第3十二章蛋白质生物合成

合集下载

生化复习——蛋白质的生物合成

生化复习——蛋白质的生物合成

(一)step 1-进位
• 过程:氨基酰-tRNA-Tu-GTP结合到A site,GTP水解,释放Tu-GDP
• 只T有u与-G密T码P 子:正确互补配对的氨基酰-tRNA才能进入A位点:维持蛋白质合成准确性的另一个机制。 • 进•位在消Ts耗(1GGTTPP交换因子)的参与下生成。
•Tu:GTPase活性
功能: • 1)氨基酸的“搬运工具” • 2)识别mRNA的密码子
二、tRNA
氨基酸臂
反密码环
(一)种类
• 20种AA都有其特定的一种至几种tRNA
(二)摇摆性 (wobble)
• 反密码子(anti-codon)的第1位与密码子(codon)第3位配对时,不严格遵循碱基配对原 则

I—C,I—A, I-U ,U—G
消耗GTP
真核与原核生物肽链合成起始的主要区别
• 1)更多的起始因子参与 • 2)Met-tRNAiMet先定位到核糖体 • 3)mRNA结合多种起始因子后才与核糖体结合 • 4)小核糖体通过Met-tRNAiMet的反密码子与mRNA起始密码子之间互补配对而准确定
位.
二、延伸
1.需要70S(80S)起始复合物、氨基酰-tRNA、延伸因子、GTP • 延伸因子: • 原核:EF(Tu, Ts, G) • 真核:EF-1 和 EF-2 2.三步循环 • 进位 • 成肽 • 转位
3.终止过程
过程: (1)终止密码子进入A site,RF1(或RF2)与之结合,水解肽酰-tRNA键, 肽链释放。 (2) 30S亚单位结合RF3-GDP , 并转变为RF3-GTP, RF1从核糖体上释放。 GTP水解, RF3-GDP从核糖体上释放。 (3)RRF(A site)、EF-G-GTP、 IF3依次结合到核糖体, 30 S与50S亚单 位分离, 进入下一个翻译起始过程。

蛋白质的生物合成过程

蛋白质的生物合成过程

六、释放因子(RF) 原核生物中有4种,在真核生物中只有1种。 其主要作用是识别终止密码,协助多肽链的 释放。
七、氨基酰tRNA合成酶
该酶存在于胞液中,与特异氨基酸的活化以及 氨基酰tRNA的合成有关。
每种氨基酰tRNA合成酶对相应氨基酸以及携带氨基 酸的数种tRNA具有高度特异性,这是保证tRNA能 够携带正确的氨基酸对号入座的必要条件。 目前认为,该酶对tRNA的识别,是因为在tRNA的 氨基酸臂上存在特定的识别密码,即第二套遗传密 码。
五、延长因子(EF)
原核生物中存在3种延长因子(EFTU,EFTS, EFG),真核生物中存在2种(EF1,EF2)。其 作用主要促使氨基酰tRNA进入核 蛋白的受体, 并可促进移位过程。
EFTU(GTPase) EFT 原核 EFTS EFG(转位酶) 真核 α (GTPase) EF1 β γ EF2(转位酶)
一、mRNA 作为指导蛋白质生物合成的模板。 mRNA 中每 三个相邻的核苷酸组成三联体,代表一个氨基 酸的信息,此三联体就称为密码 (coden) 。共有 64种不同的密码。 原核生物的转录与翻译同步进行 无义突变 蛋白质的合成是N端——C端
密码的连续性
二、tRNA
在氨基酸tRNA合成酶催化下,特定的tRNA 可与相应的 氨基酸结合,生成氨基酸tRNA, 从而携带氨基酸参与蛋白质的生物合成。 tRNA反密码环中部的三个核苷酸构成三联 体,可以识别mRNA上相应的密码,此三联 体就称为反密码(anticoden)。 反向互补
在蛋白质生物合成过程中,常常由若干核蛋白体结合 在同一mRNA分子上,同时进行翻译,但每两个相邻 核蛋白之间存在一定的间隔,形成念球状结构。
由若干核蛋白体结合在一条mRNA上同时进行多肽 链的翻译所形成的念球状结构称为多核蛋白体。

