第二章--《有理数及其运算》易错题及难题

合集下载

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

七年级数学上册2有理数及其运算易错课堂二新版北师大版

七年级数学上册2有理数及其运算易错课堂二新版北师大版
1)(-113)2=___1_96____; (2)(-12)3=_-_18____; (3)-(-37)2=-__4_99___;(4)-相等的是( B ) A.43和34 B.-35和(-3)5 C.-52和(-5)2 D.[-2×(-3)]2和-2×(-3)2 6.下列各式正确的是( C ) A.|-a2|=-a2 B.|-a3|=a3 C.(-a)2=a2 D.(-a)3=a3
对应训练
1.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n| 2.数轴上A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如 果|a|>|c|>|b|,那么该数轴的原点的位置应该在( C ) A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边 3.绝对值大于1小于3的整数为_±__2_.
第2章 有理数及其错 例❶ 已知a=-3,|a|=|b|,则b=_±__3_. 错解:-3 错因分析:对绝对值的三种情况分析不全面,认为|a|=|b|,则a=b ,于是b=-3. 正解:±3 牛牛文档分 享 牛牛文档分 享
对应训练 7.计算:(-5)×15÷(-15)×5 解:原式=(-5)×15×(-5)×5=25 8.计算:-42-(-7)÷12×2
解:原式=-16-(-7)×2×2=-16+28=12
9.计算:2×(-3)2-6÷(-3)×(-13)2 解:原式=2×9-6×(-13)×19=18+29=1829
www.Leabharlann 牛牛文档分 享二、有理数的乘方运算,易出错 例❷ 计算:(1)-34;(2)(213)3;(3)342. 错因分析:对乘方的意义理解有误,不能认清底数和指数.

《有理数及其运算》易错题及培优题

《有理数及其运算》易错题及培优题

1《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆) 1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远 2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数 3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( ) A.奇数 B.偶数 C.负数 D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A 、0.8kg B 、0.6kg C 、0.5kg D 、0.4kg考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<07.考点三:相反数(☆☆)8.倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 ,绝对值最小的数是________.9.-m 的相反数是 ,-m+1的相反数是 ,m+1的相反数是 . 10.已知-a=9,那么-a 的相反数是 ;已知a=-9,则a 的相反数是 . 11.两个非零有理数的和是0,则它们的商为 ( ) A.0 B.-1 C.+1 D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( ) A.A 、B 两点的距离 B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和 13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数 ※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( ) A.点A 在点B 、C 之间 B.点B 在点A 、C 之间 C.点C 在点A 、B 之间 D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______.20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.22.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题: (1)若数轴上两点A 、B 表示的数为x 、-1, ①A 、B 之间的距离可用含x 的式子表示为_____; ②若该两点之间的距离为2,那么x 值为______.2(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.考点五:有理数的计算(☆☆☆) 23.计算:(直接写出结果)(1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____;(5) 9-33=_____; (6)-(-12)2+(-2)2=______.24.计算: (1)(12+13+14-45+16)×(-60)(2)(-1.5)2×(113)2-(-0.2)3×202;(3)[30-(79+56-1112)×36]÷(-5)(4)-14-(1-0.5)×13×[1-(-2)2].(5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++-考点六:有理数的应用(☆☆☆)25.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加26.一天小明和冬冬利用温差来测量山峰的高度。

第二章《有理数及其运算》专项练习共7个专题(含答案)

第二章《有理数及其运算》专项练习共7个专题(含答案)

第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。

人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)

人教版七年级数学上册  第二章 有理数的运算易错训练(单元复习 6类易错)

