解答选择题填空题的12种巧妙方法

合集下载

高考数学压轴题的设计理念与解题策略

高考数学压轴题的设计理念与解题策略

感到恶心的不等式呢?这需要命题的智慧与方法.通常是采用“穿马甲”的方式对它
进行改造和包装.首先考虑到把两个分母弄复杂,比如,令 x ab ,y a2 ab ,就

a2
1 ab
a2
1
ab
4
(其中
a
b
0
).
但参加过竞赛培训的学生一眼可以看出两个分式的分母之和为a2 ,就容易用熟知
的公式 1 1 4 ( m 0, n 0 ), m n mn
得到
a2
1 ab
a2

1
ab
a2
ab
4 (a2
ab)
a2
4 a2
,这就不会有较大的难
度,并且让参加过竞赛培训的学生“占便宜”.
因此,有必要对第二个分式的分母继续“穿马甲”,就是把 a2
1 ab
a2
1
ab
4
变成 a2 1 1 4 (其中 a b 0 ). ab a(a b)
至此,这道高考题就基本编成了,剩下的工作是完善及设计选择支.案例 1 的测
确; ③易知,数域至少含有 0 和 1 这两个数,从而有
11 2, 2 1 3, 3 1 4, , k 1 k 1, ,
因此所有的正整数都在“数域”之中,所以数域必为无限集,故③正确;
④在数域 a b 2 a,b Q 中,把 2 换成任意一个质数后所得的数集仍为数域,又
因为质数有无穷多个,故④正确; 故填③④.
3 1 3. n
1 n (n 1)
又由
(1
1 2
)(1
1 22
)(1
1 23
)
135 64
2

所以当

(尖子生题库)专题05圆的面积-六年级数学思维拓展培优讲义(通用版)

(尖子生题库)专题05圆的面积-六年级数学思维拓展培优讲义(通用版)

(尖子生题库)专题05圆的面积的解题技巧六年级数学思维拓展拔高讲义(通用版)在解答圆的组合图形面积或求阴影部分面积时,除了正确运用圆的面积公式外,还可以巧妙地运用“重叠”“转化”“拼接”“对称”“割补结合"等技巧化繁为简、化不规则为规则进行解答。

一.选择题(共20小题)1.人民公园里有一个半径是6米的圆形花坛,花坛周围有一条1米宽的环形小路。

这条小路的占地面积是()平方米。

A.3.14B.37.68C.40.82D.153.862.下面四句话中,正确的是()①圆有无数条对称轴。

②所有的半径都相等。

③周长相等的两个圆,它们的面积也一定相等。

④甲圆的半径是乙圆半径的2倍,甲圆的周长也是乙圆周长的2倍。

A.①②④B.①③④C.①②③D.②③④3.(如图)已知大正方形的面积是4cm2。

那么圆的面积是()cm2。

妙招演练妙招总结424.一个半圆形的周长是25.7cm ,这个半圆形的面积是( )cm 2。

A .314B .78.5C .39.25D .31.45.下列说法中,正确的是( )①把5米长的绳子平均分成8份,每份是1米的58。

②在同一个圆中,半圆的周长等于圆周长的一半。

③水结成冰时,体积膨胀110,冰化成水后,体积就减少110。

④树木的成活率、上班的出勤率和小麦的出粉率都不可能超过100%。

A .①②B .②③C .③④D .①④6.把一个圆平均分成32份,剪开后拼成一个近似的长方形,关于这个过程,下面说法正确的是( )A .剪拼前后周长和面积都没变B .剪拼前后周长不变,面积变了C .剪拼前后周长变了,面积没变D .剪拼前后周长和面积都变了7.长度相等的三根铁丝,分别做成一个长方形、正方形和圆,( )面积最大。

A .长方形B .正方形C .圆8.研究圆的面积时,可以把圆平均分成32份,64份,128份……,平均分的份数越多,转化后的图形越接近长方形。

下列说法错误的是( )A .长方形的长相当于圆周长的一半B .长方形的宽相当于圆的半径C .长方形的周长等于圆的周长D .长方形的面积等于圆的面积9.把一张圆形纸对折3次后得到的图形的面积是原来圆面积的( )349810.下面是推导圆的面积的方法,哪种推导过程中有错误信息()A.B.C.D.11.如图,沿半径20m的半圆形草坪外围铺一条4m宽的小路,小路的面积是多少平方米?列式正确的是()A.3.14×42÷2B.3.14×(20+4﹣20)2÷2C.3.14×(20+4)2÷2﹣3.14×202÷212.游乐园要建一座圆形旋转木马,直径是8m,并在它的周围修建一条2m宽的小路,这条小路的面积是()m2。

