固体物理:第一章典型习题
固体物理第一章习题
第一章 晶体的结构习题一、填空题1.固体一般分为_____ _____ _____2.晶体的三大特征是_____ _____ _____3._____是晶格中最小的重复单元,_____既反映晶格的周期性又反映晶格的对称性。
4._____和_____均是表示晶体原子排列紧密程度。
5.独立的对称操作有______二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
2.证明倒格子矢量112233G h b h b h b =++ 垂直于密勒指数为123()h h h 的晶面系。
3.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
4.证明不存在5度旋转对称轴。
5.证明正格矢和倒格矢之间的关系式为:()为整数m m R G π2=⋅三、计算题1.已知某种晶体固体物理学原胞基矢为(1)求原胞体积。
(2)求倒格子基矢。
(3)求第一布里渊区体积。
2.一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角90=α, 90=β, 120=γ。
试求:(1)倒格子基矢的大小; (2)正、倒格子原胞的体积; (3) 正格子(210)晶面族的面间距。
j 2a 3i 2a a 1+=j 2a 3i 2a -a 2+=k c a 3=3.如图1.所示,试求: (1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数;(3) 画出晶面(120),(131)。
a 2xy zA B D C G F E OIH y x Aa 2K O GLNM z图1.4.矢量a ,b ,c 构成简单正交系。
求:晶面族)(hkl 的面间距。
5.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。
《固体物理》第一章作业题
解 以 H2 为基团,组成 fcc 结构的晶体,如略去动能,分子间按 Lennard—Jones 势相互作
用,则晶体的总相互作用能为:
U = 2N i
Pij −12
R
12
−
j
Pij
−6
R
6
.
Pij−6 = 14.45392; Pij−12 = 12.13188,
→ →→→
c = a1+ a2 − a3
晶列
→
a+
→
b−
2
→
c
可化为
→
a+
→
b−
2
→
c
=
−2
→
a1
+
→
a2
−
2
→
a3
由上式可知,AC晶列在原胞坐标系中的指数为 112
题4.对于晶格常数为a的简单立方晶格,考虑晶格中的一
个晶面(hkl),证明该晶面所属的晶面族的面间距:
a2 dhkl = h2 + k 2 + l 2
b−
→
c)
2
2
→
BC
=
→
OC −
→
OB
=
→c +
1 2
→
(a+
→b )
−
1 2
→
(b+
→
c)
=
1 2
→
(a+
→
c)
→ → 1 → → → 1→ → a→ → →
BA BC = (2 a+ b− c) (a+ c) = (a− 3 b− c)
固体物理习题1
固体物理习题1第⼀章晶体结构和倒格⼦1. 画出下列晶体的惯⽤元胞和布拉菲格⼦,写出它们的初基元胞基⽮表达式,指明各晶体的结构及两种元胞中的原⼦个数和配位数。
(1) 氯化钾(2)氯化钛(3)硅(4)砷化镓(5)碳化硅(6)钽酸锂(7)铍(8)钼(9)铂2. 对于六⾓密积结构,初基元胞基⽮为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22 求其倒格⼦基⽮,并判断倒格⼦也是六⾓的。
3.⽤倒格⽮的性质证明,⽴⽅晶格的[hkl]晶向与晶⾯(hkl )垂直。
4. 若轴⽮→→→c b a 、、构成简单正交系,证明。
晶⾯族(h 、k 、l )的⾯间距为 2222)()()(1c l b k a h hkl d ++= 5.⽤X 光衍射对Al 作结构分析时,测得从(111)⾯反射的波长为1.54?反射⾓为θ=19.20 求⾯间距d 111。
6.试说明:1〕劳厄⽅程与布拉格公式是⼀致的;2〕劳厄⽅程亦是布⾥渊区界⾯⽅程;7.在图1-49(b )中,写出反射球⾯P 、Q 两点的倒格⽮表达式以及所对应的晶⾯指数和衍射⾯指数。
8.求⾦刚⽯的⼏何结构因⼦,并讨论衍射⾯指数与衍射强度的关系。
9.说明⼏何结构因⼦S h 和坐标原点选取有关,但衍射谱线强度和坐标选择⽆关。
10. 能量为150eV 的电⼦束射到镍粉末上,镍是⾯⼼⽴⽅晶格,晶格常数为3.25×10-10m,求最⼩的布拉格衍射⾓。
附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s第⼆章晶体结合1.已知某晶体两相邻原⼦间的互作⽤能可表⽰成nm r b r a r U +-=)( (1) 求出晶体平衡时两原⼦间的距离;(2) 平衡时的⼆原⼦间的互作⽤能;(3) 若取m=2,n=10,两原⼦间的平衡距离为3?,仅考虑⼆原⼦间互作⽤则离解能为4ev ,计算a 及b 的值;(4)若把互作⽤势中排斥项b/r n 改⽤玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作⽤势能具有相同的贡献,求n 和p 间的关系。
固体物理第一章习题
固体物理学第一章习题一、简要回答下列问题(answer the following questions):1、晶体的解理面是面指数低的晶面还是面指数高的晶面?为什么?2、什么是布喇菲格子(布格子)?画出氯化钠晶体的结点所构成的布格子。