第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。

第二章--《有理数及其运算》易错题及难题.docx

第二章--《有理数及其运算》易错题及难题.docx

第二章《有理数及其运算》易 、考点一:有理数的分 及 用 (☆☆☆ ) 1. 下列 法正确的是( ).A. 数 0 是最小的整数B.若│ a │ =│b │, a=b C.互 相反数的两数之和 零 D. 两个有理数,大的离原点2. 若两个有理数的和是正数,那么一定有 ()A. 两个加数都是正数B.两个加数有一个是正数 C.一个加数正数 , 另一个加数 零D. 两个加数不能同 数3、 1-2+3-4+5-6+ ⋯⋯ +2015-2018 的 果不可能是()A. 奇数B.偶数C.数D.整数4. 某粮店出售的三种品牌的面粉袋上分 有 量( 25± 0.1 )kg ,( 25± 0.?2 )kg ,( 25±0.3 ) kg 的字 ,从中任意拿出两袋,它 的 量最多相差( )A 、 0.8kg B、 0.6kgC、 0.5kg D、0.4kg考点二:数 ( ☆☆☆ )5.a,b,c三个数在数 上的位置如 所示, 下列 中 的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b - c<06. 在数 上表示下列各数:5,-|-3.5|, 21,|-1| ,+4,0,并用“<”号把 些数22接起来.7.-5____-3( 填“>”、“=”、“<”)64考点三:相反数 ( ☆☆ )8. 倒数是它本身的数是;相反数是它本身的数是; 是它本身的数是,最小的数是________.9.-m 的相反数是, -m+1 的相反数是10. 已知 -a=9 ,那么 -a 的相反数是 ;已知, m+1的相反数是a=-9 , a 的相反数是 ..11. 两个非零有理数的和是 0, 它 的商 ( ) A.0B.-1C.+1D.不能确定考点四:( ☆☆☆☆☆ )12. 已知数 上的三点 A 、 B 、C 分 表示有理数 a , 1, -1 ,那么 |a+1| 表示 ( )A.A 、 B 两点的距离B.A、C 两点的距离C.A 、 B 两点到原点的距离之和D.A 、C 两点到原点的距离之和13. 已知 |m|=-m ,化 |m-1|-|m-2| 所得的 果是 _______14. 若 a 是有理数, |-a|-a 一定是()A.零 B. 非 数 C. 正数D. 数 ※若 |x-2|+x-2=0 ,那么 x 的取 范 是 ( ) A.x ≤ 2 B.x ≥ 2 C.x=2D.任意 数15. 互不相等的有理数 a 、b 、c 在数 上的 点分A 、B 、C ,如果 |a-b|+|b-c|=|a-c|,那么点 A 、B 、 C 在数 上的位置关系是( )A.点 A 在点 B 、C 之B. 点 B 在点 A 、C 之C.点 C 在点 A 、B 之D.以上三种情况均有可能16、(1) 若 |x+1|=3 , x=_______. (2) 大于1 且不大于 5 的所有整数的和 _______.17. 已知 |a|=3 , |b|=1,且 |a-b|=b-a ,那么 a+b=______.18. 若 |2-a|+|b+1.5|+|c+4|=0, a-b+c × (b-c)=_____.19.代数式 15-|x+y| 的最大值是 ______, 当此代数式取最大值时,x 与 y 的关系是 ______.20.若 x< 0, 3x+2|x|=m ,则 m____0.( 填“>”、“ =”、“<” )21.(1) 已知有理数 a、 b、 c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设 a、b、c 为非零的有理数,且 |a|+a=0 ,|ab|=ab ,|c|-c=0 ,化简:|b|-|a+b|-|c-b|+|a-c|(3)当 x=- π时,求3|x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13| .(4) 如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q, r , s,若 |p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设 x 是有理数, y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个 x, 使 y 取得最小值C.只有有限多个x, 使 y 取得最小值D.有无穷多个 x, 使 y 取得最小值23.若 |x+2|+|x-4|≥ a 恒成立,则 a 的取值范围为 ______.24.设 a、 b 同时满足:① (a-2b)2+|b-1|=b-1 ;② |a-4|=0.那么 ab=_____.25.若 2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1) 若abc≠0,则+++的可能取值有种(2)有理数 a、b、c 均不为零,且a+b+c=0,设|a |+| b |+| c |的最大值是 x,最小值是y,试求代数式x2-99xy+2018 的值 .b c a c a b27. 数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、 b,则 A、 B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点 A、 B 表示的数为 x、 -1 ,①A、 B 之间的距离可用含x 的式子表示为 _____;②若该两点之间的距离为2,那么 x 值为 ______.(2)|x+1|+|x-2|的最小值为______,此时x的取值是______;(3) 若 |x+1|+|x-2|+|x-3|取最小值时,相应的 x 的取值是 _____, 此最小值是 _____.(4)如图,在一条数轴上有依次排列的5 台机床 A、 B、 C、 D、 E 在工作,现要设置一个零件供应站 P,使这 5 台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5) 已知 (|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y的最大值和最小值.(6) 已知 |x+2|+|1-x|=9-|y-5|-|1+y| ,求 x+y 的最大值和最小值 .(7) 已知 a 、b 、c 、 d 是有理数, |a-b| ≤9 ,且 |c-d| ≤ 16,且 |a-b-c+d|=25 ,求 |b-a|-|d-c|的值 .28. 化简: 2|x-2|-|x+4| 求|x-1|-4|x+1| 的最大值 .29.(1) 满足 |a-b|+ab=1的非负整数 (a ,b) 的个数是 ( ) A.1 B.2 C.3 D.4(2) 若 a 、 b 、 c 为整数,且 |a-b| 19+|c-a|99=1,试计算 |c-a|+|a-b|+|b-c| 的值 .30. 已知有理数 x,m 满足 |x+4|+|x-9|=13-(m-2) 2,求 |x-2|+|x-8| 的最大值31. 已知 |x| ≤ 1, |y| ≤ 2,且 k=|x+y|+|y+2|+|2y-x-6| ,求 k 的最大值和最小值.考点五:有理数的计算 (☆☆☆ )32. 计算:(直接写出结果) (1) 1 +(- 2 2) =_______; (2)- 2- 22=_____;23(3) (- 0.25 )×(- 1 1 )=______; (4) (-12)÷(- 3)=_____;3-(-1255(5) 9 - 33=_____; (6) ) 2+(- 2) 2=______.233. 计算:(1) ( 1 + 1 + 1 - 4 + 1)×(- 60); (2) (- 1.5 ) 2×( 1 1)2-(- 0.2 ) 3×( +20) 2;2 3 45 63(3)[30 -(7 +5- 11 )× 36] ÷(- 5); (4) - 14-( 1- 0.5 )× 1×[1 -(- 2)2] .9 6 12 3(5)15(10) ( 10 ) (15) (6)15 (3) (15) (7) (2) (8)834考点六:有理数的应用 (☆☆☆ )34. 某工厂某周计划每日生产自行车 100 辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______, 生 量_______.星期 一增加/-1二+3三- 2四+4五+7六- 5 日- 1035. 一天小明和冬冬利用温差来 量山峰的高度。

七年级数学上册第2章《有理数及其运算》考点解析(北师大版)

七年级数学上册第2章《有理数及其运算》考点解析(北师大版)

第二章 有理数及其运算考点解析考点1.绝对值: 1. x -=3.6则x=_______,-a =-3.2则a=_______2. 如果a a -=-,则-a 为_______数,a 为_______3.已知x =4,y =12,xy <0,则x y 的值等于_____. 4. 若23310x y ++-=,求x+2y 的值5. ()21262x y -+-=0,则x=____,y=_____6.已知25(6)0x y -+-=,z 的平方为16,求2008()x y -+z 的值7.有理数a 、b 、c 三个数在数轴上的位置如图所示:试化简:11a b b a c c +------8. 有理数a 、b 、c 三个数在数轴上的位置如图所示:试化简:a b a b a c b c ++-+++-c a 0 0考点2.24点游戏:1.四张牌为:-6、-9、2、7将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用四种方法表示。

2. 四张牌为:-12、-1、12、3将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用三种方法表示。

3. 四张牌为:-1、2、-2、3将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用三种方法表示。

考点3.混合运算: 1. 32008311212(2)36⎡⎤--⨯--+-⎣⎦ 2.11111111324354109-+-+-++-L 3.0.25 320092(2)4()1(1)3⎡⎤⨯--÷-++-⎢⎥⎣⎦4.(-2)2008+(-2)20095.计算:(1)1111122334(1)n n++++⨯⨯⨯-L (2)11111121231234123n+++++++++++++++L L考点4探索规律:1. -1-2-3-…-10002.观察以下叙述:1=121+3=221+3+5=321+3+5+7=42…(1) 你能运用上述规律求1+3+5+…+2009的值吗?(2)求1+3+5+…+(2n-1)的值3. 观察算式:13=113+23=913+23+33=3613+23+33+43=100…按规律求下列两式的值。

七年级数学上册 第二章 有理数及其运算 12 用计算器进行运算 有理数的意义错题解析素材 北师大版(

七年级数学上册 第二章 有理数及其运算 12 用计算器进行运算 有理数的意义错题解析素材 北师大版(

七年级数学上册第二章有理数及其运算12 用计算器进行运算有理数的意义错题解析素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数及其运算12 用计算器进行运算有理数的意义错题解析素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数及其运算12 用计算器进行运算有理数的意义错题解析素材(新版)北师大版的全部内容。

有理数的意义错题解析例1 小学学过的数的前面添上“-"号,得到的数都是负数.这句话对吗?若不对,怎样改正?错解这句话是对的.诊断这句话是不对的.因为小学学过的数除自然数、正分数(小数可以化成分数)外,还有0.在0的前面添上“-"号仍是0,而0既不是正数,也不是负数.正确解答这句话不对.改为:小学学过的数(0除外)的前面添上“-"号,得到的数都是负数.例2 有理数包括哪些数?错解有理数包括正数、零和负数.诊断零当然是有理数,但正数和负数中,还有不是有理数的数,只不过我们现在还没有学罢了.正确解答有理数包括整数和分数.例3 把有理数6。