数学解题技巧:函数不等式问题

数学解题技巧:函数不等式问题

第三讲 函数与不等式问题【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的使用不等式的基本知识、基本方法,解决有关不等式的问题.12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、分析几何等各部分知识中的使用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在使用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题分析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会使用用函数的定义域解决有关问题. 例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<. 故选C例2.函数y ( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数分析式的求法来求复合函数的值.二是使用已知函数定义域求复合函数的定义域.例5.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的分析式的求解以及函数的奇偶性使用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8. ()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B.方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。

解答选择题填空题的12种巧妙方法

解答选择题填空题的12种巧妙方法

传说中的十二招你知道选择题和大题最大的区别是什么吗?那就是选择题只需要有一个模糊的方向,而不需要确切的答案;或者,选择题可以用一些歪招解出来,而不是像大题一样算到吐血——如果每道选择题都像大题一样算,一张卷下来,估计你所有的血小板都不够你用的……而传说中应对选择、填空题的十二招其实来自它们可抓的五个特征……一、答案符合题意我们目前所学的数学,基本上是按照充分必要的套路。

所以,题目可以推出答案,答案同样必然符合题意所指。

以此本质的基础可以衍生出两大招。

1.特殊值法(适用于选择、填空)1)对于问区间的题,只需分别找出可选区间中的元素,代入原题检验其真假,其实也就知道了选哪个区间;正如去到陌生的星球,一看满眼纳美人,那么此地当然就是潘多拉星。

2)特殊值一般选取容易算的,代入选项就可以判断真假,假的统统排除。

例题:y = cos(7π2– 3x ) 是 函数(填奇偶性) 解析:代入x=0 得 y=0答案:奇2.代入法(适用于选择)这个小学生都会。

电池有电没电,放进多啦A 梦看看work 不work 不就知道了吗?题目算不出来,把答案代进去看成不成立不就知道了?然而这种方式不仅对一些题目无效,而且浪费太多时间;如果配合其它招式一起用效果会更强。

例题:函数f(x) = 2x ·ln(x-2) – 3 在下列哪个区间有零点()A 、(1,2)B 、(2,3)C 、(3,4)D 、(4,5)解析:我们知道若f(x 1)<0 ,f(x 2)>0,则f(x)在x 1 ~ x 2 之间一定有零点,所以把1、2、3、4、5 代入 x ,发现f(3)<0,f(4)>0.答案:C二、放诸四海皆准既然叫做“成立”,那么就是不管什么条件均能成立。

我们不妨把题目当做实验品,放到苛刻的条件下,通过观察它的反应剖析其内涵。

3.假设法(选择)假设是最理想的方法之一,不仅因为这不用钱,而且通过简单的计算就可以知道题目的意思。

2023年普通高等学校招生考试模拟试题数学4(可编辑可打印)

2023年普通高等学校招生考试模拟试题数学4(可编辑可打印)