大学生物化学课件蛋白质的生物合成

大学生物化学课件蛋白质的生物合成
是细胞中一类保守蛋白质,可识别肽链的非天 然构象,促进各功能域和整体蛋白质的正确折叠。
核糖体结合的分子伴侣
非核糖体结合性分子伴侣— 热休克蛋白 伴侣蛋白
(1)热休克蛋白(heat shock protein, HSP ):
属于应激反应性蛋白,高温应激可诱导该蛋白 合成增加。
在大肠杆菌中包括HSP70, HSP40和GrpE三族
Peptidyl site (P Site)
E位
Aminoacyl site (A Site)
mRNA
肽链合成需要酶类和蛋白质因子
• 蛋白质因子: • (1)起始因子 • 原核生物 IF; 真核生物 eIF • (2)延长因子 • 原核生物 EF; 真核生物 eEF • (3)释放因子 • 原核生物 RF; 真核生物 eRF
第二节 蛋白质生物合成的过程
翻译过程从阅读框架的5’-AUG开始,按mRNA 模板三联体密码的顺序延长肽链,直至终止密码 出现。
整个翻译过程可分为三个阶段:
起始(initiation)
延长(elongation)
终止(termination)
一、肽键合成的起始(Initiation)
多肽链合成后需要逐步折叠成天然空间构象才成为有 功能的蛋白质。
时间: 新生肽链N端在核蛋白体上一出现,肽链的折叠
即开始,折叠在肽链合成中、合成后完成。
细胞中大多数天然蛋白质折叠都不是自动完 成,而需要其他酶、蛋白质辅助 :

分子伴侣

蛋白二硫键异构酶

肽-脯氨酰顺反异构酶
1.分子伴侣*(molecular chaperon)
需要:
转位酶(原核生物中是EFG,真核生物中是eEF-2), GTP 结果:

动物生物化学课件:蛋白质的生物合成

动物生物化学课件:蛋白质的生物合成
第十二章
蛋白质的生物合成
将mRNA分子中 4 种核苷酸序列 编码的遗传信息,通过遗传密码破译的 方式解读为蛋白质一级结构中20种氨基 酸的排列顺序过程,称为蛋白质的生物 合成或翻译。
参与蛋白质生物合成的物质 蛋白质生物合成的过程
第一节 参与蛋白质生物合成的物质
参与蛋白质合成的物质
• 原料:20种氨基酸 • 模板:mRNA • 运载体:tRNA • 场所:核蛋白体(rRNA与蛋白质构成) • 蛋白质因子:
生物功能
占据A位防止结合其他tRNA 促进起始tRNA与小亚基结合 促进大、小亚基分离,提高P位对结合起始tRNA的 敏感性 促进起始tRNA与小亚基结合 最先结合小亚基促进大、小亚基分离 eIF-4F复合物成分,有解螺旋酶活性,促进mRNA 结合小亚基 结合mRNA,促进mRNA扫描定位起始tRNA eIF-4F复合物成分,结合mRNA5`-帽子 eIF-4F复合物成分,结合eIF-4E和PAB
➢ tRNA凭借自身的反密码子与mRNA链上的密码 子相识别,按照mRNA链上的密码子所决定的氨 基酸顺序将所带氨基酸转运到核糖体的特定部位。
一种氨基酸可以有一种以上tRNA作为 运载工具。通常把携带相同氨基酸而反密 码子不同的一组tRNA称为同功tRNA.
氨基酰tRNA----氨基酸的活化形式。 表示为: tRNAPhe
对应同一种氨基酸的不同密码子,称 为同义密码子。同义密码子使用频率不同.
在蛋白质中出现频率越多的氨基酸, 其密码子的数量越多。
4.密码子使用频率不同
• 在蛋白质合成时,对简并密码子的使用频率是 不同的。
• 如UUU和UUC都为苯丙氨酸编码,但在高表 达的蛋白质中使用UUC的频率明显高于UUU。
5. 密码子与反密码子配对的不严格性