为什么说金刚石结构是复式格子?3、在14种布格子中,为什么没有底心四方、面心四方和底心立方?(请画图说明)4、二维布喇菲点阵只有五种。
试列举并画图表示之。
5、体心立方元素晶体,[111]方向上的结晶学周期为多大?实际周期为多大?6、非晶态材料的基本特点是什么?7、什么是密勒指数?当描述同一晶面时、密勒指数与晶面指数一定相同吗?8、简述晶面角守恒定律,并说明晶体的晶面角守恒的原因。
二、填空题(fill in the blanks)1、构成阵点的具体原子、离子、分子或其集团,都是构成晶体的基本结构单元,当晶体中含有数种原子时,这数种原子构成的基本结构单元,称为。
2、布喇菲格子的格点可以看成分列在一系列相互平行的直线上而无遗漏,这样的直线叫 , 晶列的取向称为 , 一组能表示晶列方向的数称为。
3、布喇菲格子的格点,也可以看成分列在相互平行、间距相等的平面上而无遗漏,这些包含格点的平面称为;而那些相互平行、间距相等、格点分布情况相同的总体,称为;同一格子可能有个取向的晶面族。
能够标志晶面取向的一组数,称为。
4、使晶体恢复原状的操作,称为;对称操作的集合,称为;保持空间某一点不动的操作称为。
三、解释下列物理概念(explain the following physics concepts):1、空间点阵2、固体物理学原胞和结晶学原胞3、密堆积和配位数四、基矢为 1a ai = ,2a aj = ,3()2a a i j k =++ 的晶体为何种结构? 若33()22a a a j k i =++ , 又为何种结构? 为什么?五、如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结 构 x简单立方 π/6≈0.52体心立方面心立方六角密排金 刚 石六、试求面心立方结构(110)和(111)晶面族的原子数面密度,设晶格常数为a .七、试证明金刚石结构原子的键间角与立方体的体对角线间的夹角相同,都是109028’.八、证明:任何点群中两个二重旋转轴之间的夹角只能是300、450、600、和900.九、在六角晶系中,晶面常用四个指数(hkil )表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面族在互成1200的共面轴123,,a a a 上的截距为123/,/,/a h a k a i ,第四个指数表示该晶面在六重轴c 上的截距为/c l 。
固体物理习题课第一章可打印
维格纳 —— 塞茨原胞
—— 14面体 —— 八个面正 六边形 —— 六个面正 四边形
(111)面与(110)面的交线的晶向
—— 晶向指数
补充例题 001 试做出简单立方晶格、面心立方晶格和体心立 方晶格的维格纳 — 塞茨原胞(Wingner-Seitz) 维格纳 — 塞茨原胞:选取某一个格点为中心,做出最近各 点和次近各点连线的中垂面,这些所包围的空间 —— 维格纳 — 塞茨原胞 如图所示为一种二维格子 的维格纳 — 塞茨原胞
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的 晶向 (111)面与(100)面的交线的AB
—— AB平移,A与O点重合
B点位矢 (111)面与(100)面的交线的晶向
—— 晶向指数
(111)面与(110)面的交线的AB
—— 将AB平移,A与原点O重合,B点位矢
《固体物理学》例题与习题
1.3 证明:体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方 由倒格子定义
体心立方格子原胞基矢
倒格子基矢
同理
可见由
为基矢构成的格子为面心立方格子
面心立方格 子原胞基矢
倒格子基矢
同理
可见由 为基矢构成的格子为体心立方格子
1.4 证明倒格子原胞体积
其中vc为正格子原胞体积
倒格子基矢
倒格子体积
1.5 证明:倒格子矢量
垂直于密勒指数
为 因为
的晶面系
容易证明
与晶简单正交系,证明晶面族
并说明面指数简单的晶面,其面密度比较大,容易解理 简单正交系 倒格子基矢
倒格子基矢
倒格子矢量
晶面族
的面间距
—— 面指数越简单的晶面,其晶面的间距越大,晶面上格 点的密度越大,这样的晶面越容易解理
固体物理第一章习题
8.六角晶胞的基矢
3 a 3 a a ai j , b ai j , c ck 2 2 2 2
求其倒格基矢. [分析]
2 a b c a 2 b c 2 c a b
(hkl ) 1 {(h1 h2 h3 )(h1 h2 h3 )(h1 h2 h3 )} p
其中p'是(-h1+h2+h3)(h1-h2+h3)(h1+h2-h3)的公约数。
20
20. 讨论六角密堆积结构,X光衍射消光的条件。
[分析]
(hkl)晶面族引起的衍射光总强度
即:
d hkl 1 h l 2hl cos k 2 2 2 2 sin a c ac b
2 2 2 1 2
16
15. 对于面心立方晶体,已知晶面族的密勒指数为 (hkl) 求对应的原胞坐标系中的面指数(h1h2h3)。 若已知(h1h2h3),求对应的密勒指数(hkl)。 [分析] 这类问题可以用倒格矢来处理,因为是同一组晶 面在两种不同坐标系的表示,其对应的倒格矢应 相互平行。 步骤:(1)两种不同倒格基矢的变换关系 (2)将与晶面垂直的倒格矢由一种坐标表示变 为另一种坐标表示 (3)由两种坐标表示的倒格矢平行求相互关系
2
9
[思路2] 利用倒格矢的模与面间距的关系
2 d hkl 1) 设沿立方晶系晶轴a, b, c的单位矢量分别为
a ai, b a j, c ak ,
倒格子基矢为
2 2 2 a i, b j, c k a a a