2023年普通高等学校招生考试模拟试题数学(四)本试卷共 4 页 ,22题 。

全卷满分 150分 。

考试用时 120分钟。

注意事项:1.答题前 ,先将自己的姓名 、考号等填写在试题卷和答题卡上 ,并将准考证号条形码粘贴在 答题卡上的指定位置 。

2.选择题的作答:选出每小题答案后 ,用 2B 铅笔把答题卡上对应题目的答案标号涂黑 。

写 在试题卷 、草稿纸和答题卡上的非答题区域均无效 。

3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内 。

写在试题卷 、 草稿纸和答题卡上的非答题区域均无效 。

4.考试结束后 ,请将本试题卷和答题卡一并上交 。

一 、选择题:本题共 8 小题 ,每小题 5 分 ,共 40分 。

在每小题给出的四个选项中 ,只有 一 项是符合题目要求的。

1.已知集合 A = (x l x 2 -3x -4>0},B = (x l - 2<x ≤a },若 A U B =R ,则实数 a 的取值范 围为A.[1,+o )B.(1,+o )C.[4,+o )D.(4,+o ) 2.设复数x 满足x (2-i ) =1+b i (b ∈R ) ,若 x 为纯虚数 ,则 x =A.-iB.iC.-5iD.5i 3.已知 tan a =2,则 cos 2a --的值为A.1 B.4 C.- 3 D.- 14.山东烟台某地种植的苹果按果径 X (单位:mm ) 的大小分级 ,其中 X ∈(80,100]的苹果为特 级 ,且该地种植的苹果果径 X ~N (85,25) .若在某一次采摘中 ,该地果农采摘了 2 万个苹果 , 则其中特级苹果的个数约为(参考数据:若 X ~N (以,G 2 ) ,则 P (以-G <X ≤以+G ) ~0.682 7, P (以- 2G <X ≤以+2G ) ~0.9545,P (以-3G <X ≤以+3G ) ~0.9973)A.3 000B.13654C.16800D.19946 5.数学家杨辉在其专著《详解九章算术法》和《算法通变本末》中 ,提出了 一 些新的高阶等差数 列 ,其中二阶等差数列是一个常见的高阶等差数列 ,如数列 2,4,7,11,16,从第二项起 ,每 一 项与前一项的差组成新数列 2,3,4,5,新数列 2,3,4,5 为等差数列 ,则称数列 2,4,7,11,16为 二阶等差数列 ,现有二阶等差数列(a n },其前七项分别为 2,2,3,5,8,12,17,则该数列的第 20 项为A.173B.171C.155D.1516.已知椭圆 C :+ =1(a >b >0) 的左 、右焦点分别为 F 1 ,F 2 ,A 为左顶点 ,B 为短轴的 一 个 端点 ,若l BF 1 l ,l F 1F 2 l ,l AF 2 l 构成等比数列 ,则椭圆 C 的离心率为 A. BC^ D.1+8^7.已知点 P 在棱长为a 的正方体 ABCD -A 1B 1C 1D 1 的外接球 O 的球面上 ,当过 A ,C ,P 三点 的平面截球O 的截面面积最大时 ,此平面截正方体表面的截线长度之和 L 为 A.(2+2^ B.(2+2^ C.(2+^ D.(2+^8.已知抛物线 E :y 2 =8x F 的直线1与圆 M 交于C ,D两点 ,交抛物线 E 于 A ,B 两点 ,点 A ,C 位于x 轴上方 ,则满足l AC l =l BD l 的直线1的方程为 A.x =1 B.x =2C.x - 2y - 2=0或 x +2y - 2=0D.x =2或 x - 2y - 2=0或 x +2y - 2=0二 、选择题:本题共 4 小题 ,每小题 5 分 ,共 20分 。