蛋白质合成过程

蛋白质合成过程

蛋白质合成过程蛋白质是构成生物体的重要组成部分,参与了生物体内的各种生命活动。

蛋白质的合成是一个复杂而精密的过程,需要经过多个步骤和参与多种生物分子的协同作用。

本文将介绍蛋白质合成的整个过程,包括转录和翻译两个主要阶段,带您深入了解蛋白质合成的奥秘。

一、转录阶段转录是蛋白质合成的第一步,主要发生在细胞核内。

在转录过程中,DNA的信息被转录成RNA,其中mRNA(信使RNA)是编码蛋白质的模板。

以下是转录阶段的具体步骤:1.1 DNA解旋:在转录开始之前,DNA的双螺旋结构需要被解开,使得RNA聚合酶能够访问DNA上的基因信息。

1.2 RNA合成:RNA聚合酶按照DNA模板的信息合成mRNA分子。

RNA聚合酶会在DNA上“读取”信息,然后在合成RNA链时将对应的核苷酸加入到新合成的RNA链中。

1.3 RNA修饰:在合成完成后,mRNA分子会经过一系列修饰过程,包括剪切、剪接和加上帽子和尾巴等修饰,以确保mRNA的稳定性和功能性。

1.4 mRNA运输:修饰完成的mRNA会通过核孔运输到细胞质中,为下一步的翻译提供模板。

二、翻译阶段翻译是蛋白质合成的第二步,主要发生在细胞质中的核糖体上。

在翻译过程中,mRNA上的密码子被翻译成氨基酸序列,从而合成特定的蛋白质。

以下是翻译阶段的具体步骤:2.1 起始子寻找:翻译的起始子AUG会被识别,标志着翻译的开始。

AUG对应的氨基酸是甲硫氨酸。

2.2 氨基酰-tRNA结合:氨基酰-tRNA与mRNA上的密码子配对,带来对应的氨基酸。

tRNA上的抗密码子与mRNA上的密码子互补配对,确保正确的氨基酸被带入。

2.3 肽键形成:氨基酸通过肽键连接成多肽链,形成蛋白质的主干结构。

2.4 翻译终止:当翻译到终止子时,翻译复合物会停止合成,释放出新合成的多肽链。

2.5 蛋白后修饰:新合成的多肽链可能需要进一步的后修饰,如蛋白质的折叠、磷酸化、甲基化等,以获得最终的功能性蛋白质。

蛋白质合成的生物学过程从RNA到蛋白质

蛋白质合成的生物学过程从RNA到蛋白质

蛋白质合成的生物学过程从RNA到蛋白质蛋白质合成的生物学过程:从RNA到蛋白质蛋白质是细胞中最基本的分子,能够发挥众多生物学功能。

在细胞内,蛋白质的生产需要经历一个复杂的生物学过程,包括DNA转录成RNA、RNA翻译成蛋白质等多个步骤。

本文将介绍这个过程中的关键步骤及其作用,以及在细胞合成蛋白质时所需的重要分子。

1. DNA的转录在蛋白质的生产过程中,DNA是绝对的主角。

DNA中记录了细胞合成蛋白质所需的全部信息。

然而,由于DNA不能离开细胞核,所以需要将其信息“复制”到细胞质中。

这个过程就是DNA转录。

DNA转录的关键分子是RNA聚合酶。

当细胞需要合成某种蛋白质时,RNA聚合酶会在DNA上找到相应的序列,并沿着DNA模板合成一条RNA链。

这个RNA链被称为mRNA(messenger RNA),因为它会携带DNA信息到细胞质中,成为细胞合成蛋白质的模板。

在DNA转录过程中,还会有其他类型的RNA合成,如tRNA和rRNA。

它们分别是转运RNA和核糖体RNA,是合成蛋白质所需的重要辅助分子。

2. RNA的翻译当mRNA分子到达细胞质,细胞就开始了蛋白质合成的第二个阶段:RNA的翻译。

翻译是指将RNA序列翻译成氨基酸序列,进而合成成蛋白质分子的过程。

RNA的翻译需要依赖核糖体这个巨大而复杂的分子机器。

核糖体由rRNA和多种蛋白质组成,能够将RNA序列中所包含的信息转化为一条蛋白质链。

在这个过程中,不同的tRNA分子将不同的氨基酸带到核糖体中,并按照mRNA的序列编码将氨基酸连接起来。

当核糖体在mRNA序列末端读到一个“终止密码子”时,合成的蛋白质链就会停止。