4、-9、25,-100按正整数,负整数,正分数,负分数分成四个集合.错解正整数:{+10,1,25,…}负整数:{-9,-100,…}诊断题目是要求把给出的10个数分成四个集合,显然每个集合中的有理数是有限个.上述解答把每个集合中的有限个数全部写出来之后,又写上了省略号,把有限个变成了无限个,这显然是错的.说明省略号是表示还有许多没有写出来的数,或者表示无穷个数.例4 最小的正整数是几?最大的负整数是几?错解最小的正整数是零,最大的负整数不存在.诊断零是整数,但它既不是正数也不是负数,因而最小的正整数应该是1.解题者由于受“不存在最大正整数”负迁移作用的影响,导致出不存在最大的负整数的错误结论.事实上,根据两个负数,绝对值小的反而大,可以得到最大的负整数是-1.例5 -a一定是负数吗?错解-a一定是负数.诊断之所以出现上面的错误,其原因是解题者对字母表示数的认识肤浅,加上解题者又从形式上看问题.事实上,如果a表示-5,那么-a表示-(-5)=5;如a表示0,那么-a也表示0.正确解答-a不一定是负数,可以是正数,也可以是0.说明 0经常出现在各种数学问题中,在思考问题时,要注意考虑0这一特殊情况.例6 数轴的三要素是什么?错解数轴的三要素是指原点、正方向、长度单位.诊断上面的回答错在混淆了“单位长度”和“长度单位”这两个概念.看起来只有词序不同,但实际意义不一样.“长度单位”是一个确定的量,如厘米、分米等.而“单位长度"不是确定的,它的大小可根据实际需要适当选取.当然还可用一个或若干个长度单位来作为一个“单位长度”.正确解答数轴的三要素是原点、正方向和单位长度.例7 在数轴上记出下列各数:+5.5,-6,4,-3.5,1.5.错解如图2-1.诊断只有标明了原点、正方向和单位长度的直线,才是数轴.上面画的数轴错在没有标出原点和单位长度.正确解答如图2-2.例8 任何一个有理数与它的相反数不相等.这话对吗?错解这话是对的.如7的相反数是-7,7与-7不相等.诊断这句话不对.其原因是把零排除在有理数之外了.因为任何一个有理数包括正有理数、负有理数和零,而零的相反数是零,即零和它的相反数相等.正确解答这话不对.应改为:任何一个不等于零的有理数与它的相反数不相等.例9 写出绝对值不大于5的整数.错解绝对值不大于5的整数是:-4,-3,-2,-1,1,2,3,4.诊断上面解答错误有两处:其一,把符合条件的零排除在整数集合之外;其二,对“不大于"的含义认识模糊.事实上,“不大于”包括“小于”或“等于”两层意思,不能把“等于"排除在外.正确解答绝对值不大于5的整数有:-5,-4,-3,-2,-1,0,1,2,3,4,5.例10 什么数的绝对值是它的相反数?错解负数的绝对值是它的相反数.诊断上面解答错在漏掉了零.因为零的绝对值和零的相反数都是零.进入有理数后,零这个角色越来越重要了,我们对它要加倍注意.正确解答零和负数的绝对值是它的相反数.例11 比较下列每对数的大小:(2)-|-3|和-(-2);(3)-(+3。

七年级数学上册第二章有理数2.6有理数的乘法与除法有理数乘除错解例析素材苏科版

七年级数学上册第二章有理数2.6有理数的乘法与除法有理数乘除错解例析素材苏科版

有理数乘除错解例析在进行有理数乘除运算中,如果计算不细心,对于运算法则,运算顺序不熟练,就容易出现一些解题中的错误,现总结如下:一、混淆符号法则出错例1 计算:(211-)×(322-)×(—1) 错解:原式=(23-)×(38-)×(-1)=4 剖析:对乘法法则中“两数相乘,同号得正,异号得负”理解不透,三个有理数相乘,应根据负因数的个数确定符号,而不能只看是同号还是异号.正解:原式=(23-)×(38-)×(-1)=4- 二、违背运算顺序出错例2 计算:(311-)÷(3-)×(31-) 错解:原式=(311-)÷1=311- 剖析:没有按照“同级运算,从左到右”的顺序进行,掉进了出题人设计的“陷阱”,有理数运算,不能违背运算顺序.正解:原式=(34-)×(31-)×(31-)=274- 三、对负带分数理解不清出错例3 计算:251542⨯- 错解:原式=(2-+154)25⨯=252⨯-25154⨯+=32050+-=3143- 剖析:将负带分数1542-错误地理解为1542+-,负带分数的整数部分和分数部分都是负数,即 1542-=1542--. 正解:原式=(2--154)25⨯=252⨯-25154⨯-=32050--=3256- 四、违背去括号法则出错例4 计算:+---5[3(532.01⨯-)÷(2-)] 错解:原式=++-53(532.01⨯-)÷(2-)=2+⨯2522(21-)=2-2511=25141 剖析:错解的原因是去掉“—”和中括号时,没有将(532.01⨯-)改变符号。

正解:原式=-+-53(532.01⨯-)÷(2-) =2-⨯2522(21-)=2+2511=25112 五、应用乘法分配律时弄错符号出错例5 计算:⨯-24(165127--) 错解:原式=12724⨯-6524⨯-124⨯-=—14-20—24=—58 剖析;在用—24乘以括号内每一个数时,混淆了运算符号和性质符号,正解:原式=12724⨯-⨯-24(65-)()124-⨯-=-14+20+24=30 六、乱用运算律出错例6 计算:(631-)÷(327291+-) 错解:原式=(631-)÷91-(631-)÷72+(631-)÷32 =42118171-+-=1263718-+-=91- 剖析;由于受乘法分配律a (b+c )=ab+ac 的影响,错误地认为a ÷(b+c )=a ÷b+a ÷c ,这是不正确的,事实上不存在除法分配律。

北师版七年级数学上册 第二章 有理数及其运算(易错题归纳)

北师版七年级数学上册  第二章 有理数及其运算(易错题归纳)

第二章有理数及其运算(易错题归纳)易错点一认为带“+”的数是正数,带“_”的数是负数正数前面的“+”可有可无,但负数前面一定带“_”1.下列各数中:5,−57,−3,0,−25.8,+2,负数有()A.1个B.2个C.3个D.4个2.在15,−0.23,0,5,−0.65,2,−35,316%这几个数中,非负数的个数是()A.4个B.5个C.6个D.7个易错点二画数轴时,容易缺少某个要素数轴必须具备三个要素:原点、正方向和单位长度。

