高频电子线路实验
高频电子线路实验范例
高频电子线路实验指导范例盐城工学院信息学院实验一、 函数信号发生实验开通K 1、K 3、K 700示波器,频率计接入TP 701测量,J 701为信号输出口。
1、K 702 1—2,正弦波输出。
用W 703、W 704、W 705来调整波形失真度。
W 703 调整 一、二象限对称,调整三、四象限对称。
W 704 调整 90度处过渡波形。
W 705 调整270度处过渡波形。
以上要求利用示波器显示屏方格标尺仔细、反复地调整,达到目测波形失真最小,要求小于1%。
2、输出正弦波的频率、幅度测量 K 702 1—2 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率:100Hz 幅度调节范围:0—12V P-P 2—3 频率:1KHz 幅度调节范围:0—12V P-P 4—5 频率:10KHz 幅度调节范围:0—12V P-P3、输出三角波的频率、幅度测量 K 702 2—3 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率 100Hz 幅度调节范围:0—20V P-P 2—3 频率 1KHz 幅度调节范围:0—20V P-P 4—5 频率 10KHz 幅度调节范围:0—20V P-P4、输出方波的频率,幅度测量 K 702 4—5 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度: K 701 1—2 频率:100Hz 幅度调节范围:0—22V P-P 2—3 频率:1KHz 幅度调节范围:0—22V P-P 4—5 频率:10KHz 幅度调节范围:0—22V P-P实验二、非线性波形变换实验开通 K 1,K 3, K 300,K 700 准备工作:1、开通函数信号发生与非线性变换两项电源,K 301至K 306全部1—2。
高频电子线路实验报告
实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
高频电子线路实验课件
| 1 | 10 | 1 | 10 | 0.8 | | 3 | 30 | 1 | 30 | 0.4 |
实验结果分析与讨论
实验结果分析
VS
根据实验数据记录,当输入信号频率 增加时,输出信号幅度逐渐减小。这 表明滤波器对高频信号的抑制作用较 强,而对低频信号的抑制作用较弱。 因此,该滤波器为高通滤波器。
系统集成与优化
未来的高频电子线路实验将更加注重系统集成和优化,将 不同的器件和电路模块进行整合,实现更高效、更可靠的 高频电子系统。
实验方法创新
未来的高频电子线路实验将不断创新实验方法,引入新的 实验技术和工具,提高实验的效率和精度。
结合实际应用
未来的高频电子线路实验将更加注重与实际应用的结合, 通过实验研究高频电子线路在各个领域中的应用,提高实 验的应用价值。
05
高频电子线路实验项目三 :滤波器
实验目的与原理
01
实验目的
02
1. 掌握滤波器的原理及设计方法;
03
2. 了解滤波器对信号频率成分的影响;
实验目的与原理
• 学会使用示波器和信号发生器等设备进行实验操作。
实验目的与原理
实验原理
滤波器是一种频率选择性器件,它可以通过抑制某些频率成分、而允许其他频率成分通过。在高频电 子线路中,滤波器常用于减小信号中的噪声、提取有用信号等。根据频率响应的不同,滤波器可分为 低通、高通、带通和带阻等类型。
• 讨论:调谐放大器在通信、雷达等高频电子系统中具有广泛应用。本实 验通过探究其工作原理及性能特点,为实际应用提供理论支持和实践经 验。同时,实验中可能存在的误差来源也需要进行讨论并加以修正,以 提高实验的准确性和可靠性。
04
高频电子线路实验项目二 :混频器
高频电子线路实验报告
南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。
所谓“小信号”,主要是强调放大器应工作在线性范围。
高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。
高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。
图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。
调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和 功率增益。
电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示。
高频电子线路_小信号调谐放大器和高频功放_实验报告
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频电子线路实验报告范文高频电子实验心得
高频电子线路实验报告范文高频电子实验心得实验一、调谐放大器一、实验目的熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
熟悉谐振电路的幅频特性分析通频带与选择性。
熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验电路L1+12VC4CTR1CRLC3A=10K,2K,470Re=1K,500,2KC5OUTINC1R2C2Re图1-1单调谐回路谐振放大器原理图四、实验内容及步骤1、按图1-1所示连接电路,使用接线要尽可能短接线后仔细检查,确认无误后接通电源。
2.静态测虽实验电路中选Re=1K)测虽各静态工作点,并计算完成表1-1表1-1实测VbVe实测计算是否工作在放大区IcVce是动态研究Vce是动态研究某Vb,Ve是三极管的基极和发射极对地电压3.测虽放大器的动态范围Vi~Vo选R=10K,Re=1K。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为,调节Ct,使回路“谐振”,此时调节Vi变到,逐点记录Vo电压,完成表1-2的第二行。
当Re分别为500Q,2KQ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
表1-2Vi(V)Re=1KVoRe=500Re=2K320mv940mv失真失真失真失真失真失真400mv失真失真失真失真失真失真失真失真失真304mv640mv880mv无无无无Ube大于Uec,发射结正偏,集电结反偏原因某Vi,Vo可视为峰峰值测虽放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压Vi,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=为中心频率,然后保持输入电压Vi不变,改变频率f中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行。
高频电子线路实验报告
高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。
2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。
二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图 2-1 所示(模块②上)。
图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。
它对输入的高频小信号进行放大,并具有一定的选频作用。
基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。
可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。
四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。
2.按图 2-2 所示图连接好实验电路。
3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。
4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。
5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。
频率为 10.5MHz 左右的高频信号。
将信号输入到 2 号板的 J4 口。
先用示波器在 TH1 处观察信号峰-峰值约为 50mV。
(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。
《高频电子线路》自动增益控制实验(AGC)
《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。
2、掌握AGC主放大器的增益控制范围。
二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。
2、测量AGC的增益控制范围。
三、实验仪器1、1号模块 1块2、6号模块 1块3、2号模块 1块4、双踪示波器 1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。
输出信号另一路通过检波二极管D1进入AGC反馈电路。
R14、C18为检波负载,这是一个简单的二极管包络检波器。
运算放大器U2B为直流放大器,其作用是提高控制灵敏度。
检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。
这样,控制电压是正比于载波幅度的。
时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。
跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。
二极管D3可对U2B输出控制电压进行限幅。
W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。
图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。
根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。
图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。
不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。