3. 蛋白质的折叠和修饰一条刚刚合成出来的蛋白质链并不能发挥生物学功能。

它需要经过更多的微调才能正常工作。

这个过程被称为蛋白质的折叠和修饰。

蛋白质的折叠和修饰是非常复杂的过程,其中涉及到多种分子、酶、离子和分子机器。

但总的来说,这个过程的目标是将蛋白质链折叠成一个稳定、完整、具有功能的三维结构,以便于与其他分子相互作用。

蛋白质生物合成体系

蛋白质生物合成体系
核糖体中蛋白质与RNA的比例在不 同物种中有所不同,但通常约为1:1。
核糖体的结构
核糖体是一种高度复杂的超分子结构,由多个蛋白质和RNA分子组装而成。
大、小亚基的形状类似于扁平的椭圆形或球形,大亚基的直径约为70-80 埃,小亚基的直径约为40-50埃。
核糖体中的蛋白质和RNA分子通过相互作用形成了一个稳定的结构,使得 核糖体能够作为一个整体来执行功能。
02
每种氨基酸都有特定的氨酰tRNA合成酶,该酶具有高度的 专一性,只对一种氨基酸起作 用。
03
活化后的氨基酸通过酯键与 tRNA结合,形成氨酰-tRNA, 为接下来的蛋白质合成做准备。
氨基酸在细胞内的转运
氨基酸在细胞内的转运主要依靠细胞内不同的 转运体系来完成,这些转运体系能够识别和结 合相应的氨基酸,并将其转运到需要的地方。
通过调节翻译延长因子EF-Tu、EF-G等,可以影响蛋 白质合成的速率。
调节翻译终止
通过调节翻译终止因子eRFs的活性,可以控制蛋白质 合成的终止。
蛋白质生物合成与疾病的关系
疾病发生
01
当蛋白质生物合成体系出现异常时,可能导致某些疾病的发生,
如癌症、感染性疾病等。
疾病发展
02
蛋白质生物合成体系的变化可能影响疾病的发展进程,如肿瘤
蛋白质的折叠
1
蛋白质折叠是指蛋白质合成后,通过一系列复杂 的化学和物理过程,将其由线性肽链折叠成具有 特定三维结构的构象。
2
蛋白质折叠是一个自发的、动态的过程,需要依 靠分子伴侣、折叠酶等辅助因子来完成。
3
正确的蛋白质折叠对于维持细胞正常功能和生物 体的健康至关重要,而错误的折叠会导致多种疾 病的发生。
核糖体的功能

蛋白质的生物合成(翻译)

蛋白质的生物合成(翻译)
新生多肽链需要酶和其他蛋白质辅助,经过 折叠、修饰等加工才能转变为天然构象的功能蛋 白质。 1. 分子伴侣
(1)热休克蛋白(HSP): HSP70、HSP40和GreE族
(2)伴侣素(chaperonins): GroEL和GroES家族
2. 蛋白二硫键异构酶 (PDI)
3. 肽-脯氨酰顺反异构酶 (PPI)
(二) 抗生素对蛋白质合成的影响
1.抗生素类是微生 物产生的能够杀灭 或抑制细菌的一类 药物。
抑制蛋白质生物合成的原理
抗生素 四环素族(金霉素 新霉素、土霉素) 链霉素、卡那霉素、 新霉素 氯霉素、林可霉素 红霉素 梭链孢酸 放线菌酮 嘌呤霉素 作用点 原核核蛋白 体小亚基 原核核蛋白 体小亚基 原核核蛋白 体大亚基 原核核蛋白 体大亚基 原核核蛋白 体大亚基 真核核蛋白 体大亚基 真核、原核 核蛋白体 作用原理 应用 抑制氨基酰-tRNA与小亚基 抗菌药 结合 改变构象引起读码错误、抑 抗菌药 制起始 抑制转肽酶、阻断延长 抗菌药 抑制转肽酶、妨碍转位 与EFG-GTP结合,抑制肽 链延长 抑制转肽酶、阻断延长 氨基酰-tRNA类似物,进位 后引起未成熟肽链脱落 抗菌药 抗菌药 医学研究 抗肿瘤药
5'
UAG
3'
二、真核生物翻译过程
(一)起始
1. 核糖体大小亚基分离; 2. 起始氨基酰-tRNA结合; 3. mRNA在核糖体小亚基就位; 4. 核糖体大亚基结合。
原核先 就位,后 结合;真核 先结合, 后就位
(二) 延长
与原核生物相比,真核生物肽链延长过程有 不同的反应体系和延长因子。真核细胞核糖体没 有E位,转位时卸载的tRNA直接从P位脱落。
2
4 2 3
Thr