在画数轴时易出现的错误有:(1)缺少正方向;(2)缺少原点;(3)单位长度不统一3.下列图形中是数轴的是()A.B.C.D.4.如图是一些同学在作业中所画的数轴,其中,画图正确的是()A.B.C.D.5.下列四个选项中,所画数轴正确的是()A.B.C.D.6.如果两数和为正数、下列说法中正确的是()A.两个加数都是正数B.一个加数是正数,另一个加数是负数C.两个加数的差是正数D.绝对值数较大的加数必是正数7.如果两个数的和是正数,那么()A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能易错点三对绝对值意义理解不透,认为只有正数的绝对值是它本身正数和0的绝对值是它本身,负数的绝对值是它的相反数8.当=−时,则x一定是()A.负数B.正数C.负数或0D.09.已知=−5,|U=|U,则=()A.+5B.−5C.0D.+5或−5易错点四已知一个数的绝对值求这个数的时,容易漏掉其中一个互为相反数的两个数的绝对值相等,是同一个数10.如果=7,=5,、异号.试求−的值为()A.2或−2B.−12或−2C.2或12D.12或−1211.一个数的绝对值等于34,则这个数是()A.34B.−34C.±34D.±43易错点五在进行有理数加法运算时,容易忽略符号在进行有理数加法运算时,可分为两步:1.确定符号;2.进行运算12.将5−+6−−7+−8写成省略正号和括号的形式,正确的是()A.5−6+7−8B.5−6−7−8C.5−6+7+8D.5−6−7+813.计算:(1)+7+−6+−7;(2)13+−12+17+−18;(3)+−+52+−(4)−20+379+20+−(5)−3.75+2+−1(6)5.6+−0.9+4.4+−8.1.14.用适当的方法计算:(1)0.34+−7.6+−0.8+−0.4+0.46;(2)−18.35++6.15+−3.65+−18.15.易错点六认为两数之和一定大于每一个加数两正数相加时,两数之和一定大于每一个加数;但是,两有理数相加数之和不一定大于每一个加数。

七年级数学上册第二章有理数及其运算易错课堂二有理数及其运算课件新版北师大版

七年级数学上册第二章有理数及其运算易错课堂二有理数及其运算课件新版北师大版
例 3:计算:-60×(34 +56 -1115 -172 ). 易错分析:根据乘法算式的特点,可以用括号内的每一项与-60相 乘,计算出结果. 解:-16
4.(-34 +16 -38 )×(-24)=___2_3___.
有理数的乘方运算,易出错
例 4:计算:(1)-34;(2)(213 )3;(3)342 . 易错分析:对乘方的意义理解有误,不能认清底数和指数.
第二章 有理数及其运算
易错课堂(二) 有理数及其运算
对绝对值的理解易出错
例1:已知a=-3,|a|=|b|,则b= . 易错分析:对绝对值的三种情况分析不全面. 解:±3
1.已知|a|=-a,则a的值是( C ) A.正数 B.负数 C.非正数 D.非负数 2.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|
பைடு நூலகம்
混合运算中易弄错运算顺序
例 5:计算:(-5)-(-5)×110 ÷110 ×(-10). 易错分析:对同一级运算应按从左到右的顺序依次进行,本题易贪图运 算简便而改变运算顺序.
解:原式=(-5)-(-5)×110 ×10×(-10)=-5 -50=-55
带分数拆分时易出错 例 2:计算:(-556 )+(-923 )+1734 +(-312 ). 易错分析:带分数相加,分离整数与分数部分时,易将符号换 错. 解:-114
3.计算:-114 +(-213 )+756 +(-412 )=-__14____.
利用乘法对加法的分配律计算时,常常漏乘或弄错符号
解:(1)-34=-3×3×3×3=-81
(2)(213 )3=(73 )3=73 ×73 ×73 =32473

北师大版2020-2021学年度七年级数学上册第二章有理数及其运算易混易错题专项突破练习题(含答案)

北师大版2020-2021学年度七年级数学上册第二章有理数及其运算易混易错题专项突破练习题(含答案)

北师大版2020-2021学年度七年级数学上册期末复习第二章有理数及其运算易混易错题专项突破练习题(含答案)1.下列不是具有相反意义的量的是()A.前进5米和后退5米B.进球4个和失球2个C.身高增加2cm和体重减少2kg D.节余50元和超支80元2.在﹣4,,0,3.14159,﹣5.2,2中正有理数的个数有()A.1个B.2个C.3个D.4个3.数轴上表示﹣5和3的点分别是A和B,则线段AB的长为()A.﹣8B.﹣2C.2D.84.﹣的相反数为()A.﹣4B.C.4D.5.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或﹣4D.x=﹣36.已知2020|a+1|与2021|b+3|互为相反数,则a﹣b的值为()A.﹣1B.﹣2C.4D.27.的倒数是()A.﹣B.﹣C.D.8.在1,0,﹣1,﹣四个数中,最小的数是()A.2B.0C.﹣1D.﹣9.比﹣3大2的数是()A.1B.﹣1C.5D.﹣510.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高()A.﹣17℃B.17℃C.5℃D.11℃11.如果盈利350元记作+350元,那么亏损80元记作元.12.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.13.点A在数轴上的位置如图所示,则点A表示的数的相反数是.14.π的相反数是.15.已知a与b的和为2,b与c互为相反数,若|c|=1,则a=.16.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨?(2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?17.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.18.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.19.已知两个方程3x+2=﹣4与3y﹣3=2m﹣1的解x、y互为相反数,求m的值.20.已知:|a|=5,|b﹣1|=8,且a﹣b<0,求a+b的值.参考答案:1.解:A、前进5米和后退5米,是具有相反意义的量,故本选项不符合题意;B、进球4个和失球2个,是具有相反意义的量,故本选项不符合题意;C、身高增加2cm和体重减少2kg,不是具有相反意义的量,故本选项符合题意;D、节余50元和超支80元,是具有相反意义的量,故本选项不符合题意.故选:C.2.解:在﹣4,,0,3.14159,﹣5.2,2中,正有理数是:,3.14159,2,即在﹣4,,0,3.14159,﹣5.2,2中,正有理数有3个,故选:C.3.解:线段AB的长为:3﹣(﹣5)=8.故选:D.4.解:﹣的相反数是.故选:B.5.解:∵|2x﹣1|=7,∴2x﹣1=±7,∴x=4或x=﹣3.故选:A.6.解:因为2020|a+1|与2021|b+3|互为相反数,所以2020|a+1|+2021|b+3|=0,所以a+1=0,b+3=0,解得,a=﹣1,b=﹣3,则a﹣b=﹣1﹣(﹣3)=2,故选:D.7.解:的倒数是.故选:C.8.解:因为﹣1<﹣<0<2,所以最小的数是﹣1,故选:C.9.解:﹣3+2=﹣(3﹣2)=﹣1.故选:B.10.解:10﹣(﹣7)=10+7=17(℃).故选:B.11.解:∵盈利350元记作+350元,∴亏损80元记作﹣80元.故答案为:﹣80.12.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.13.解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.14.解:π的相反数是:﹣π.故答案为:﹣π.15.解:∵|c|=1,∴c=±1,∵b与c互为相反数,∴b+c=0,∴b=﹣1或1,∵a与b的和为2,∴a+b=2,∴a=3或1.故答案为:3或1.16.解:(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),答:库里的粮食是减少了,减少了7吨;(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),答:这3天要付装卸费5070元.17.解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=++=﹣1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴==1.18.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或5519.解:方程3x+2=﹣4,解得:x=﹣2,因为x、y互为相反数,所以y=2,把y=2代入第二个方程得:6﹣3=2m﹣1,解得:m=2.20.解:∵|a|=5,|b﹣1|=8,∴a=±5,b﹣1=±8,∴a=±5,b=9或﹣7,∵a﹣b<0,∴当a=5,b=9时,a+b=5+9=14;当a=﹣5,b=9时,a+b=﹣5+9=4.故a+b的值为4或14。