高频电子的实验报告
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
高频电子线路实验报告
实验报告实验课程:高频电子线路学生姓名:学号:专业班级:指导教师:目录实验一、仪器的操作使用………………………………………实验二、高频小信号调谐放大器………………………………实验三、功率放大器设计………………………………………实验四、LC正弦波振荡器………………………………………实验五、晶体振荡器设计………………………………………实验六、集成模拟乘法器混频…………………………………实验七、二极管双平衡混频器…………………………………实验八、集电极调幅……………………………………………实验九、基极调幅电路…………………………………………实验十、模拟乘法器调幅(AM,DSB,SSB )……………………实验一仪器的操作使用一、实验目的1.学会高频实验室基本仪器的使用与操作,并能够运用仪器进行简单的实验;2.运用仪器调出相应要求的信号,并进行测试。
二、实验仪器示波器,信号发生器,频率特性测试仪三、实验内容1.用信号发生器产生所需要的信号,通过示波器的信号输入线加入到示波器,按一下AUTO SET键,示波器自动识别,显示出信号波形,在按一下Measure键,示波器出现信号频率、幅度等参数。
2.设置高频正弦波信号的频率为10.8MHz,按照表格分别设置信号的幅度,测出对应的输出信号的峰峰值。
3.按调幅键键,进行调幅波信号的产生和观测。
四、实验数据实验误差:接负载:(1)×1档100mv 22.1 % 150mv 19% 200mv 16% 250mv 15.3% (2)×10档100mv 1.4% 150mv 1.9% 200mv 1.6% 250mv 1.8% 空载:(1)×1档100mv 6.0 % 150mv 15.4% 200mv 14.1% 250mv 12.2% (2)×10档100mv:7150mv 9.1% 200mv 8.1% 250mv 6.3%实验二高频小信号调谐放大器实验五、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
高频电子线路实验报告
学生姓名:组号:实验名称:高频电子线路实验报告实验一一、实验名称:信号放大电路设计与测试。
二、实验目的:(1)进一步学习信号放大电路的工作原理。
(2)掌握信号放大电路的设计、计算和测量方法。
三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。
图1-2。
OP27引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(5)信号源一台(3):实验器材:1.运算放大器:OP27 二块2 8脚插座二块3.1KΩ电阻三支4.50KΩ电位器一个5. 1µF电容(105) 二个6.33KΩ电阻二个四、实验过程及数据、现象记录:输入Vi:1 mVpp。
五、实验数据分析、误差分析、现象分析:(1)根据原理电路计算出放大倍数A1、A2:A1=-R2/R1=-33kΩ/1kΩ=-33A2=(1+(R5+RW1)/R4)=1+(33kΩ+20KΩ)/1 kΩ=54A0=-33*54=-1782(2)测量出实际电路的放大倍数A0,与计算结果比较。
A(实际)相对误差:18671782100% 4.77% 1782-⨯=数据分析:相对误差有点大,但波形美观,放大倍数明显,较为成功。
估计误差主要是由器件测量误差引起的。
六、回答思考题:(1)信号放大电路与哪些电路参数有关?答:电阻接入方式,以及接入的电阻的阻值大小有关。
(2)电容C1、C2在电路中起什么作用?答:起隔直作用。
防止相互之间产生干扰。
实验二一、实验名称:正弦波振荡电路二、实验目的:(1)进一步学习RC正弦波振荡电路的工作原理。
(2)掌握RC正弦波振荡频率的调整和测量方法。
三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。
图2-2 OP37引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(3):实验器材:1.运算放大器:OP37 一块2 8脚插座一块3.10KΩ电阻三支4.10KΩ电位器一个5.15KΩ电阻一支6.2.2KΩ电阻一支7. 0.01µF电容(103) 二个8. 二极管二个四、实验过程及数据、现象记录:五、实验数据分析、误差分析、现象分析:相对误差:1.591 1.477100%7.17%1.591-⨯=RC 桥式振荡电路的工作原理及分析方法:为了使振荡幅度稳定,通常在放大电路的负反馈回路里加入非线性元件来自动调整负反馈放大电路的增益,从而维持输出电压幅度的稳定。
高频电子线路实验说明书51DSB...
