 空 间位 置有 关。 首先 以单基地 雷达信 号检 测过 程 为
基础 , 导 了双基地 雷达 系统 的信号检 测 统计量模 型 . 推 该模 型是双基 地 雷达 系统模糊 函数 的理 论基
关 键 词 : 基 地 雷达 系统 ; 号检 测 ; 测 统计 量 ; 糊 函数 双 信 检 模
中 图 分 类 号 : N 5 T 97
文 献标 志码 : A
文 章 编 号 :0 88 5 (0 10 -1 - 10 — 2 2 1 ) 1 40 6 0 6
Bit tc Ra r S g lD e e to sa i da i na t c i n Ana y i s d o l ss Ba e n Am b g iy Fu c i n i u t n to
o it t a a y tms i e i e n t e b ss o n sa i a a i n ld tci n p o e s i i h h o ei a fa b sa i r d r s se sd rv d o h a i fmo o t t r d r sg a e e t r c s , t st e t e r t l c c o c f u d t n o h ittc r d r a o n a i ft e b sai a a mbiu t un to o g iy f cin. Fu ci n f r o a g t i e d ly a d Do plrs i fb sa i n to o m ftr es t ea n p e h f o ittc m t r d rs se i r vd d;g e tdi e e c ewe n t e e t r me e sa d t o eo h o o ttcr d rs se i a a y tm s p o ie r a f r n e b t e h s wopa a tr n h s ft e m n sa i a a y t m s f
准连续波雷达信号模糊函数推导
维普资讯
20 0 7年第 3 期
舰 船 电 子 工 程
11 9
—
2JRS()2‘ eR£ ) [eRter] S( 一 JdR " f
I R t+ ) mS (
()为连续 的随机二相码调相 信号 , ()为随 t t
机 调 幅断续 信 号 , 随机 调 幅断续 后 的双 随机码 复 则
维普资讯
总第 19期 5 20 0 7年第 3 期
舰 船 电 子 工 程
S i lc r nc En i e r g h p E e t i g n e i o n
V0 . 7 N . 12 o 3
10 9
准连 续 波 雷达 信 号 模 糊 函数 推导
准连续波 ; 间断 ; 中断 ; 模糊函数
T 96 N 5
定 的实 际指导意义 。
关键词
中图 分 类 号
不考虑涉及到随机信号 的准连续波雷达信号 )的
1 引 言
准连续 波雷达信号是指对连续波信号进行截 断, 占空 比为 0 4至 0 5的信号 , . . 由于其综合 了脉
准连续波雷达信号 的模糊函数。 设连续波雷达信号为 :() 发射控制信号为: S t, A () 接收控制信号为 : t , A ()A ()的 t, A ()设 t , t 幅度为 1 则准连续波 雷达发射 信号为 : t 。 S ()=
() 2
D ( ): fI eRt s ̄ eR£ ) S( ef一RS(+ R )2 "
+ I S () [r R t e
=
所以 , 关于准连续波雷达信号的模糊函数不 同 文 献 中的定 义在是 不一 样 的 。
一I S ( + ]I e r R t ) 。
雷达信号模糊函数理论研究与仿真
武汉理工大学硕士学位论文雷达信号模糊函数理论研究与仿真姓名:孙亚东申请学位级别:硕士专业:信号与信息处理指导教师:王虹20070301Ix(f;厶)12I{.rs(f)s‘(f一咖m印dfl2(4-1)式中:f和正分别表示信号的时延和多卜勒频移;sO)为雷达发射信号的复包络。
E-fls(t)12dt(4-2)式中:E表示为信号s(t)的能量。
4.2固定载频矩形波脉冲信号及仿真设归一化的矩形脉冲“O)定义为嗍㈨-专Rcd白由(3.14)得z@,厶)-,”o弘’(f—f弘’“印dt将(4-3)代入(4-4)并计算积分得(奉3)(“)kcE兀)『=l(t一粤)竺≤考宅}剥2H‘f‘。