第2章 有理数及其运算 数轴动点问题压轴专题(三) 2021--2022学年北师大版七年级数学上册

第2章 有理数及其运算 数轴动点问题压轴专题(三)  2021--2022学年北师大版七年级数学上册

第2章《有理数及其运算》——数轴动点问题压轴专题(三)1.一辆货车从仓库出发去送货,向东走了2千米到达超市A,继续向东走了2.5千米到达超市B,然后向西走了8.5千米到达超市C,继续向西走了5千米到达超市D,此时发现车上还有距离仓库仅1千米的超市E的货还未送,于是开往超市E,最后回到仓库.(1)超市C在仓库的东面还是西面?距离仓库多远?(2)超市B距超市D多远?(3)如果货车每千米耗油0.08升,那么货车在这次送货中共耗油多少升?2.在数轴上有M、N两点,M点表示的数分别为m,N点表示的数是n(n>m),则线段MN的长(点M到点N的距离)可表示为MN=n﹣m,请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O开始,先向左移动3cm到达A点,再向右移动2cm 到达B点,然后向右移动4cm到达C点,用1cm表示1个单位长度.(1)请你在数轴上表示出A、B、C三点的位置,并直接写出线段AC的长度.(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点所表示的数.(4)若点P以从点A向原点O移动,同时点Q以与点P相同的速度从原点O向点C 移动,试探索:PQ的长是否会发生改变?如果不变,请求出PQ的长.如果改变,请说明理由.3.如图,已知数轴上A、B两点所表示的数分别为﹣2和6.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一个动点,且M为PA的中点,N为PB的中点.请你画出图形,并探究MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.4.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?5.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?6.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是.7.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?8.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.9.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?10.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.11.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.12.如图,在数轴上有三个点A、B、C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是.13.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P 表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.14.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?15.已知:在纸面上有一数轴,如图所示,点O为原点,点A1、A2、A3、…分别表示有理数1、2、3、…,点B1、B2、B3、…分别表示有理数﹣1、﹣2、﹣3、….(1)折叠纸面:①若点A1与点B1重合,则点B2与点重合;②若点B1与点A2重合,则点A5与有理数对应的点重合;③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是,;(2)拓展思考:点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.①|a﹣1|是表示点A到点的距离;②若|a﹣1|=3,则有理数a=;③若|a﹣1|+|a+2|=5,则有理数a=.16.如图,点O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为.(2)设点A的移动距离AA′=x.①当O′A=1时,求x的值;②D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.17.如图所示,数轴上从左到右的三个点A,B,C所对应数的分别为a,b,c.其中点A、点B两点间的距离AB的长是2019,点B、点C两点间的距离BC的长是1000,(1)若以点C为原点,直接写出点A,B所对应的数;(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值;(3)若O是原点,且OB=19,求a+b﹣c的值.18.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.19.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.20.规定:如果点A、点B在数轴上表示的数分别是a、b,那么|a﹣b|表示A、B两点间距离.(1)数轴上表示﹣3的点与表示4的点相距个单位;(2)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,求A、B 两点间的最大距离和最小距离;(3)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动,如此往返,三个点同时开始运动,问经过多少秒三个点聚于一点?这一点表示的数是哪个数?点C在整个运动过程中,共移动了多少个单位?。

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (23)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (23)