由已知条件可得
固体物理课后习题与答案
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理参考答案(前七章)
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理课后习题答案
(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理习题带答案
第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理题库第一章晶体的结构
固体物理题库第一章晶体的结构(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章晶体的结构一、填空体(每空1分)1. 晶体具有的共同性质为长程有序、自限性、各向异性。
2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,,原胞与晶胞的体积比 1:1 ,配位数为6 。
3. 对于体心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:2 ,配位数为 8 。
4. 对于面心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:4 ,配位数为 12 。
5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。
6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。
7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。
8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。
9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。
10.晶体结构的宏观对称只可能有下列10种元素: 1 ,2 ,3 ,4 ,6 ,i , m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32个点群。
11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。
12. 晶体原胞中含有 1 个格点。
13. 魏格纳-塞茨原胞中含有 1 个格点。
二、基本概念1. 原胞原胞:晶格最小的周期性单元。
固体物理学习题解答
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理 第一章 晶体结构习题
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
固体物理习题集
固体物理习题集固体物理习题集第一章晶体的结构1. 解理面是面指数低的晶面还是指数高的晶面?为什么?[解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.2. 在结晶学中, 晶胞是按晶体的什么特性选取的?[解答]在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.3. 在晶体衍射中,为什么不能用可见光?[解答] 晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6?4.0710-?米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.4. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?[解答] 对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式λθn sin 2=hkl d 可知, 面间距hkl d 大的晶面, 对应一个小的光的掠射角θ. 面间距hkl d 小的晶面, 对应一个大的光的掠射角θ. θ越大, 光的透射能力就越强, 反射能力就越弱.5. 温度升高时, 衍射角如何变化? X 光波长变化时, 衍射角如何变化?[解答] 温度升高时, 由于热膨胀, 面间距hkl d 逐渐变大. 由布拉格反射公式λθn sin 2=hkl d 可知, 对应同一级衍射, 当X 光波长不变时, 面间距hkl d 逐渐变大, 衍射角θ逐渐变小.所以温度升高, 衍射角变小.当温度不变, X 光波长变大时, 对于同一晶面族, 衍射角θ随之变大.第二章晶体的结合1.是否有与库仑力无关的晶体结合类型?[解答] 共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.2.如何理解库仑力是原子结合的动力?[解答] 晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?[解答]自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K 时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能.4.原子间的排斥作用取决于什么原因?[解答] 相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.5. 原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么?