目录目录 (1)实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 电容三点式LC振荡器 (14)实验4 石英晶体振荡器 (21)实验5 晶体三极管混频实验 (24)实验6 集成乘法器混频器实验 (28)实验7 中频放大器 (32)实验8 集成乘法器幅度调制电路 (36)实验9 振幅解调器(包络检波、同步检波) (45)实验10 高频功率放大与发射实验 (54)实验11 变容二极管调频器 (64)实验12 斜率鉴频与相位鉴频器 (68)实验13 锁相、频率合成与频率调制 (72)实验14 脉冲计数式鉴频器 (81)实验15 自动增益控制(AGC) (85)实验16 调幅发送部分联试实验 (88)实验17 调幅接收部分联试实验 (89)实验18 调幅发射与接收完整系统的联调 (90)实验19 调频发射与接收完整系统的联调 (94)实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
高频电子实验报告
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
高频电子线路实验报告
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高频电子线路》实验一 谐振电路与选频电路一、LC 谐振电路LC 谐振电路是是高频电子线路中常用的无源电路。
其相关的知识内容是高频电子线路课程的重要概念。
LC 谐振电路包括LC 串联谐振电路与LC 并联谐振电路两种。
(1)LC 串联谐振电路♦谐振条件:0100=-C L ωω,LC 10=ω♦串联谐振回路的选择性22002011)(11ξωωωω+≈-+==Q I IS ,ξωωωωϕarctg Q arctg -≈--=)]([000,)2(0ff Q ∆=ξ ♦串联回路的谐振曲线◆串联谐振回路的参数和公式 1)谐振电流 R V I S=0, 谐振阻抗 R Z = 2)谐振频率 LC10=ω,LCf π210=3)特性阻抗 CLC L ===001ωωρ 4)品质因数 RCRLRQ 000/1ωωρ=== 5)通频带BW 0.7我们将由S 值从最大值下降到其2/1时,对应的频率范围定义为谐振回路的通频带BW 0.7。
007.0Q f BW =◆对于串联谐振回路,当Vs恒定时,222222)(1)()/1()/1()/1()/1(ωωωωωωωωωωωω-+=-+=-+=QQCLRCCLRICIVVSC当ωω=时,Vc出现最大峰值。
且QVVSC=。
依据这个原理,我们可以通过实验来测量LC 串联谐振电路的Q值。
◆实验电路如下图所示:◆实验操作步骤:1)将函数发生器打开,调出频率f=10MHz、输出电压100mV的正弦波信号,作为Vs加入到LC串联谐振电路上。
2)用示波器观察Vs和V1、V2的波形。
测量其电压大小。
3)改变正弦波信号频率的f,同时观察电容电压V2出现峰值时为串联谐振发生。
4)记录测量数据,计算Q值大小。
5)依据计算的Q值,计算电感中电阻R的大小。
表1 LC串联谐振电路实测数据谐振频率f(MHz) 谐振时的Vs(mV) 谐振时的V2(mV) 谐振时的V1(mV)◆计算结果:品质因数Q特性阻抗ρ谐振电阻R 谐振频率f(MHz)(2)LC并联谐振电路LC并联谐振电路在信号频率等于谐振频率时发生并联谐振。
谐振时电路将呈现出高电阻状态。
◆并联谐振回路的频率选择性22211)(11ξωωωω+≈-+==pppp QVVSLCp1≈ω为并联谐角频率,pV为并联谐振时的电压。
◆LC并联谐振回路的谐振曲线、特性阻抗等与LC串联谐振回路类同。
◆LC并联谐振回路的Q值RCRLRQ pppωωρ/1===,R为电感的串联电阻。
另外ρppRQ=,pR为LC并联谐振回路的谐振阻抗。
◆对于LC并联谐振回路,当Ig恒定时,2221)(1ξωωωω+≈-+===ppppppPpgpgRQRRVVRIVRIV,当pωω=时,V出现最大峰值。
ρppRQ=依据这个原理,我们可以通过实验来测量LC并联谐振电路的Q值。
◆实验电路如下图所示:电路工作于甲类放大器状态。
LC并联谐振电路由恒流源激励。
当发生谐振时,1V将出现最大峰值。
CI V R k V I p g p g ωρ1,,312===。
◆实验操作步骤:1)将函数发生器打开,调出频率f=10MHz 、输出电压1V 的正弦波信号,作为Vs 加入到实验电路上。
2)用示波器观察Vs 和V1、V2的波形。
测量其电压大小。
3)改变正弦波信号频率的f ,同时观察电容电压V1出现峰值时为并联谐振发生。
4)记录测量数据,计算谐振阻抗p R 大小。
5)依据计算的p R 值,计算电路的p Q 。
表2 LC 并联谐振电路实测数据 谐振频率f(MHz) 谐振时的Vs(V) 谐振时的V 2(V) 谐振时的V 1(mV)◆计算结果:品质因数Qp 特性阻抗ρ 谐振阻抗Rp 谐振频率f(MHz)(3)复合式LC 串联谐振电路复合式LC 谐振电路是将电感、电容串并联后担任电感或电容而构成的谐振电路。
这种电路形式在实际应用中也经常出现。
下图为一个复合式LC 串联谐振电路。
谐振时,SV V Q 20=。
)(1210C C L +=ω。
pF C C 25,1220==ωρ。
◆实验操作步骤:1)将函数发生器打开,调出频率f=10MHz 、输出电压100mV 的正弦波信号,作为Vs 加入到LC 串联谐振电路上。
2)用示波器观察Vs 和V1、V2的波形。
测量其电压大小。
3)改变正弦波信号频率的f,同时观察电容电压V2出现峰值时为串联谐振发生。
4)记录测量数据,计算Q值大小。
5)依据计算的Q值,计算电感中电阻R的大小。