钙,图禾3f-2秒的单脉冲信号模糊函数图图4_2对应的单脉冲模糊度图分别令f·o,正-0可分别得到时间模糊函数(r—o切面图)和速度模糊函数(厶.o切面图),即k(r;叫2,k@兀12.帅12-㈤2∞剧2一l别(4.6)(舢7)计算机仿真如图4-5和图4-6所示,可以看到时间轴(厶-0)上匹配滤波器输出的三角形状和频率轴I-(si麒)/x的形状。
由式(4--6)和(4-7)可知,当正-0时,k(f;012为三角形,实际上,它就是矩形脉冲信号的自相关函数;当f-o时,k(0;兀12为辛克函数,它就是矩形脉冲信号的频谱。
i/入lii…笋一卜≮…}…·卜…l/iil\liyl|l_、|{…专舞÷…H…一k卜·…,|;…乙….L—L一.X….一Zj…I…一l一—=|……j……i…j.∑一图4-5单脉冲正·O切面图图4-6单脉冲f-O切面图从图4-4可以获得许多单个矩形脉冲模糊图的关键信息,以长脉冲为例,解析图如4-7所示。
图4.7f为长脉冲的单个矩形脉冲模糊度图图4.8LFM信号的时域波形和幅频特性为了计算[LFM信号模糊函数的复包络,我们先令O‘f蔓f’,在这种情况下的积分区间为睁《卅】’将(㈣式代入(㈨式得胞胁;Z叫廿∥叫钟舢吒肛加出c枷,即胞胁孚p毗‰c枷,zcr;厶,一e加厶(,一手)锗。
LFMCW
K yw rs Am i【 n t n L MC rdr Mo igag t e od : bg i f c o F W a l u i y t a vn re t
1 引言
受 相 关 技 术 进 步 和 应 用 需 求 的 促 进 ,近 十 多年 来 L MC 雷达逐渐 应用于近距 离高分辨 率多 目标探测 与成 F ' W 像,其接 收机 由传统 的差拍. 频率计方式转 变为差拍. 立叶 傅 分析结构 ,并显示 出一些独特 的优点。L MC 雷达获取 目 F W 标信息 的方 式与脉 冲 雷达 有显著 的区别,这使得 L MC F ' W 雷 达 在 体 制 理 论 方 面 有 不 同 于 脉 冲 雷 达 的 内涵 由于 L MCW 雷达 曾长期 作为雷达 高度 表应用于单 目标近程测 F ' 距 ,有关其体制理论方面的研 究远不及脉冲雷达 目前 ,有
如 图 1 所 示 , L MC F W 雷 达 发 射 信 号 在 扫 段
: f 丁2 f] 【 -l,T2 内可 以表 示为 一 , s ( =acs ̄ [d+ , ] } tt ) u { f 2+ 设两 个点 目标 的瞬时距离为 () 1
收稿 日期:2O O 0年 l 5日i修 回 日期 :2 0 年 3月 l 2月 01 0日
Am bg i n t fL CW d rSin l iut Fu ci o F y on Ra a g a
Ya gJa y n i n u ( ol eo Ee t n n ie r gU v ri o E e t ncS in ea dT h oo y f h a C l g f l r i e c o cE gn ei , n es y f l r i c c n i t c o e n e n lg o C i ) c n
HotZ 雷达系统第一章波形模糊函数
31
2
距离模糊函数与距离分辨率
时延分辨常数 的频域形式
的自相关函数
:信号的 自相关函数 和功率谱 是一对傅立叶变换对 :帕斯瓦尔关系式
频域形式为:
32
2
距离模糊函数与距离分辨率
有效相关带宽定义:
★有效相关带宽
距离分辨力
逼近
时域 : 反映了
的能力
频域 :反映了
1( 均匀谱)
(信号功率谱逼近均匀谱的能力)
采用固有分辨力定义的缺陷 :
只考虑了主瓣内邻近目标的分辨能力, 没有考虑旁瓣干 扰对目标分辨的影响
30
2
距离模糊函数与距离分辨率
时延分辨常数的数学表达式定义为:
将主瓣、基底旁瓣和模 糊瓣的全部能量都计算 在内,再除以主瓣顶点 的功率所得的时间宽度
表示信号能量集中 在 区域的能力
越趋近于冲激函数 分辨力
??
?
fd )df
信号的频率自相关函数
再根据对偶关系:? ? fd u(t) ? U ( f )
? ? ? ( fd ) ?
? ??