[解答] 在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离r >0r 时, 吸引力起主导作用; 当相邻原子间的距离r <0r 时, 排斥力起主导作用.6. 共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?[解答] 共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.7.为什么许多金属为密积结构?[解答] 金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.12.[解答]如上图所示, 0r 附近的力曲线越陡, 当施加一定外力, 固体的形变就越小. 0r 附近力曲线的斜率决定了固体的弹性性质. 而0r 附近力曲线的斜率主要取决于排斥力. 因此, 固体的弹性强弱主要由排斥作用决定.第三章晶格振动与晶体热学性质1. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?[解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N .2. 长光学支格波与长声学支格波本质上有何差别?[解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.3. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?[解答] 频率为ω的格波的(平均) 声子数为11)(/-=T k B e n ωω .因为光学波的频率O ω比声学波的频率A ω高, (1/-T k B O e ω )大于(1/-T k B A e ω ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.4. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多?[解答] 设温度T H >T L , 由于(1/-H B T k eω )小于(1/-L B T k e ω ), 所以温度高时的声子数目多于温度低时的声子数目. 5. 高温时, 频率为ω的格波的声子数目与温度有何关系?[解答] 温度很高时, 1/-≈ωω T k B e, 频率为ω的格波的(平均) 声子数为 11)(/-=T k B e n ωω ω T k B ≈.可见高温时, 格波的声子数目与温度近似成正比.6. 在甚低温下, 不考虑光学波对热容的贡献合理吗?[解答] 参考本教科书(3.119)式, 可得到光学波对热容贡献的表达式2//2)1(d )(maxmin - ??=?T k O T k B B VO B B O O e D e T k k C ωωωωωωω . 在甚低温下, 对于光学波, T k B e/ω 1>>, 上式简化为ωωωωωωd )(/2maxmin O T k B B VO D e T k k C B O O -????? ??=. 以上两式中)(ωO D 是光学波的模式密度, 在简谐近似下, 它与温度无关. 在甚低温下,0)/(/→-T e T k B ω , 即光学波对热容的贡献可以忽略. 也就是说, 在甚低温下, 不考虑光学波对热容的贡献是合理的.从声子能量来说, 光学波声子的能量O ω 很大(大于短声学波声子的能量), 它对应振幅很大的格波的振动, 这种振动只有温度很高时才能得到激发. 因此, 在甚低温下, 晶体中不存在光学波.7. 在甚低温下, 德拜模型为什么与实验相符?[解答] 在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.第四章晶体中电子能带理论1. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的?[解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=??b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=??,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N . 由于N 是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的.2. 当电子的波矢落在布里渊区边界上时, 其有效质量何以与真实质量有显著差别?[解答] 晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F , 晶格对电子的作用力为F l , 电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , 又要保持上式左右恒等, 则只有F a *1m =.显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m 的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m *与真实质量m 的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别.3. 紧束缚模型电子的能量是正值还是负值?[解答] 紧束缚模型电子在原子附近的几率大, 远离原子的几率很小, 在原子附近它的行为同在孤立原子的行为相近. 因此,紧束缚模型电子的能量与在孤立原子中的能量相近. 