填空题的解法技巧

填空题的解法技巧

填空题的解法技巧第2讲填空题的解法技巧题型概述填空题是一种只要求写出结论,不要求解答过程的客观性试题,有小巧灵活、覆盖面广、跨度大等特点,突出考查准确、严谨、灵活运用知识的能力.由于填空题不像选择题那样有备选提示,不像解答题那样有步骤得分,所填结果必须准确、规范,因此得分率较低,解答填空题的第一要求是“准”,然后才是“快”、“巧”,要合理灵活地运用恰当的方法,不可“小题大做”.方法一直接法直接法就是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的方法解决问题.直接法是求解填空题的基本方法.例1(1)(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示∴sin 2A sin C =2×34×74378=1. 答案 (1)4 (2)1 思维升华 利用直接法求解填空题要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.跟踪演练1 (1)(2015·韶关联考)已知椭圆x 28+y 2=1的左、右焦点分别为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是________.(2)已知方程x 2+3ax +3a +1=0(a >2)的两根tan α,tan β,且α,β∈(-π2,π2),则α+β=________. 方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程. 例2 (1)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=_____________________________________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析 (1)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC→=18. (2)此题考查抽象函数的奇偶性,周期性,单调性和对称轴方程,条件多,将各种特殊条件结合的最有效方法是把抽象函数具体化.根据函数特点取f (x )=sin π4x , 再由图象可得(x 1+x 2)+(x 3+x 4)=(-6×2)+(2×2)=-8.答案 (1)18 (2)-8思维升华 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.跟踪演练2 (2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 方法三 数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确规范地作出相应的图形.例3 (1)已知点P (x ,y )的坐标x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________.(2)已知函数f(x)=x|x-2|,则不等式f(2-x)≤f(1)的解集为________.解析(1)画出可行域如图,所求的x2+y2-6x+9=(x-3)2+y2是点Q(3,0)到可行域上的点的距离的平方,由图形知最小值为Q到射线x-y-1=0(x≥0)的距离d的平方,∴d2min=(|3-0-1|12+(-1)2)2=(2)2=2.最大值为点Q到点A的距离的平方,∴d2max=16. ∴取值范围是[2,16].(2)函数y=f(x)的图象如图,由不等式f(2-x)≤f(1)知,2-x≤2+1,从而得到不等式f(2-x)≤f(1)的解集为[-1,+∞).答案(1)[2,16](2)[-1,+∞)思维升华数形结合法可直观快捷得到问题的结论,充分应用了图形的直观性,数中思形,以形助数.数形结合法是高考的热点,应用时要准确把握各种数式和几何图形中变量之间的关系.跟踪演练3(1)(2015·山西大学附中月考)若方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是_________________________________________________________.(2)(2015·兰州一中期中)设函数f (x )=⎩⎨⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.例4 (1)如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.(2)e416,e525,e636(其中e为自然对数的底数)的大小关系是________________.解析(1)如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=(2)2+(2)2+(2)2=2R,所以R=62,故球O的体积V=4πR33=6π.(2)由于e416=e442,e525=e552,e636=e662,故可构造函数f(x)=e xx2,于是f(4)=e416,f(5)=e525,f(6)=e636.而f′(x)=(e xx2)′=e x·x2-e x·2xx4=e x(x2-2x)x4,令f′(x)>0得x<0或x>2,即函数f(x)在(2,+∞)上单调递增,因此有f(4)<f(5)<f(6),即e416<e525<e636.答案(1)6π(2)e416<e525<e636思维升华构造法解题的关键是由条件和结论的特征构造数学模型.在立体几何中,补形构造是常用的解题技巧,构造法实质上是转化与化归思想在解题中的应用.跟踪演练4已知三个互不重合的平面α、β、γ,α∩β=m,n⊂γ,且直线m、n不重合,由下列三个条件:①m∥γ,n⊂β;②m∥γ,n∥β;③m ⊂γ,n∥β.能推得m∥n的条件是________.方法五归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.例5(1)(2014·陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569 五棱6610锥立方6812体猜想一般凸多面体中F,V,E所满足的等式是_____________________________.(2)用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为________.解析(1)观察F,V,E的变化得F+V-E=2.(2)观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n个“金鱼”图需要火柴棒的根数为6n +2.