U ( f )U *( f
?
fd )df
?
? (?) ? ? u(t)u*(t ? ?)dt ??
? ? ( fd ) ?? F ? u(t) 2
39
2
速度模糊函数与速度分辨率
42
2
关于距离、径向速度分辨力的结论
结论1:信号频谱越宽 ,距离分辨力越高 结论2:信号时域持续期越宽 ,速度分辨力越好
对一般信号而言:时宽? ? 频宽 ?
有没有时宽、频宽都大的信号? 如,LFM脉冲信号
43
2
距离-速度模数函数与其联合分辨力
目标分辨与模糊函数1
2
信号相位时间常数或调频常数
2 t (t )u (t )dt
'
u 2 (t )dt
测距精度和测速精度之间的耦合
1 1 2 2E 2 0 [1 2 2 ] N0 0
2 r
1 1 2 2E 2 [1 2 2 ] N0 0
模糊函数与精度的关系
利用模糊函数对 典型脉冲雷达信号进行分析
e
j 2 ( f 0 ) t
2v f0 c
Sr (t ) u(t )e
j 2 ( f 0 )( t )
雷达的测距精度
Z (t ) Sr (t ) nr (t )
S r (t ) u (t )e nr (t ) n(t )e
2 T 0
j 2f 0t j 2f 0t
*
0t T 0t T
C ( ) u (t )u (t )dt | | T rect( )(1 ) 2T T
2 3 | C ( ) | d T 3
2
A
| C ( ) |2 d C (0)
2 T 3
3 We 1 / A 2T
t | u(t ) | dt
2
2
2
3
T
2
| u(t ) | dt
信号非线性相位特性的影响
S (t ) u(t )e
j 2f 0t
e
j ( t )
Sr (t ) u(t )e
' s ,s
j 2f 0t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j(t, x) = c(t, x) 2 = c(t, x) ⋅ c*(t, x)
ò c*(t, x) = ¥ u*(t)u(t + t)e-j2pxtdt -¥ ò = ¥ u(f )u*(f - x)e j2pf tdf -¥
二、模糊函数的表示法
1、 t 、x 为正 2、t为正, x 为负
ò f(t, x) = ¥ u(t)u*(t + t)e j2pxtdt 2 -¥ ò = ¥ u*(f )u(f - x)e-j2pf tdf 2 -¥
-¥
4、对称型
ò =
¥ u * ( f )u ( f - x )e j 2 p f td f 2
-¥
ò f(t, x ) =
¥ u (t - t
)u * (t + t
2
)e j 2 pxtd t
-¥
2
2
ò =
¥ u*(f + x
)u ( f - x
2
)e - j 2 p f td f
-¥
2
2
4.2 模糊函数与分辨力的关系
ò f(t, x ) =
Байду номын сангаас
¥ u (t )u * (t + t )e - j 2 pxtd t 2
-¥
ò =
¥ u * ( f )u ( f + x )e - j 2 p f td f 2
-¥
ò 3、t 为负, x 为正 f(t, x) =
¥ u (t )u * (t - t )e j 2 pxtd t 2
4 模糊函数
4.1 模糊函数的推导 4.2 模糊函数与分辨力的关系 4.3 模糊函数与匹配滤波器输出响应的关系 4.4 模糊函数的主要性质 4.5 模糊图的切割 4.6 模糊函数与精度的关系 4.7 利用模糊函数对单载频矩形脉冲雷达
信号进行分析
4.1 模糊函数的推导
1、为什么要研究模糊函数?