孤立原子中电子的能量是一负值, 所以紧束缚模型电子的能量是负值. s 态电子能量(5.60)表达式∑?--=n i s s at s s ne J C E E R k k )(即是例证. 其中孤立原子中电子的能量at s E 是主项, 是一负值, s s J C --和是小量, 也是负值.4. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?[解答] 以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=Ω的大小又取决于)(r at s ?与相邻格点的)(n at s R r -?的交迭程度. 紧束缚模型下, 内层电子的)(r at s ?与)(n at s R r -?交叠程度小, 外层电子的)(r at s ?与)(n at s R r -?交迭程度大. 因此, 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽.5. 一维简单晶格中一个能级包含几个电子?[解答] 设晶格是由N 个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N 个电子. 由于电子的能带是波矢的偶函数, 所以能级有(N /2)个. 可见一个能级上包含4个电子.6. 本征半导体的能带与绝缘体的能带有何异同?[解答] 在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献.第五章自由电子论和电子的输运性质1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率?[解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目1/)(+=-T k E E B F e g n ,g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数11)(/)(+=-T k E E B F e E f是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率.2.绝对零度时, 价电子与晶格是否交换能量?[解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数11/-=T k i B i e n ω .从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.3.为什么温度升高, 费密能反而降低?[解答] 当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低4.为什么价电子的浓度越高, 电导率越高?[解答] 电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.5.霍耳电场与洛伦兹力有何关系?[解答] 霍耳电场是导电电子在洛伦兹力作用下产生的. 设金属的长度方向为x 轴, 电场ε沿x 方向, 磁场B 沿z 轴方向, 金属的宽度方向为y 轴方向. 在此情况下, 运动的电子将受到洛伦兹力)(B v F ?-=e的作用. 该作用力指向负y 方向, 使电子在运动过程中向负y 方向偏转, 致使负y 侧面的电子浓度增大, 正y 侧面的电子浓度减小. 其结果, 如下图所示, 使得导体的宽度方向产生了一个附加电场y ε, 即霍耳电场.6.如何通过实验来测定载流子是电子还是空穴?[解答] 由(6.109)可以看出, 电子导电材料的霍耳系数是一负值. 通过实验测定出材料的霍耳系数, 若霍耳系数是负值, 则可断定载流子是电子, 若霍耳系数是正值, 则可断定载流子是空穴.22222222l k h a al a k a h d hkl hkl ++=++==k j i K πππππ)(12t qna i n Be u ω-+=)(2t qna i n Ae u ω-=()2/12/1222121222212sin 16422??+-±+qa m m m m ββββββ(a k a k a k J C E E z y x s s at s s cos cos cos 2)(++--=k 试题1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( 122 ), 其面间距为( a 32π).2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( 33R V), 长光学波的( 纵 )波会引起离子晶体宏观上的极化.3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波.4. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是(费米面附近)的电子.5. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距?立方晶系密勒指数为(hkl )的晶面族的面间距6.设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a ,(1).列出原子运动方程.(2).求出格波的振动谱ω(q ).解:(1)原子运动方程(2)格波的振动谱ω(q )= 7. 对于晶格常数为a 的SC 晶体(1.)以紧束缚近似求非简并s 态电子的能带.(2).画出第一布里渊区[110]方向的能带曲线, 求出带宽.(3).当电子的波矢k =a πi +a πj 时,求导致电子产生布拉格反射的晶面族的面指数.解:(1). 紧束缚近似非简并s 态电子的能带(2)第一布里渊区[110]方向的能带曲线[110]方向的能带曲线带宽为8J s 。