一、选择题1.下列各组数中,互为相反数的是( )A.−(−1)与1B.(−1)2与1 C.∣−1∣与1D.−12与12.有理数−3的倒数是( )A.13B.3C.−13D.−33.下列计算正确的是( )A.49−32÷8=40÷8=5B.6÷(2×3)=6÷2×3=9C.32−(−2)2=9+4=13D.23−(13−12)=23−13+12=564.为纪念中华人民共和国成立70周年,某市各中小学开展了以“祖国在我心中”为主题的各类教育活动,该市约有1100000名中小学生参加,其中数据1100000用科学记数法表示为( ) A.11×106B.1.1×106C.1.1×105D.0.11×1065.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.∣a∣>4B.c−b>0C.ac>0D.a+c>06.对有理数a,b规定运算如下:a⋇b=a+a b,则−2⋇3的值为( )A.−10B.−8C.−6D.−47.面对突如其来的疫情,全国广大医务工作者以白衣为战袍,义无反顾的冲在抗疫战争的一线,用生命捍卫人民的安全.据统计,全国共有346支医疗队,将近42600名医护工作者加入到支援湖北武汉的抗疫队伍,将42600用科学计数法表示为( )A.0.426×105B.4.26×104C.42.6×103D.426×1028.环境污染刻不容缓,据统计,全球每分钟约有8521000吨污水排出,把8521000用科学记数法表示( )A.0.8521×106B.0.8521×107C.8.521×106D.8.521×1079.由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为( )元.A.0.5×1010B.5×108C.5×109D.5×101010.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间5月10日8时,全球新冠肺炎确诊病例超4000000例.其中4000000科学记数法可以表示为( )A.0.4×107B.4×106C.4×107D.40×105二、填空题11.−2的相反数是,−2的倒数是.12.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.13.x,y表示两个数,规定新运算“⋇”及“△”如下:x⋇y=6x+5y,x△y=3xy,那么(−2⋇3)△(−4)=.14.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+1 7−19+111−113+1154−π4(填“>”“<”).15.计算(−5)+3的结果是.16.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”如图,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.(1)如图,用“格子乘法”表示25×81,则m的值为.(2)如图,用“格子乘法”表示两个两位数相乘,则a的值为.17.为了求1+2+22+23+⋯+2100的值,可令S=1+2+22+23+⋯+2100,则2S=2+22+23+24+⋯+2101,因此2S−S=2101−1,即1+2+22+23+⋯+2100=2101−1.仿照以上推理计算 1+3+32+33+⋯+32019 的值是 .三、解答题18. 有理数 x ,y 在数轴上对应点如图所示:(1) 在数轴上表示 −x ,−y .(2) 试把 x ,y ,0,−x ,−y 这五个数从大到小用“>”号连接起来.19. 某景区的部分景点和游览路径恰好都在一条直线上,一电瓶小客车接到任务从景区大门出发,向东走 2 千米到达 A 景点,继续向东走 2.5 千米到达 B 景点,然后又回头向西走 8.5 千米到达 C 景点,最后回到景区大门.(1) 以景区大门为原点,向东为正方向,以 1 个单位长表示 1 千米,建立如图所示的数轴,请在数轴上表示出上述 A ,B ,C 三个景点的位置,并直接写出 A ,C 两景点之间的距离;(2) 若电瓶车充足一次电能行走 15 千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?(3) 十一黄金周的某一天,小明和小阳一同去该景区游玩,由于人太多,他们在景区内走散了,在电话中,小阳说:“我在 B 景区”,小明说:“我在离 C 景区 2 千米的地方”,于是他们决定相向步行会合.如果他们行走的速度相同,则他们会合的地点距景区大门多少千米?(直接回答则可)20. 读一读:式子“1+2+3+4+5+⋯+100”表示 1 开始的 100 个连续自然数的和,由于上述式子比较长,书写也不方便,我们可以将“1+2+3+4+5+⋯+100”简记为 ∑n 100n=1,这里“∑”是求和符号.例如:1+3+5+7+9+⋯+99,是从 1 开始的 100 以内的连续奇数的和,可表示为 ∑(2n −1)50n=1;又如:13+23+33+43+53+63+73+83+93+103 可表示为 ∑n 310n=1.通过对以上材料的阅读,请解答下列问题:(1) 2+4+6+8+10+⋯+100(即从 2 开始的 100 以内的连续偶数的和)用求和符号可表示为 .(2) 计算:∑(n 2−1)5n=1= .(填写最后的计算结果)21. 计算:(1) −5−11+213−(−23); (2) (−16+34−512)×12;(3) −14+∣3−5∣+16÷(−2)×12; (4) (−12)2+[−8−(−3)×2]÷4.22. 如图,在数轴上 A 点表示的数 a ,B 点表示的数 b ,C 点表示的数 c ,b 是最大的负整数,且a ,c 满足 ∣a +3∣+∣c −6∣=0.(1) 求 a ,b ,c 的值.(2) 若将数轴折叠,使得 A 点与 B 点重合,求与 C 点重合的点对应的数.(3) 点 A ,B ,C 在数轴上同时开始运动,其中 B 以 1 单位每秒的速度向右运动,C 以 2 单位每秒的速度向左运动,点 A 以 3 单位每秒的速度向右运动,当 B ,C 相遇时,A 停止运动,求此时 AC 两点之间的距离.23. 某食品厂从生产的袋装食品中抽出样品 10 袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克)−3−10+2袋数1432(1) 这 10 袋样品的总重量比 10 袋的标准总重量多还是少?偏差几克? (2) 若每袋标准质量为 50 克,则抽样检测这 10 袋的总质量是多少?24. 计算:(1) 11+(−13)+(−10)−∣−6∣; (2) (12+56−712)×(−36).25. 结合数轴与绝对值的知识回答下列问题:(1) 探究:①数轴上表示 5 和 2 的两点之间的距离是 ; ②数轴上表示 −2 和 −6 的两点之间的距离是 ; ③数轴上表示 −4 和 3 的两点之间的距离是 . (2) 归纳:一般的,数轴上表示数 m 和数 n 的两点之间的距离等于 ∣m −n∣. 