答案(1)F+V-E=2(2)6n+2思维升华归纳推理法主要用于与自然数有关的结论,这类问题是近几年高考的热点,解题的关键在于找准归纳对象及其规律,如数列中项与项数之间的对应关系.跟踪演练5观察下列各个等式:13=1;23=3+5;33=7+9+11;43=13+15+17+19;…若某数m3按上述规律展开后,发现等式右边含有“2 016”这个数,则m=________.方法六正反互推法多选型问题给出多个命题或结论,要求从中选出所有满足条件的命题或结论.这类问题要求较高,涉及图形、符号和文字语言,要准确阅读题目,读懂题意,通过推理证明,命题或结论之间互反互推,相互印证,也可举反例判断错误的命题或结论.例6已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:①f(2 013)+f(-2 014)的值为0;②函数f(x)在定义域上为周期是2的周期函数;③直线y=x与函数f(x)的图象有1个交点;④函数f(x)的值域为(-1,1).其中正确的命题序号有________.解析根据题意,可在同一坐标系中画出直线y =x和函数f(x)的图象如下:根据图象可知①f(2 013)+f(-2 014)=0正确,②函数f(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f(x)的值域是(-1,1),正确.答案①③④思维升华正反互推法适用于多选型问题,这类问题一般有两种形式,一是给出总的已知条件,判断多种结论的真假;二是多种知识点的汇总考查,主要覆盖考点功能.两种多选题在处理上不同,前者需要扣住已知条件进行分析,后者需要独立利用知识逐项进行判断.利用正反互推结合可以快速解决这类问题.跟踪演练6给出以下命题:①双曲线y22-x2=1的渐近线方程为y=±2x;②命题p:“∀x∈R+,sin x+1sin x≥2”是真命题;③已知线性回归方程为y^=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;⑤已知22-4+66-4=2,55-4+33-4=2,77-4+1 1-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为nn-4+8-n(8-n)-4=2(n≠4).则正确命题的序号为________(写出所有正确命题的序号).知识方法总结六招拿下填空题:(一)直接法(二)特例法(三)数形结合法(四)构造法(五)归纳推理法(六)正反互推法填空题突破练A组专题通关1.已知集合A={x,xy,lg(xy)},B={0,|x|,y},若A=B,则x=________,y=________.2.已知函数f (x )=⎩⎨⎧2x ,x ≤1,x 2-2x +2,x >1,若关于x 的函数g (x )=f (x )-m 有两个零点,则实数m 的取值范围是________.3.已知函数f (x )=sin(π3x +π3)(x >0)的图象与x 轴的交点从左到右依次为(x 1,0),(x 2,0),(x 3,0),…,则数列{x n }的前4项和为________.4.(2015·杭州外国语学校期中)设a >0,在二项式(a -x )10的展开式中,含x 的项的系数与含x 4的项的系数相等,则a 的值为________.5.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是________.6.已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.7.观察下列不等式:1+122<321+122+132<531+122+132+142<74……照此规律,第五个不等式为_____________________________________________.8.若函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.9.(2015·珠海模拟)已知函数f (x )=(12)x -sin x ,则f (x )在[0,2π]上的零点个数为________.10.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 014项的和为________.11.设命题p :2x -1x -1≤0,命题q :x 2-(2a +1)x +a (a +1)<0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.12.(2015·山东)执行下边的程序框图,输出的T 的值为________.B 组 能力提高13.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f (52)=________. 14.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧ x +y ≤2,x ≥12,y ≥x 上的一个动点,则OM →·ON→的最大值是________. 15.设函数f (x )=⎩⎨⎧log 2x ,x >0,4x ,x ≤0,则f [f (-1)]=________.若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是________.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________.(写出所有正确结论的序号)学生用书答案精析第2讲 填空题的解法技巧跟踪演练1 (1)8 (2)-34π或π4解析 (1)由椭圆的定义知|PF 1|+|PF 2|=42,∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=8,(当且仅当|PF 1|=|PF 2|时取等号)∴|PF 1|·|PF 2|的最大值是8.(2)由已知可得tan α+tan β=-3a ,tan αtan β=3a +1,tan(α+β)=tan α+tan β1-tan αtan β=-3a 1-(3a +1)=1, 因为α,β∈(-π2,π2), 所以-π<α+β<π,所以α+β=-34π或π4. 跟踪演练2 1解析 ∵f (1)=f (-1),∴ln(1+a +1)+ln(-1+a +1)=0,∴ln a =0,∴a =1.经验证a =1符合题意.跟踪演练3 (1)(-2,2) (2)3解析 (1)设f (x )=x 3-3x ,令f ′(x )=3x 2-3=0,得x =±1,当x <-1时,函数f (x )单调递增,当-1<x <1时,函数f (x )单调递减,当x >1时,函数f (x )单调递增,f (-1)=2,f (1)=-2,要有三个不等实根,则直线y =k 与y =f (x )的图象有三个交点,∴-2<k <2.