蛋白质的生物合成与修饰

蛋白质的生物合成与修饰
述 • 氨基酸的活化与转运 • 肽链的合成与延伸 • 蛋白质的翻译后修饰 • 蛋白质生物合成的调控机制 • 蛋白质生物合成的应用与展望
01
蛋白质生物合成概述
蛋白质生物合成的重要性
维持生命活动
蛋白质是生物体结构和功能的基 础,参与细胞代谢、信号传导、 免疫应答等生命活动。
肽键的形成
通过转肽反应,新加载的氨基酸与前一个氨基酸形成肽键,使肽链不 断延伸。
肽链合成的终止和释放
终止阶段
当遇到终止密码子时,释放因子识别并与之结合,导致肽链合成 的终止。
肽链的释放
在释放因子的作用下,完成合成的肽链从核糖体上释放出来。
后续修饰
释放后的肽链可能还需要经过一系列的修饰和加工,如剪切、折叠、 磷酸化等,才能成为具有生物活性的蛋白质。
合形成活化形式的过程。
活化反应的机制
02
氨基酸活化通常涉及与ATP等核苷酸的反应,形成氨酰-AMP等
中间产物,再进一步与特定tRNA结合。
活化反应的意义
03
活化后的氨基酸才能被用于蛋白质的生物合成,保证合成过程
的顺利进行。
tRNA的转运机制
tRNA的结构与功能
tRNA是一种小分子RNA,具有特定的三叶草结构,能够识别并 携带特定的氨基酸。
合成生物学
利用合成生物学技术设计和构建人工生物系统,实现高效、 可持续的蛋白质生产。
01
精准医疗
基于蛋白质生物合成的精准医疗将实现 个性化诊断和治疗,提高医疗效果。
02
03
伦理与法规
随着蛋白质生物合成技术的不断发展, 相关伦理和法规问题也日益凸显,需 要加强监管和公众科普教育。
THANKS
感谢观看
修饰

第蛋白质的生物合成(共23张PPT)

第蛋白质的生物合成(共23张PPT)
在一条mRNA链上可结合多个核糖体,各自独立进 行多肽的合成,能提高mRNA的翻译效率。
6 多肽链的加工
1)N-端甲酰基及多余氨基酸的切除 按蛋白质合成机理,蛋白质N-端氨基酸应是甲酰蛋 氨酸(原核)或蛋氨酸(真核),但事实上并非如此。这是由 于脱甲酰酶除去了N-端的甲酰基,氨肽酶切除了N-端 一或几个多余氨基酸。此过程常在肽链延伸约有40个
氨基酸左右就开始了。
2)蛋白质内部某些氨基酸的修饰
被修饰的部位通常是丝氨酸或苏氨酸铡链上 的羟基;天冬氨酸、谷氨酸铡链上的羧基;天冬 酰胺铡链上的酰胺基;精氨酸、赖氨酸上的氨基; 半胱氨酸上的巯基等。修饰作用是在专一性的酶 催化下进行的。
3)切除非必需肽段 有些酶、激素等要经过此加工过程。如胃蛋白酶、 胰蛋白酶等,初合成的是没有活性的酶原,在一定条 件下除去一段肽才能转变为有活性的酶。如胰岛素, 初产物为前胰岛素原,经切除N-端信号肽变为胰岛素 原,再切除C肽成为有活性的胰岛素。
在结构上类似于遗传信息传递中的某些底物的物质可用于治疗肿瘤,如6-巯基嘌呤、5-氟尿嘧啶等碱基类似物可抑制DNA的复制。
此过程常在肽链延伸约有40个氨基酸左右就开始了。
tRNA合成酶的催化下先生成氨酰-AMP 逆转录病毒以RNA基因组合成cDNA时以tRNA为引物;
有些酶、激素等要经过此加工过程。
,再将活化的氨
2 核糖体
核糖体是细胞内合成蛋白质的场所,在蛋白质生 物合成过程中,将tRNA、mRNA及多种酶和蛋白质因 子的作用协调起来。核糖体由rRNA和蛋白质组成,有 大小两个亚基。
核糖体的功能:①识 别mRNA上的起始点,②使 mRNA 上 的 密 码 子 与 tRNA
上的反密码子配对,③合成肽 键。
核糖体的种类、结构和组分