应用:①如果表示数 a 和 3 的两点之间的距离是 7,则可记为:∣a −3∣=7,那么 a = . ②若数轴上表示数 a 的点位于 −4 与 3 之间,求 ∣a +4∣+∣a −3∣ 的值.③当 a 取何值时,∣a +4∣+∣a −1∣+∣a −3∣ 的值最小,最小值是多少?请说明理由.(3) 拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,⋯,A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在,才能使这2014户居民到点P的距离总和最小.答案一、选择题1. 【答案】D【知识点】实数的绝对值、相反数、有理数的乘方2. 【答案】C)=1,【解析】(−3)×(−13.所以有理数−3的倒数是−13故选:C.【知识点】倒数3. 【答案】D【知识点】有理数加减混合运算4. 【答案】B【知识点】正指数科学记数法5. 【答案】B【解析】A.应为3<∣a∣<4,故A错误.B.应为ac<0,异号两数相乘,积为负,故C错误.C.应为a+c<0,异号两数相加,符号与绝对值大的数相同,∵∣a∣>∣c∣,∴a+c<0,故D错误.【知识点】有理数的乘法、有理数的减法法则及计算6. 【答案】A【解析】根据题中的新定义得:原式=−2−8=−10.【知识点】有理数的乘方7. 【答案】B【知识点】正指数科学记数法8. 【答案】C【知识点】正指数科学记数法9. 【答案】C【解析】50亿元=5×109元.【知识点】正指数科学记数法10. 【答案】B【知识点】正指数科学记数法二、填空题11. 【答案】2;−12【解析】−2的相反数是2;−2的倒数是−12.【知识点】倒数、实数的相反数12. 【答案】−6或6【解析】∵数轴上的点A,B是互为相反数,其中A对应的点是2,∴B是−2,∵C是距离点A为6的点,∴C是−4或8,∴点B和C所表示的数的和为−2−4=−6或−2+8=6.【知识点】绝对值的几何意义13. 【答案】−36【解析】(−2⋇3)△(−4)=(−2×6+5×3)△(−4) =3△(−4)=3×3×(−4)=−36.【知识点】有理数的乘法14. 【答案】>【解析】π=4×(1−13+15−17+19−111+113−115+⋯),1−(13−15+17−19+111−113+115⋯)=π4,∴13−15+17−19+111−113+115−⋯=1−π4=4−π4,∵13−15+17−19+111−113+115>13−15+17−19+111−113+115−⋯,∴13−15+17−19+111−113+115>4−π4.【知识点】有理数的加法法则及计算、有理数的乘法15. 【答案】−2【解析】(−5)+3=−(5−3)=−2.【知识点】有理数的加法法则及计算16. 【答案】2;3【解析】(1)如图所示:∴m=2.(2)如图所示:∵1≤a≤9且a为整数,∴A=0,B=a,又0+B+C=2a−2,∴C=a−2,又10C+D=4a,∴D=20−6a,又1+0+D=−a+6,即1+0+20−6a=−a+6,−6a+a=6−1−20,−5a=−15,a=3.【知识点】解常规一元一次方程、有理数的乘法17. 【答案】32020−12【解析】依题意,可令:S=1+3+32+33+⋯+32019,则3S=3+32+33+⋯+32020,∴3S−S=32020−1,∴S=32020−12.【知识点】有理数的乘方三、解答题 18. 【答案】(1) 如图所示:(2) 在数轴上,从左到右由小到大. ∴x >−y >0>y >−x .【知识点】在数轴上表示实数、实数的相反数、利用数轴比较大小19. 【答案】(1) 如图,A ,C 两景点之间的距离是 2−(−4)=6 千米;(2) 不能完成此次任务.理由如下:电瓶车一共走的路程为:∣+2∣+∣2.5∣+∣−8.5∣+∣+4∣=17(千米), 因为 17>15,所以不能完成此次任务;(3) 他们会合的地点距景区大门 0.75 千米或 1.25 千米. 【解析】(3) ①小明在离 C 景区西边 2 千米的地方, (4.5−4−2)÷2=−1.5÷2=−0.75;②小明在离 C 景区东边 2 千米的地方, (4.5−4+2)÷2= 2.5÷2= 1.25.答:他们会合的地点距景区大门 0.75 千米或 1.25 千米. 【知识点】有理数加法的应用、绝对值的几何意义、数轴的概念20. 【答案】(1) ∑2n 50i=1 (2) 50【知识点】有理数的加法法则及计算21. 【答案】(1) 原式=−5−11+213+23=−13.(2) 原式=−16×12+34×12−512×12=−2+9−5=2.(3) 原式=−1+2−4=−3.(4) 原式=14+[−8−(−6)]×14=14×(1−8+6)=−14.【知识点】有理数加减混合运算、有理数的加减乘除乘方混合运算、有理数的乘法22. 【答案】(1) ∵∣a+3∣+∣c−6∣2=0,b是最大的负整数,∴a+3=0,解得a=−3,b=−1,c−6=0.解得c=6.(2) (−3−1)÷2=−2,对称点为6−(−2)=8,−2−8=−10.故与C点重合的点对应的数是−10.(3) 设当B,C相遇时用了t秒,依题意有t+2t=6−(−1),解得t=73,∴点C表示的数为:6−2t=6−2×73=43,点A表示的数为:−3+3×73=4.故此时AC两点之间的距离是4−43=223.【知识点】数轴的概念、绝对值的性质、有理数的乘方、相遇问题23. 【答案】(1)(−3)×1+(−1)×4+0×3+(−2)×2 =−3+(−4)+0+4=−3(克).答:这10袋样品的总质量比标准质量少,少3克.(2) 10×50+(−3)=497(克).答:抽样检测这10袋的总质量是497克.【知识点】绝对值的几何意义、有理数加法的应用24. 【答案】(1)11+(−13)+(−10)−∣−6∣=11−13−10−6=11−29=−18.(2)(12+56−712)×(−36)=12×(−36)+56×(−36)−712×(−36) =−18−30+21=−48+21=−27.【知识点】有理数的乘法、有理数加减混合运算25. 【答案】(1) 3;4;7(2) ① 10或−4②若数轴上表示数a的点位于−4与3之间,∣a+4∣+∣a−3∣=a+4+3−a=7;③当a=1时,∣a+4∣+∣a−1∣+∣a−3∣取最小值,∣a+4∣+∣a−1∣+∣a−3∣最小=5+0+2=7,理由是:a=1时,正好是3与−4两点间的距离.(3) A1007A1008这条线段上【解析】(1) ①数轴上表示5和2的两点之间的距离是∣5−2∣=3;②数轴上表示−2和−6的两点之间的距离是∣−2−(−6)∣=4;③数轴上表示−4和3的两点之间的距离是∣3−(−4)∣=7.(3) 点P选在A1007A1008这条线段上.【知识点】绝对值的几何意义、绝对值的化简11。