分辨力、精度、模糊度、抑制杂波能力,统一数 学工具。
c(t
2
, 0)
»
c(t
2
, 0)
A
B
c(t
,x
2
)
<<
c(t
,x
2
)
CC
AA
模糊度图
1
0.8
0.6
0.4
0.2
T 0
-0.2
-0.4
2 0.01
2 0.1
-0.6
2 0.25
-0.8
2 0.5
-1
-10
-5
0
5
10
T
等差图
三、模糊函数与一维分辨力的关系
ò f(t, 0) = ¥ u(t)u*(t + t)e j2pxtdt 2 = C (t) 2 -¥
-¥
-¥
( f n)
包检
( f 1)
包检
( f )
( f )
包检
( f 1)
包检
( f n)
包检
( , )
4.4 模糊函数的主要性质
一、本身的性质
1、原点对称性 c(t, x) 2 = c(-t, -x) 2 2、峰值在原点 c(t, x) 2 £ c(0, 0) 2 = (2E)2
vA
A
vB
vC
B
C
vF
F
vE
E
vD
D
vA
vB
vC
vD
C vE A B
F
D
E
( , )
C
D
E
A B
1
2
3
3 2
1
c*(t, x) 2 = c*(t, x) ⋅ [c*(t, x)]* = c(t, x) 2
ò ò c*(t, x) 2 = ¥ u*(t)u(t + t)e-j2pxtdt 2 = ¥ u(f )u*(f - x)e j2pf tdf 2
¥ K (x) 2 d t
-¥
K 2(0)
= Ax
4.3 模糊函数与匹配滤波器输出响应的关系
研究目的:
Y
运算
检测、估计、分辨
B
物理意义
信号处理与AF关系
A
A目标回波:
A
u
(t) = u(t - t
)e j
2
px
A
(t
-t
A
)
A
A
h
(t) = u* (t
-t -t
)e-j
2
px
A
(t0
-t
-t
A
)
Am
A0
A
B目标回波:
u
(t) = u(t - t
)e j
2
px
B
(t
-t
B
)
B
B
B A
B
X
B A
匹配滤波器输出:
ò g C
(t)
=
1 2
êêëé
¥ u(t)u*(t
-¥
-
t
)e
j
2
pxtdt
ùúúû
e
j
2
px t
A
ò V (t, x) = ¥ u(t)u*(t - t)e j2pxtdt -¥
一、模糊函数的图形
1、概述
主峰、边峰和小突起(自杂波/旁瓣)
2、主峰
c(t, x) 2 £ c(0, 0) 2 = 4E 2
距离、速度均相同,e2 最小,即 c(0, 0) 最大,无法分辨。
3、模糊图的体积 (体积不变性)
ò ò c(t, x) 2 dtdx = (2E)2
体积是固定的,与能量有关,与信号形式无关 不同信号形式只能改变模糊图表面形状
ò ò ò D(t, 0) =
c(t, 0) 2 dtdx =
c(0, 0) 2
¥ C (t) 2 dt
-¥
C 2(0)
= At
ò f(0, x) = ¥ u(t)u*(t + t)e j2pxtdt 2 = K(x) 2 -¥
ò ò ò D(0, x) =
c(0, x) 2 d td x =
c(0, 0) 2
二、模糊函数与二维分辨力的关系
c(t, x) 2 << 1 c(0, 0) 2
( , ) 2
组合时间-频率分辨常数:
0
( , )
ò ò 等效模糊面 D(t, x) =
c(t, x) 2 dtdx
c(0, 0) 2
D(t, x) º 1
↓
雷达模糊原理:改变发射信号形式→ 改变模糊曲面→ 不能改变组合分辨常数→即距离速度组合分辨力受限→ 模糊图体积无论哪个轴减小另一必增大!
c(t, x) 2 = V (-t, x) 2
ò ( f n )
V (t, x) =
¥ u*(f )u(f - x)e j2pf tdf
-¥
( f 1) ( f )
( f 1)
( f ) 0, 0
| ( , ) |
色检
( f n)
vA vB vC vF , vD vE RB RC RD RF , RA RE
1
X
2、准则(均方差)
ò e2 =
¥
s
(t) - s
2
(t) dt
-¥ r 1
r2
= 4E - 2 c(t, x) cos[2pf t + a tan c(t, x)] 0
ò c(t, x) = ¥ u(t)u*(t + t)e j2pxtdt -¥
ò = ¥ u*(f )u(f - x)e-j2pf tdf -¥
2、模糊函数(平均模糊函数)的概念
在感兴趣的时间间隔和多普勒频移上的固有“模糊 性”的度量,对随机信号采用平均模糊函数。
3、研究模糊函数的条件
窄带信号
点目标
无加速度
f f
d
0
一、从二维分辨力导出
1、条件
Y
距离速度不同(二维) 1
目标2大于1 距离速度取正 不考虑噪声(分辨)
1 1
回波强度一样