蛋白质合成过程

蛋白质合成过程

蛋白质合成过程蛋白质合成是细胞内的一个重要过程,它负责合成体内所需的蛋白质。

蛋白质是生命的基础,它们是构成我们身体的主要成分之一,不仅是细胞结构的组成部分,还承担许多重要的生物学功能。

在蛋白质合成的过程中,有两个主要的阶段:转录和翻译。

转录是指DNA的信息被复制成RNA的过程,而翻译是指RNA上的信息被转化为氨基酸的序列,从而合成出蛋白质。

转录是蛋白质合成的第一步。

在转录过程中,DNA双链中的一部分解链,形成一个称为转录泡的结构。

在这个过程中,DNA中的一个特定区域被称为启动子的序列信号被RNA聚合酶识别并结合上去。

一旦RNA聚合酶结合上去,它会开始从DNA上复制出与模板链相对应的mRNA链。

在此过程中,A(腺嘌呤)、T(胸腺嘧啶)、G(鸟嘌呤)、C(胞嘧啶)等核苷酸将会被合成到mRNA链上。

在转录完成后,mRNA会进行一系列的后续加工过程。

这些加工过程包括剪接、5'端盖结构的合成以及3'端加尾等。

剪接是指将mRNA 前体中不含编码蛋白质的间隔序列剪掉,并将编码序列连接起来的过程。

剔除掉间隔序列可以大大提高mRNA的稳定性和可读性。

5'端盖是指在mRNA的5'端加上一段辅助RNA序列,它有助于mRNA的稳定性和翻译的起始。

3'端加尾是指在mRNA的3'端加上一段多聚腺苷酸(poly-A tail),它与mRNA的稳定性和转运有关。

在mRNA的后续加工完成后,它会被带到细胞质中进行蛋白质的合成,即翻译过程。

翻译是指mRNA上的信息通过与tRNA的配对来翻译为氨基酸的序列。

tRNA是一种特定的RNA分子,它能够与mRNA上的三个碱基序列(也被称为密码子)配对。

当tRNA与mRNA配对时,与每个密码子对应的氨基酸就会被带到合成蛋白质的位置,通过蛋白质合成机器(核糖体)的作用,氨基酸将相互连接成链,并形成一个完整的蛋白质分子。

蛋白质的合成过程是一个高度复杂的过程,涉及到许多不同的分子和细胞结构的相互配合。

生物化学翻译

生物化学翻译
Figure 6-72 (part 3 of 5) Molecular Biology of the Cell (© Garland Science 2008)
(6)第二个tRNA携带的氨基酸结 合到A位上,开始肽链的延伸阶 段
Figure 6-72 (part 4 of 5) Molecular Biology of the Cell (© Garland Science 2008)
50S大亚基 30S小亚基
5S rRNA 23S rRNA ~34 proteins
16S rRNA ~21 proteins
60S大亚基 80S核糖体
40S小亚基
5S rRNA 28S rRNA 5.8S rRNA ~49 proteins
18S rRNA ~33 proteins
核糖体的聚合和解离
同功tRNA:运载同一种氨基酸的 一组不同tRNA
tRNA的三维结构
3’
5’
T环 D环
D环
T环
3’ 5’
tRNA的三维结构
(三)、rRNA
Figure 7-30 Essential Cell Biology (© Garland Science 2010)
原核和真核生物核糖体的结构和组成
70S 核糖体
细菌的mRNA结构
Figure 6-73 Molecular Biology of the Cell (© Garland Science 2008)
(二)、真核生物肽链合成的起始
(1)、 真核生物mRNA的结构
➢ 真核生物mRNA通常是单顺反子
当5’端具有数个AUG时,其中只有一个AUG为主要开放阅读框架的翻译起点。 起始AUG具有二个特点:

蛋白质的生物合成

蛋白质的生物合成

核苷酸序列 mRNA 5′
mRNA 5′ mRNA 5′ mRNA 5′
氨基酸序列
AUCGACCUGAGC
4 22 (×)
3′
AUCGACCUGAGC
42=16 22 (×)
3′
AUCGACCUGAGC
43=64 22 (√)
3′
AUCGACCUGAGC
44=256 22 (×)
3′
2 遗传密码破译
结合,再与fMet-tRNAfMet结合,最后与50S大
亚基结合。而在真核生物中,40S小亚基首
先与Met-tRNAMet相结合,再与模板mRNA结合,
最后与60S大亚基结合生成80S· mRNA· MettRNAMet起始复合物。
40S
elF-3
② met Met Met-tRNAMet-elF-2 -GTP 60S Met ①
个氨基酸的原则,依
次合成一条多肽链的
过程。
蛋白质合成的场所是 蛋白质合成的模板是
核糖体 mRNA
模板与氨基酸之间的接合体是 tRNA 蛋白质合成的原料是
22种氨基酸
(一)遗传密码
1遗传密码定义
存在DNA分子中的碱基序列,基因中那 些编码蛋白质结构的体系,或DNA上核苷酸 与多肽链上氨基酸对应关系,称遗传信息 或遗传密码。 mRNA链上每三个核苷酸翻译成蛋白质 多肽链上的一个氨基酸,这三个核苷酸就 称为密码子。
(三)RNA和核糖体
1 核糖体 的组成
核糖体(核蛋白体):由核糖体核糖 核酸(rRNA)和核糖体蛋白质组成。 单核糖体有大、小两个亚基。
rRNA
(1) 5S rRNA
(2)16S rRNA
(3)23S rRNA