固体物理:第一章典型习题
FGIHGK: E
(111)
I A
H B
消光现象
• 点阵消光 • 起源于体心或者面心上有附加点阵而引起的结构因子F=0
的消光现象。如对于体心晶格,衍射hkl中,h+k+l=奇数的 衍射将系统消失;对于面心晶格,hkl为异性数(非同奇同 偶的数)时衍射线消失。这一类消光称为点阵消光。
1.6证明简立方的(hkl)晶面系的面间距:
d2
a2
h2 k 2 l 2
证明思路: d 2
G
证明:设正格子基矢为
倒格子基矢易计算得到:
a1 ai
a2 a j
a3 ak
b1 b2 b3
2
a
2
a
2
a
i
j
k
G hb1 kb2
2 (hi k j
a
l b3 lk)
代入公式可得:
(hkl)晶面系的面间距
d
2
G
2
a
2
h2 k 2 l 2
a h2 k 2 l 2
1.7立方格子的特征
项目 晶胞体积
每个晶胞所含格点数
原胞体积 最近邻数 最近邻距离 次近邻数 次近邻距离
简立方 体心立方
面心立方
a3
a3
a3
1
2
4
(即1+8×1/8) (即 8 × 1/8+6 × 1/2)
a3
简立方体心立方面心立方晶胞体积18612原胞体积12最近邻距离次近邻数1218画出体心立方和面心立方晶格结构在100110111面上的原子排列1001101111体心立方晶格2面心立方晶格10011011119指出立方晶格111面与100面111面与110面交线的晶向写出晶列
固体物理习题及答案
固体物理第一章习题及参考答案1.题图1-1表示了一个由两种元素原子构成的二维晶体,请分析并找出其基元,画出其布喇菲格子,初基元胞和W -S 元胞,写出元胞基矢表达式。
解:基元为晶体中最小重复单元,其图形具有一定任意性(不唯一)其中一个选择为该图的正六边形。
把一个基元用一个几何点代表,例如用B 种原子处的几何点代表(格点)所形成的格子 即为布拉菲格子。
初基元胞为一个晶体及其空间点阵中最小周期性重复单元,其图形选择也不唯一。
其中一种选法如图所示。
W -S 也如图所示。
左图中的正六边形为惯用元胞。
2.画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。
(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。
11.对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22求其倒格子基矢,并判断倒格子也是六角的。
倒空间 ↑→ji i (B)由倒格基失的定义,可计算得Ω⨯=→→→3212a a b π=a π2)31(→→+j i →→→→→+-=Ω⨯=j i a a a b 31(22132ππ→→→→=Ω⨯=k ca ab ππ22213正空间二维元胞(初基)如图(A )所示,倒空间初基元胞如图(B )所示(1)由→→21b b 、组成的倒初基元胞构成倒空间点阵,具有C 6操作对称性,而C 6对称性是六角晶系的特征。
(2)由→→21a a 、构成的二维正初基元胞,与由→→21b b 、构成的倒初基元胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。
12.用倒格矢的性质证明,立方晶格的(hcl )晶向与晶面垂直。
证:由倒格矢的性质,倒格矢→→→→++=321b l b k b h G hkl 垂直于晶面(h 、k 、l )。
固体物理1-6章习题及答案
立方元素晶体的衍射规律. 18. 金刚石和硅、锗的几何结构因子有何异同?
[解答] 取几何结构因子的(1.44)表达式
t
Fhkl =
f e i2n (hu j +kvj +lw j ) j
j =1
,
其中 uj,vj,wj 是任一个晶胞内,第 j 个原子的位置矢量在 a, b, c 轴上投影的系数. 金刚石和 硅、锗具有相同的结构, 尽管它们的 a, b, c 大小不相同, 但第 j 个原子的位置矢量在 a, b, c
1 2
0
)(
00
1 2
)(
1 2
1 2
1 2
)
由(1.45)式可求得衍射强度 Ihkl 与衍射面(hkl)的关系
Ihkl={ f K+ [ 1+cos n (h + k) + cosn (k + l) + cosn (l + h)] +
fCl- [cosnh + cosnk + cosnl + cosn (h + k + l)]}
[解答]
正格子与倒格子互为倒格子. 正格子晶面(h1h2h3)与倒格式 K h = h1 b1 +h2 b2 +h3 b3 垂直,
则倒格晶面(l1l2l3)与正格矢 Rl = l1 a1 + l2 a 2 + l3 a3 正交. 即晶列[l1l2l3]与倒格面(l1l2l3) 垂直. 9. 9. 在结晶学中, 晶胞是按晶体的什么特性选取的?
[解答] 对于面心立方元素晶体, 对应密勒指数(100)的原胞坐标系的面指数可由(1.34)式求得
为 ( 111 ), p’=1. 由 (1.33) 式 可 知 , K h = 2K hkl ; 由 (1.16) 和 (1.18) 两 式 可 知 ,
《固体物理学》第一二章参考答案
第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx =(1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构;若
,a又3 为a2 (何j 种k)结 32构a i?