(2)由f (-4)=f (0),得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2.联立两方程解得b =4,c =2.于是,f (x )=⎩⎨⎧x 2+4x +2,x ≤0,2,x >0. 在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点.跟踪演练4①③解析构建长方体模型,如图,观察选项特点,可优先判断条件②:取平面α为平面ADD′A′,平面β为平面ABCD,则直线m为直线AD.因为m∥γ,故可取平面γ为平面A′B′C′D′,因为n⊂γ且n∥β,故可取直线n为直线A′B′. 则直线AD与直线A′B′为异面直线,故m与n不平行.对于①:α、β取②中平面,取平面γ为平面BCC′B′,可取直线n为直线BC,故可推得m∥n;对于③:α,β取②中平面,取γ为平面AB′C′D,取直线n为直线B′C′,故可推得结论.跟踪演练545解析某数m3按上述规律展开后,等式右边为m 个连续奇数的和,由于前4行的最后一个数分别为1=12+0,5=22+1,11=32+2,19=42+3,所以m3的最后一个数为m2+(m-1),因为当m=44时,m2+(m-1)=1 979,当m=45时,m2+(m -1)=2 069,所以要使等式右边含有“2 016”这个数,则m=45.跟踪演练6①③⑤解析①由y22-x2=0可以解得双曲线的渐近线方程为y=±2x,正确.②命题不能保证sin x,1sin x为正,故错误;③根据线性回归方程的含义正确;④P(ξ>1)=0.2,可得P(ξ<-1)=0.2,所以P(-1<ξ<0)=12P(-1<ξ<1)=0.3,故错误;⑤根据验证可知得到一般性的等式是正确的.填空题突破练1.-1-1解析由A=B知需分多种情况进行讨论,由lg(xy)有意义,则xy>0.又0∈B=A,则必有lg(xy)=0,即xy=1.此时,A=B,即{0,1,x}={0,|x|,y}.∴⎩⎪⎨⎪⎧ x =|x |,xy =1,y =1,或⎩⎪⎨⎪⎧x =y ,xy =1,|x |=1,解得x =y =1或x =y =-1.当x =y =1时,A =B ={0,1,1}与集合元素的互异性矛盾,应舍去;当x =y =-1时,A =B ={0,-1,1}满足题意,故x =y =-1.2.(1,2]解析 g (x )=f (x )-m 有两个零点等价于函数f (x )与函数y =m 的图象有两个交点,作出函数的图象如图,由图可知m 的取值范围是(1,2].3.26解析 令f (x )=sin(π3x +π3)=0, 则π3x +π3=k π(k ∈N *), ∴x =3k -1(k ∈N *),∴x1+x2+x3+x4=3(1+2+3+4)-4=26. 4.1解析T k+1=C k10(-x)k a10-k,令k=2时,x的系数为C210a8,令k=8时,x4的系数为C810a2,∴C210a8=C810a2,即a=1,故答案为1.5.17-1解析点P到抛物线的准线距离等于点P到抛物线焦点F(1,0)的距离.圆心坐标是(0,4),圆心到抛物线焦点的距离为17,即圆上的点Q到抛物线焦点的距离的最小值是17-1,这个值即为所求.6.a>b>c解析令f(x)=ln x-x,则f′(x)=1x-1=1-xx.当0<x<1时,f′(x)>0,即函数f(x)在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a>b>c.7.1+122+132+142+152+162<1168.{x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得g ′(x )>0,所以g (x )为R 上的增函数.又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.9.2解析 因为函数f (x )=(12)x -sin x ,则 f (x )在[0,2π]上的零点个数等于函数y =(12)x 与函数y =sin x 在区间[0,2π]内的交点的个数,在同一坐标系中画出上述两个函数的图象如图所示,由图象可知,两函数在区间[0,2π]内有两个不同的交点,所以函数f (x )在[0,2π]上的零点个数为2.10.987解析 a 3=a 2-a 1,a 4=a 3-a 2,a 5=a 4-a 3,a 6=a 5-a 4,a 7=a 6-a 5,…,∴a 1=a 7,a 2=a 8,a 3=a 9,a 4=a 10,a 5=a 11,…,{a n }是以6为周期的数列,且有a 1+a 2+a 3+a 4+a 5+a 6=0,S 800=a 1+a 2=2 013,S 813=a 1+a 2+a 3=2 000,a 3=-13, ∴⎩⎨⎧a 1-a 2=13,a 1+a 2=2 013, ∴a 2=1 000,S 2 014=a 1+a 2+a 3+a 4=a 2+a 3=1 000+(-13)=987.11.[0,12) 解析 由2x -1x -1≤0,得12≤x <1; 由x 2-(2a +1)x +a (a +1)<0,得a <x <a +1.因为p 是q 的充分不必要条件,所以⎩⎨⎧ 12>a ,1≤a +1,解得0≤a <12. 12.116解析 当n =1时,T =1+⎠⎜⎛01x 1d x =1+⎪⎪⎪⎪12x 210=1+12=32;当n =2时,T =32+⎠⎜⎛01x 2d x =32+⎪⎪⎪⎪13x 310=32+13=116;当n =3时,结束循环,输出T =116. 13.0解析 由题意知f (-12)=f (12). 令x =-12可得-12f (12)=12f (-12),∴f (12)=-f (-12), 故f (12)=0, 又令x =12可得12f (32)=32f (12), ∴f (32)=0,同理可得f (52)=0. 14.3解析 OM →·ON→=2x +y ,如图:当直线2x +y =z 经过点(1,1)时,达到最大值,z max =3.15.-2 (0,1]解析 f [f (-1)]=f (4-1)=f (14)=log 214=-2. 令f (x )-k =0,即f (x )=k ,设y =f (x ),y =k ,画出图象,如图所示,函数g (x )=f (x )-k 存在两个零点,即y =f (x )与y =k 的图象有两个交点,由图象可得实数k 的取值范围为(0,1].16.①②④解析 用正方体ABCD -A 1B 1C 1D 1实例说明A 1D 1与BC 1在平面ABCD 上的投影互相平行,AB 1与BC 1在平面ABCD 上的投影互相垂直,BC 1与DD 1在平面ABCD 上的投影是一条直线及其外一点,故①②④正确.。