第二章--《有理数及其运算》易错题及难题.

第二章--《有理数及其运算》易错题及难题.

)第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆)1.下列说法正确的是().A.数0是最小的整数B.若│a│=│b│,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远2.若两个有理数的和是正数,那么一定有结论()A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数3、1-2+3-4+5-6+……+2015-2018的结果不可能是()A.奇数B.偶数C.负数D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.•2kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A、0.8kgB、0.6kgC、0.5kgD、0.4kg考点二:数轴(☆☆☆)5.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0B.a+c<0C.a-b>0D.b-c<06.在数轴上表示下列各数:﹣5,-|-3.5|,2接起来.11,|-|,+4,0,并用“<”号把这些数连227.-53____-(填“>”、“=”、“<”)64考点三:相反数(☆☆)8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是________.9.-m的相反数是,-m+1的相反数是,m+1的相反数是.10.已知-a=9,那么-a的相反数是;已知a=-9,则a的相反数是.11.两个非零有理数的和是0,则它们的商为()A.0B.-1C.+1D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示()A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和13.已知|m|=-m,化简|m-1|-|m-2|所得的结果是_______14.若a是有理数,则|-a|-a一定是() A.零 B.非负数 C.正数 D.负数※若|x-2|+x-2=0,那么x的取值范围是()A.x≤2 B.x≥2 C.x=2 D.任意实数15.互不相等的有理数a、b、c在数轴上的对应点分别为A、B、C,如果|a-b|+|b-c|=|a-c|,那么点A、B、C在数轴上的位置关系是()A.点A在点B、C之间B.点B在点A、C之间C.点C在点A、B之间D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______.(2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a,那么a+b=______.18.若|2-a|+|b+1.5|+|c+4|=0,则a-b+c×(b-c)=_____.b c(2)有理数a、b、c均不为零,且a+b+c=0,设|a|19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x与y的关系是______.20.若x<0,3x+2|x|=m,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a、b、c在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设a、、为非零的有理数,且|a|+a=0,|ab|=ab,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|(3)当x=-π3时,求|x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+1 3|.(4)如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q,r,s,若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=()A.7 B.9 C.11 D.1322.设x是有理数,y=|x-1|+|x+1|,下列结论正确的是()A.y没有最小值B.只有一个x,使y取得最小值C.只有有限多个x,使y取得最小值D.有无穷多个x,使y取得最小值23.若|x+2|+|x-4|≥a恒成立,则a的取值范围为______.24.设a、b同时满足:①(a-2b)²+|b-1|=b-1;②|a-4|=0.那么ab=_____.25.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1)若abc≠0,则+++的可能取值有种|b||c|++的最大值是x,最小值是b+c a+c a+by,试求代数式x²-99xy+2018的值.27.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、-1,①A、B之间的距离可用含x的式子表示为_____;②若该两点之间的距离为2,那么x值为______.(2)|x+1|+|x-2|的最小值为______,此时x的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x的取值是_____,此最小值是_____.(4)如图,在一条数轴上有依次排列的5台机床A、B、C、D、E在工作,现要设置一个零件供应站P,使这5台机床到供应站P的距离总和最小,供应站P建在哪?最小值为多少?(5)已知(|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y的最大值和最小值.(6)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求 x+y 的最大值和最小值.(7)已知 a 、b 、c 、d 是有理数,|a-b|≤9,且|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c| 的值.28.化简:2|x-2|-|x+4|求|x-1|-4|x+1|的最大值.29.(1)满足|a-b|+ab=1 的非负整数(a ,b)的个数是( ) A.1B.2C.3D.4(2)若 a 、b 、c 为整数,且|a-b| 19 +|c-a| 99 =1,试计算|c-a|+|a-b|+|b-c|的值.30.已知有理数 x,m 满足|x+4|+|x-9|=13-(m-2)²,求|x-2|+|x-8|的最大值31.已知|x|≤1,|y|≤2,且 k=|x+y|+|y+2|+|2y-x-6|,求 k 的最大值和最小值.考点五:有理数的计算(☆☆☆)32.计算:(直接写出结果)(1) 1 2 +(-2 )=_______; (2)-2-22=_____; 2 3 1 12 3 (3)(-0.25)×(-1 )=______; (4)(- )÷(- )=_____; 3 25 5 (5) 9-3 1 3=_____; (6)-(- )2+(-2)2=______. 2 33.计算:(1)( 1 1 1 4 1 1 + + - + )×(-60);(2)(-1.5)2×(1 )2-(-0.2)3×(+20)2; 2 3 4 5 6 3(3)[30-( 7 5 11 1 + - )×36]÷(-5);(4)-14-(1-0.5)× ×[1-(-2)2]. 9 6 12 3(5) 15 10 15 ÷ (-10) ⨯ (- ) ÷ (- ) (6) -15 + (+3) - (-15) + (+7) - (+2) + (-8) 8 3 4考点六:有理数的应用(☆☆☆)34.某工厂某周计划每日生产自行车 100 辆,由于每日上班人数不一定相等,实际每日生产 量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?4℃- ; ;-1 .+ + + _______,实际生产总量为_______. 星期 增加 / 一 二 三 四 五 六 日-1 +3 -2 +4 +7 -5 -10辆35.一天小明和冬冬利用温差来测量山峰的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆)1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( )A.奇数B.偶数C.负数D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A 、0.8kgB 、0.6kgC 、0.5kgD 、0.4kg考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<06.在数轴上表示下列各数:﹣5,-|-3.5|,221,|-21|,+4,0,并用“<”号把这些数连接起来.7.-65____-43(填“>”、“=”、“<”) 考点三:相反数(☆☆)8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是________.9.-m 的相反数是,-m+1的相反数是,m+1的相反数是.10.已知-a=9,那么-a 的相反数是;已知a=-9,则a 的相反数是.11.两个非零有理数的和是0,则它们的商为 ( )A.0B.-1C.+1D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( )A.A 、B 两点的距离B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数 ※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( )A.点A 在点B 、C 之间B.点B 在点A 、C 之间C.点C 在点A 、B 之间D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______.18.若|2-a|+|b+1.5|+|c+4|=0,则a-b+c ×(b-c)=_____.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______.20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设a 、b 、c 为非零的有理数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|(3)当x=-3π时,求 |x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13|.(4)如图表示数轴上四个点的位置关系,且它们表示的数分别为p ,q ,r ,s ,若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设x 是有理数,y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个x,使y 取得最小值C.只有有限多个x,使y 取得最小值D.有无穷多个x,使y 取得最小值23.若|x+2|+|x-4|≥a 恒成立,则a 的取值范围为______.24.设a 、b 同时满足:①(a-2b)²+|b-1|=b-1;②|a-4|=0.那么ab=_____.25.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1)若abc ≠0,则+++的可能取值有种(2)有理数a 、b 、c 均不为零,且a+b+c=0,设c b |a |++c a |b |++ba |c |+的最大值是x ,最小值是y ,试求代数式x ²-99xy+2018的值.27.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点A 、B 表示的数为x 、-1,①A 、B 之间的距离可用含x 的式子表示为_____;②若该两点之间的距离为2,那么x 值为______.(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.(4)如图,在一条数轴上有依次排列的5台机床A 、B 、C 、D 、E 在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5)已知(|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y 的最大值和最小值.(6)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y 的最大值和最小值.(7)已知a 、b 、c 、d 是有理数,|a-b|≤9,且|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值.28.化简:2|x-2|-|x+4| 求|x-1|-4|x+1|的最大值.29.(1)满足|a-b|+ab=1的非负整数(a ,b)的个数是( ) A.1 B.2 C.3 D.4(2)若a 、b 、c 为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.30.已知有理数x,m 满足|x+4|+|x-9|=13-(m-2)²,求|x-2|+|x-8|的最大值31.已知|x|≤1,|y|≤2,且k=|x+y|+|y+2|+|2y-x-6|,求k 的最大值和最小值. 考点五:有理数的计算(☆☆☆)32.计算:(直接写出结果) (1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____; (5) 9-33=_____; (6)-(-12)2+(-2)2=______. 33.计算:(1)(12+13+14-45+16)×(-60);(2)(-1.5)2×(113)2-(-0.2)3×(+20)2; (3)[30-(79+56-1112)×36]÷(-5);(4)-14-(1-0.5)×13×[1-(-2)2]. (5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++- 考点六:有理数的应用(☆☆☆)34.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______35.一天小明和冬冬利用温差来测量山峰的高度。

冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?36.小虫从点O 出发沿着一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否能回到出发点O ? (2)小虫离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?37.“十一”黄金周期间,我市植物园在7天长假中,•每天接待游客人数变化如下表(正数(1)若9月30日的游客人数记为a ,请用a 的代数式表示10月2日游客的人数;(2)请判断7天内游客人数最多的是哪一天,共有多少万人?(3)若9月30日的游客人数为3万人,门票每人6元.问黄金周期间云龙山门票收入是多少元?(用科学记数法表示)考点七 找规律(☆☆)38.观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2013个数是。

第n 个数是。

39.观察:1+3+5+7+…+(2n-1)= _____ .(结果用含n 的式子表示,其中n =1,2,3,……)。

40.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察算式之后并用你得到的规律填空:_______×_______+________=502.41.如图,把面积为1的矩形等分成两个面积为12的矩形,•把面积为12的矩形等发成两个面积为14的矩形,再把面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形揭示的规律计算.12+14+18+116+11113264128256+++=__________.42.已知①f(1)=0,f(2)=1,f(3)=2,f(4)=3,…②f(21)=2,f(31)=3,f(41)=4,…利用以上规律计算:f(20181)-f(2018)=________. 43.431321⨯+⨯+541⨯+…+)2n )(1n (1++=________.。

相关文档
最新文档