蛋白质生物合成—翻译及翻译后过程

蛋白质生物合成—翻译及翻译后过程

9
精选课件ppt
真核生物mRNA的特点
真核生物没有S-D序列, 靠帽子结构识别核糖体 真核生物的起始密码位 于Kozak序列 (CCACCAUGG)中, 增加翻译起始的效率
10
精选课件ppt
二、生物合成的场所 — 核蛋白体 (Ribosomes)
11
精选课件ppt
核蛋白体蛋白及rRNA的组成特点
31
精选课件ppt
进 位
成肽
转 位
32
精选课件ppt
三、肽链合成终止 (Termination)
1. 终止密码的辨认及肽链从 肽酰-tRNA水解出。
2. mRNA从核蛋白体中分 离及大小亚基的拆开
3. 终止过程需释放因子 (RF)。
33
精选课件ppt
释放因子(release factor, RF):与肽链合成 终止相关的蛋白因子
等是由小泡介导的 49
精选课件ppt
6
精选课件ppt
7
精选课件ppt
阅读框架(reading frames)
开放阅读框(open reading frame, ORF): 从起始密码AUG 到终止密码处的正确可阅读序列
8
精选课件ppt
原核生物mRNA的特点
S-D序列:原核生物mRNA起始密码AUG上游8~13核苷酸 处,存在一段5′-UAAGGAGG-3′的保守序列,称为S-D 序列。是mRNA与核蛋白体识别、结合的位点
原核生物释放因子:RF-1,RF-2,RF-3 真核生物释放因子:eRF
1. 识别终止密码,如RF-1特异识别UAA、UAG;而RF-2可识 别UAA、UGA
2. 诱导转肽酶改变为酯酶活性,催化肽酰基转移到-OH上,使 肽链从核蛋白体上释放。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 转位酶(translocase),催化核蛋白体向mRNA3’-端移 动一个密码子的距离,使下一个密码子定位于A位。
第12章
蛋白质的生物合成 (翻译)
Protein Biosynthesis (Translation)
目录
本章重要知识点
➢ 蛋白质生物合成(翻译)的概念 ➢ mRNA、tRNA、核蛋白体在翻译过程中的作
用,遗传密码的特点 ➢ 氨基酰-tRNA合成酶的作用特点 ➢ 原核、真核生物翻译过程的异同 ➢ 分子伴侣的作用,翻译后修饰的形式 ➢ 信号肽及其作用,各类蛋白质靶向输送的特点 ➢ 抗生素、毒素和干扰素抑制翻译的机制
目录
3. 简并性(degenerate) 一种氨基酸可具有2个或2个以上的密码
子为其编码。这一特性称为遗传密码的简并 性。
除色氨酸和甲硫氨酸仅有1个密码子外, 其余氨基酸有2、3、4个或多至6个三联体为 其编码。为同一种氨基酸编码的各密码子称 为简并性密码子,也称同义密码子 。
目录
各种氨基酸的密码子数目
通用密码 异亮 精 精 终止
线粒体密码 蛋、起始 终止 终止 色
目录
5. 摆动性(wobble) 反密码子与密码子之间的配对有时并不
严格遵守常见的碱基配对规律,这种现象称 为摆动配对(wobble base pairing)。
tRNA反密码子 第1位碱基
mRNA密码子 第3位碱基
I
U
G AC
U, C, A A, G U, C U G
目录
摆 动 配 对
32 1
U
123
二、核蛋白体是蛋白质生物合成的场所
核蛋白体的组成 核蛋白体又称核糖体,是由rRNA和多种蛋
白质结合而成的一种大的核糖核蛋白颗粒,是 蛋白质生物合成的场所。
目录
不同细胞核蛋白体的组成
原核生物
核蛋白 体
小亚基
S值
70S
30S
大亚基 50S
rRNA
16S-rRNA
起始密码子(initiation codon):AUG 终止密码子(termination codon) :UAA、UAG、UGA
目录
遗 传 密 码 表
目录
遗传密码的特点
1. 方向性(directional) 翻译时遗传密码的阅读方向是5’→3’,即读
码从mRNA的起始密码子AUG开始,按5’→3’ 的方向逐一阅读,直至终止密码子。
目录