小学五年级数学选择题和填空题的解题技巧

小学五年级数学选择题和填空题的解题技巧

小学五年级数学选择题和填空题的解题技巧很多人会认为数学考试中的选择题不是大问题,因此不用太过重视,但实际上,数学成绩的好坏从某种角度上来说就是由这部分分数决定。

掌握这类题的解题技巧,可以为后面的应用题预留更多的时间。

这里给大家分享一些小学五年级数学选择题和填空题的解题技巧,希望对大家有所帮助。

选择题答题攻略1、剔除法利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

填空题答题攻略数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

初中语文阅读题答题句子赏析技巧方法

初中语文阅读题答题句子赏析技巧方法

初中语文阅读题答题句子赏析技巧方法a、由常规字词入手语文姓语,当然离不开字词。

首先从字词开始。

如文中一些精僻的动词、形容词等,对这些词玩味咀嚼,将感受到祖国语言的博大精深。

例:树尖上顶着一髻儿白花,好像日本看护妇。

(老舍《济南的冬天》赏析:能换别的近义词吗?如“堆”,不能,因为是小雪,用“堆”不贴切,“顶”写出了小雪后小树特有的意蕴,轻巧灵动,一如后面的比喻,“像日本看护妇”。

b、对一些特殊的句子进行赏析,这些句子往往与文章主题联系在一起,暗藏深意修辞句:修辞能够更好的写景状物,传情达意。

如:在清水田里,时有一只两只站着钓鱼,整个的田便成了一幅嵌在琉璃框里的画。

(《白鹭》)赏析:用拟人和比喻手法生动形象地表现写出白鹭与水田的配合适宜、和谐,给人以美感;描写句:那些刻画人物,表现环境的语句往往对表现人物性格起烘托渲染作用。

例:夏天,风儿在俯临这座无名者之墓的树木之间飒飒响着,和暖的阳光在坟头嬉戏;冬天,白雪温柔地覆盖这片幽暗的土地。

”(《世间最美的坟墓》)赏析:与这优美恬适的风景为伴的是埋葬于此的大作家托尔斯泰,可看出与大自然相伴的托尔斯泰,与大自然一样永存,从而反衬出其伟大人格。

矛盾句:看似矛盾,却蕴含了作者的深意。

例:“大约孔乙己的确死了”(鲁迅《孔乙己》)赏析:“大约”与“的确”貌似矛盾,其实却是作者的匠心独运,揭示了孔乙己悲剧命运的必然性,通过这个人物形象也隐现了那个残酷阴冷的社会以及众人的麻木不仁。

点睛句:画龙少不了眼睛。

这些句子就是文章的眼睛。

例:“她的饮泣吞声,为的是爱她的儿子;勉强硬着头皮说声打得好,为的是希望她的儿子上进”(邹韬奋《我的母亲》)赏析:从这种复杂心态里栩栩如生的再现了一位希望儿子上进但又十分疼爱儿子的伟大母亲的形象,有这样的句子文章的主题也力透纸背。

尾句:对上文的概括或能引起读者的联想,启发读者的思考余味无穷例:“我做过一个好梦,我们种的水稻,像高梁那么高,穗子像扫把那么长,颗粒像花生那么大。

人教版八年级语文上册第7课回忆我的母亲(提升训练解析版)

人教版八年级语文上册第7课回忆我的母亲(提升训练解析版)

第7课回忆我的母亲【提升训练】一、选择题1.下列句子没有语病的一项是()A.当我发现了中国革命的正确道路时,便加入了中国共产党。

B.我将继续尽忠于我们的民族和人民,尽忠于我们的民族和人民的希望——中国共产党,使和母亲同样生活着的人能够过快乐的生活。

C.佃户家庭的生活自然是艰苦的,可是因为由于母亲的聪明能干,也勉强过得下去。

D.我的祖父是一个中国标本式的农民,到八九十岁还耕田不可。

【答案】B【解析】【详解】A项,主语残缺,删去“当”和“时”;C项,语义重复,删去“因为”或“由于”;D项,成分残缺,在“还”的后面加上“非”。

故选B。

2.下列选项中,每对加点字的读音都相同的一项是()A.佃.农/细.长勉强./弱肉强.食要塞./阻塞.B.私塾./熟.悉啜.泣/不辍.劳作溃.退/匮.乏C.床铺./铺.床周济./人才济.济逃窜./撺.掇D.挑.水/挑.逗姓任./任.劳任怨歼.灭/纤.细【答案】B【解析】【详解】A项,“佃”读“diàn”;“细”读“xì”。