解:计算晶体原胞体积:
a v a1 (a2 a3 ) 0
a
0
a a
0 0 a3 a2
222
由原胞推断,晶体结构属体心立方结构。
若a3
a 2
(
j
k)
3a 2
i ,则原胞体积为:
a 00
v a1 (a2 a3 ) 0
3a
a a
0 a3 a2
2 22
由原胞推断,该晶体结构仍属体心立方结构。
例二题解
(3)正格子与倒格子关系
1、原胞体积关系证明(P578—1.4); 2、倒格矢与晶面族的关系(P578—1.5) ; 3、面间距(P578—1.6);
1.6证明简立方的(hkl)晶面系的面间距:
d2
a2
h2 k 2 l 2
v
2
a
(i
j
k)
b2
2 (a3 a1)
v
2
a
(i
j
k)
b3
2 (a1 a2 )
v
2
a
(i
j
k)
对 比
a1
a 2
(i
j
k)
a2
a 2
(i
j
k)
a3
a (i 2
j
k)
二者只相差一常数公因子,
因此得证。
例二题解
例二:基矢为
a1
ai , a2
aj , a3
a的(i 晶 j体 k为) 何种
2
B
C
A
写出晶列:ED,FD,OF的晶列指数
G
1 11
D
O I
1 11
A
F
C
E H B
k
j i
ED: (111) FD: (110)
OF:
(011)
写出晶面AGK和FGIH的密勒指数
G
F
D
C
FGIH: (201)
K
O
AGK: E
(111)
I A
H B
消光现象
• 点阵消光 • 起源于体心或者面心上有附加点阵而引起的结构因子F=0
第一章典型习题
• (1)致密度的计算
– 致密度:设想晶体由刚性原子球堆积而成,一 个晶胞中刚性原子球占据体积与晶胞体积的比 值称为致密度。
• 例题:P578—1.1
第一章习题
1.1证明:原子球半径为r,晶格常数a,
r
a
a 2r
x
4 r3 1
3 a3
6
3a 4r
2a 4r
4 r3 2 x 3 a3
3 0.68 8
4 r3 4 x 3 a3
2 0.74 6
第一章习题
a 2r
a 8 c3
4 r3 2
x 3
2 0.74
3 a2 c 6
2
3a 2r 4
x
4 r3 8 3
a3
3 16
0.34
第一章习题
2、试证明六方密排密堆积结构中
1
c
82
1.633
a 3
证明:ABCD四原子球构成四面体结构,
1.7立方格子的特征
项目 晶胞体积
每个晶胞所含格点数
原胞体积 最近邻数 最近邻距离 次近邻数 次近邻距离
简立方 体心立方
面心立方
a3
a3
a3
1
2
4
(即1+8×1/8) (即 8 × 1/8+6 × 1/2)
a3
a3/2
a3/4
6
8
12
a
3a
2a
2
2
12
6
6
2a
a
a
1.8画出体心立方和面心立方晶格结构在 (100),(110),(111)面上的原子排列
证明思路: d 2
G
证明:设正格子基矢为
倒格子基矢易计算得到:
a1 ai
a2 a j
a3 ak
b1 b2 b3
2
a
2
a
2
a
i
j
k
G hb1 kb2
2 (hi k j
a
l b3 lk)
代入公式可得:
(hkl)晶面系的面间距
d
2
G
2
a
2
h2 k 2 l 2
a h2 k 2 l 2
的消光现象。如对于体心晶格,衍射hkl中,h+k+l=奇数的 衍射将系统消失;对于面心晶格,hkl为异性数(非同奇同 偶的数)时衍射线消失。这一类消光称为点阵消光。
• 结构消光
• 起源于晶体结构中存在含平移的复合对称动作对应的对称 元素,即螺旋轴或滑移面,如晶体结构在b轴方向有滑移 面n存在,则hol类衍射中,h+l=奇数的衍射将系统消失, 这一类消光称为结构消光。
(1)体心立方晶格
(100)
o (110)
(111)
(2)面心立方晶格
(100)
o (110)
(111)
1.9指出立方晶格(111)面与(100)面,(111)面与 (110)面交线的晶向
(111)面与(100)面交线的晶向 (011)
k j
i
(111)面与(110)面交线的晶向 (110)
O
a1
ai,, aa又23 为aa2j何(, aj3种k的结a2) (晶构i32a体?ij为 k何) 种
1.3试证明:面心立方的倒格子为体心立方。
证明:已知面心立方正格子基矢如下:
a1
a 2
(
j
k ),
a2
a 2
(k
i)
由倒格矢公式可得:
a3
a 2
(i
j)
v
a1
(a2
a3
)
a3 4
b1
2 (a2 a3 )
A D BC
D
A
O
B
DO c 2
DO 2
DB
2
BO
2
2r 2
2 3
3 2
a
2
a 2r
c2 2 a2 43
C
(2)如何判断(正)倒格子是何结构?
1、写出基矢
a1
,
a2
,
a3
的表达式,与常
用的习惯写法对比来确定;
2、 计算出原胞体积来确定其结构。
例一:P578—1.3
例二:基矢为
结构;若