➢ 蛋白质生物合成的概念
定义 蛋白质生物合成(protein biosynthesis)也称
翻译(translation),是生物细胞以mRNA为模板, 按照mRNA分子中核苷酸的排列顺序所组成的 密码信息合成蛋白质的过程。
目录
反应过程 (1)氨基酸的活化 (2)肽链的生物合成 (3)肽链形成后的加工和靶向输送
目录
➢原核生物的多顺反子
5 PPP
3
➢真核生物的单顺反子
5 mG - PPP
蛋白质
AAA … 3
蛋白质
非编码序列
核蛋白体结合位点
编码序列 起始密码子 终止密码子
遗传密码
➢密码子(codon) 在mRNA的开放阅读框架区,以每3个相邻的
核苷酸为一组,代表一种氨基酸(或其他信息),这 种三联体形式的核苷酸序列称为密码子。 ➢起始密码子和终止密码子:
目录
生物学意义 (1)维持多种生命活动 (2)适应环境的变化 (3)参与组织的更新和修复
目录
第一节
蛋白质生物合成体系
Protein Biosynthesis System
目录
➢ 蛋白质生物合成体系
1. 基本原料:20种编码氨基酸 2. 模板:mRNA 3. 适配器:tRNA 4. 装配机:核蛋白体 5. 主要酶和蛋白质因子:氨基酰-tRNA合成酶、
转肽酶、起始因子、延长因子、释放因子等 6. 能源物质:ATP、GTP 7. 无机离子:Mg2+、 K+
目录
一、mRNA是蛋白质生物合成的直接模板
mRNA的基本结构
Start of genetic message Cap
5
5’-端非翻译区 开放阅读框架
End
Tail
3
3’-端非翻译区
从mRNA 5-端起始密码子AUG到3-端终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
23S-rRNA 5S-rRNA
蛋白质
rpS 21种
rpL 36种
Hale Waihona Puke 真核生物核蛋白 体
小亚基
大亚基
80S
40S
60S
18S-rRNA
28S-rRNA 5.8S-rRNA 5S-rRNA
rpS 33种
rpL 49种
目录
核蛋白体 的组成
原核生物核蛋白体结构模式
目录
三、tRNA是氨基酸的运载工具及蛋白质 生物合成的适配器
目录
4. 通用性(universal) 从简单的病毒到高等的人类,几乎使用
同一套遗传密码,因此,遗传密码表中的这 套“通用密码”基本上适用于生物界的所有 物种,具有通用性。
密码的通用性进一步证明各种生物进化 自同一祖先。
目录
已发现少数例外,如动物细胞的线粒体、 植物细胞的叶绿体。
AUA AGA AGG UGA
反密码环
三级结构
四、蛋白质生物合成需要酶类、 蛋白质因子等
(一)重要的酶类
➢ 氨基酰-tRNA合成酶(aminoacyl tRNA synthetase), 催化氨基酸的活化;
➢ 转肽酶(peptidase),催化核蛋白体P位上的肽酰基转 移至A位氨基酰-tRNA的氨基上,使酰基与氨基结合 形成肽键;并受释放因子的作用后发生变构,表现出 酯酶的水解活性,使P位上的肽链与tRNA分离;
tRNA的作用 ➢ 运载氨基酸:氨基酸各由其特异的tRNA携带, 一种氨基酸可有几种对应的tRNA,氨基酸结合 在tRNA 3ˊ-CCA的位置,结合需要ATP供能; ➢ 充当“适配器”:每种tRNA的反密码子决定了 所携带的氨基酸能准确地在mRNA上对号入座。
目录
tRNA的构象
氨基酸臂
二级结构
读码方向
5′
3′
N
C
肽链延伸方向
目录
目录
基因损伤引起mRNA阅读框架内的碱基发 生插入或缺失,可能导致框移突变(frameshift mutation)。











天冬
目录
➢ 许多真核生物基因转录后有一个对mRNA外显子 加工的过程,可通过特定碱基的插入、缺失或置 换,使mRNA序列中出现移码突变、错义突变或 无义突变,导致mRNA与其DNA模板序列不匹配, 使同一前体mRNA翻译出序列、功能不同的蛋白 质。这种基因表达的调节方式称为mRNA编辑 (mRNA editing)。
相关文档
最新文档