表3 LC 串联谐振电路实验数据谐振频率f(MHz) 谐振时的Vs(mV) 谐振时的V 2(mV) 谐振时的V 1(mV)◆计算结果:品质因数Q 0 特性阻抗ρ 谐振电阻R 谐振频率f(MHz)(4)复合式LC 并联谐振电路复合式LC 并联谐振电路如下所示:谐振时,)(12121C C C C L p +=ω,ρpp R Q =,pF C C I V k R k V I p g p g 200,1,5//,32212===Ω=ωρ ◆实验操作步骤:1)将函数发生器打开,调出频率f ≈30MHz 、输出电压1V 的正弦波信号,作为Vs 加入到实验电路上。
2)用示波器观察Vs 和V1、V2的波形。
测量其电压大小。
3)改变正弦波信号频率的f ,同时观察电容电压V1出现峰值时为并联谐振发生。
4)记录测量数据,计算谐振阻抗p R 大小。
5)依据计算的p R 值,计算电路的p Q 。
表4 LC 并联谐振电路实测数据 谐振频率f(MHz) 谐振时的Vs(V) 谐振时的V 2(V) 谐振时的V 1(mV)◆计算结果:品质因数Qp 特性阻抗ρ 谐振阻抗Rp 谐振频率f(MHz)二、变容二极管与变容二极管组成的谐振电路(1)变容二极管变容二极管是一种将PN 结结电容作为可变电容的半导体二极管。
变容二极管的内部为一个半导体PN 结。
工作时在变容二极管上施加反向偏压。
此时PN 结的结电容Cj 就可以作电容来应用。
变容二极管的结电容Cj 的大小与其上施加的反向偏压数值有关。
反向偏压数值越大,Cj 越小。
Cj 随反向偏压的变化为非线性关系,如下图所示。
(2)变容二极管组成的谐振电路由变容二极管组成的谐振电路如下所示:电感L1与变容二极管的Cj组成LC串联谐振电路。
电感L2为高频扼流圈。
Vcc经10k 电位器、L2给变容二极管施加反向偏压。
改变电位器中间触点位置,可以改变变容二极管上反向偏压的大小,从而改变Cj的大小。
Cj大约在40pF~5pF之间变化。
电感L2能够通过直流电压,同时阻隔高频信号,使电位器、Vcc等不会影响LC串联谐振电路的工作。
当谐振发生时,V2将出现最大峰值电压。
◆实验操作步骤:1)将函数发生器打开,调出频率为10MHz、输出电压100mV的正弦波信号,作为Vs加入到LC串联谐振电路上。
2)用高频毫伏表观察Vs和V1、V2的波形。
测量其电压大小。
3)改变10k电位器的阻值,同时观察电容电压V2出现峰值时为串联谐振发生。
4)记录测量数据,计算Q值大小。
5)依据计算的Q值,计算电感中电阻R的大小。
{注:由于变容二极管的Cj较小,而示波器的输入电容较大,所以无法用示波器观察波形,只能用高频毫伏表测量电压。
}6)改变函数发生器输出频率为20MHz、30MHz,重新进行实验,记录实验数据。
表5 LC串联谐振电路实测数据谐振频率f(MHz) 谐振时的Vs(mV) 谐振时的V2(mV) 谐振时的V1(mV)◆计算结果:品质因数QCj(pF) 谐振电阻R 特性阻抗ρ三、π型匹配网络π型匹配网络是一种在高频功率放大器中常用的LC电路。
它具有选频和阻抗变换两大功能。
在下图所示的π型匹配网络中,改变电容C1的大小能够明显地改变电路的谐振(选频)频率。
改变电容C2的大小则能够明显改变电路的谐振阻抗Rp,将负载电阻R L变换成Rp。
所以反复调试C1、C2的大小,就能够获得一定的谐振阻抗Rp,同时使电路在工作频率f上谐振。
Lp C Q R X =1,1)1(22-+=L pL LC Q R R R X ,)1(122C L LL p L L X Q R Q R Q X ++=,取4≈L Q 。
π型匹配网络的实验电路如下图所示:π型匹配网络由恒流源激励,当发生谐振时V1出现最大峰值电压。
通过测量V1、V2、V3可计算出π型匹配网络的Rp ,观察到谐振曲线等。
◆实验操作步骤:1)将函数发生器打开,调出频率为30MHz 、输出电压幅度为2V 的正弦波信号,作为Vs 加入到实验电路中。
2)用示波器观察Vs 和V1、V2的波形。
测量其电压大小。
3)改变C1的容量大小,同时观察电容电压V1出现峰值时为谐振发生。
4)记录测量数据,计算Rp 大小。
5)改变C2的容量大小,然后改变C1的容量大小,同时观察电容电压V1出现峰值时为谐振发生。
记录测量数据计算Rp 大小。
6)反复改变C1、C2大小,使电路谐振。
{注:如果没有高频示波器,则可以仅使用高频毫伏表测量电压,以完成实验。
}表6 π型匹配网络实测数据谐振频率f(MHz) 谐振时的Vs(mV) 谐振时的V 2(mV) 谐振时的V 1(mV)◆计算结果:谐振电阻Rp四、陶瓷滤波器陶瓷滤波器属于固态滤波器。
具有使用方便、无需调试等优点。
常用于高频电子线路做带通滤波器之用。
常见于中频放大电路。
陶瓷滤波器实验电路如下图所示:◆实验操作步骤:1)将函数发生器打开,调出频率为陶瓷滤波器中心频率(465Hz和10.7MHz)附近、输出电压100mV的正弦波信号,作为Vs加入到实验电路中。
2)用示波器观察Vs和V1的波形。
测量其电压大小。
3)改变函数发生器的输出频率大小,同时观察电容电压V1出现峰值时为谐振发生。
4)记录测量数据,绘制陶瓷滤波器的频率特性曲线。
表7陶瓷滤波器实测数据(465kHz)输入信号频率f(MHz) 输入信号电压Vs(mV) 输出信号电压V(mV)1表8陶瓷滤波器实测数据(10.7MHz)五、实验总结(写出学生做完该实验的心得总结)(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。