第一个“强”读“qiǎng”;第二个“强”读“qiáng”;第一个“塞”读“sài”;第二个“塞”读“sè”。

B项,“塾”和“熟”都读“shú”;“啜”和“辍”都读“chuò”;“溃”和“匮”都读“kuì”。

C项,第一个“铺”读“pù”;第二个“铺”读“pū”。

第一个“济”读“jì”;第二个“济”读“jǐ”。

“窜”读“cuàn”;“撺”读“cuān”。

D项,第一个“挑”读“tiāo”;第二个“挑”读“tiǎo”。

第一个“任”读“rén”;第二个“任”读“rèn”。

第一个“歼”读“jiān”;第二个“纤”读“xiān”。

故选B。

3.下列加粗字注音完全正确的一项是()A.不辍(chuò)勉强(qiáng)B.外甥(shēng)祖籍(jì)C.规律(lù)溺死(nì)D.劳碌(lù)慰勉(wèi)【答案】D【解析】试题分析:A勉强(qiǎng)。

初中各科答题规范与学习方法

初中各科答题规范与学习方法

初中各科答题规范与学习方法1语文答题规范和技巧(一)文言文阅读1、一读,划出难字,疏通文意;2、二读,要充分利用第六题的有效信息,理解全文;3、三读,以题解题,从已知求未知;4、实词考查题可使用“代入法”,信息筛选题一般采用“排除法”。

5、翻译题直译为主,意译为辅,做到信、达、雅。

(二)名篇名句默写要求:精准把握,一分不丢。

(三)现代文阅读1、要记住三句话:一要全面审题;二要规范答题;三要完整表达。

2、掌握答题要领(1)快速解读,把握主旨。

做题之前,必须读两遍文章。

第一遍速读,摄取各段大概意思,整体认知;第二遍精读,画出过渡句、中心句等关键句,弄清结构层次。

(2)如何进行全面的解答。

强调三点:A、回答问题,不能用比喻、拟人等形象化的修辞语言;B、综合分析,不能只答抽象的要点,要有适当而具体的分析;C、对应题旨,分点答题,不能遗漏答题要点,评分办法一般是“要点给分”。

(3)答题步骤:A、认真读懂题干,利用好题干中包含的信息,快速确定答题范围。

B、查语境。

记清“字不离句,句不离段,段不离篇”,把命题所涉及到的内容放回到原文中找准相关的信息区。

C、看赋分,配答案。

切记答案要点化,要点序号化。

D、探究题注意“观点+理论论据+文本论据+现实论据”的模式,灵活运用。

(四)基础题1、成语题:归类整理不同类型的易误成语,理解成语的意义、用法等。

2、病句题:巩固掌握语病的六种类型;要特别注意标志性病句。

(五)作文(50分)1、审题切中材料;2、题目切题、响亮;3、要至少三次点题,“三点成一线”;4、要引用二三句名人名言,增加论证力量;5、要运用两三个整句,增强文章的奔放气势;6、材料要做到新鲜典型;7、结尾要么点题,卒章显志;要么描写抒情,言有尽而意无穷。

2数学答题规范和技巧(一)答题工具:答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。

禁止使用涂改液、修正带或透明胶带改错。

成考数学应试答题技巧归纳

成考数学应试答题技巧归纳

成考数学应试答题技巧归纳成人高考应试答题技巧1、考生应在允许的时间范围内提前进入考场,熟悉考场环境,并做好必要的准备工作。

静下心来,以充满信心且平和的心态迎接考试。

2、拿到试卷后,不要急于提笔答题,用两三分钟时间将试卷快速浏览一遍,对试题的基本情况要做到心中有数,不一定按照题号的顺序依次解答,可视难易程度,分轻重缓急,合理地分配答题时间,按照三优先原则进行解答。

三优先原则是:容易得分的题优先做,有把握得分的题优先做,可以多得分的题优先做。

3、答题之前要认真审题,仔细把考题读上两遍,弄懂题意。

弄清已知条件及所求的结论,分析已知条件与所求结论之间有何种关系;并将问题归类,属于哪一部分的知识点,需要使用哪种运算工具来解题。

对以上各点要有个基本判断,进而准确地使用有关概念,透彻地进行分析,迅速地寻求最佳解题途径。

4、答题过程中要情绪饱满,沉着冷静;要心静如水,思绪如潮;要排除各种干扰,集中精力解题。

要注意“会做”与“做对”是两个完全不同的概念,要将“会做”转化为“做对”。

凡是容易做的题,要每答必对。

对于较难的题,要有足够的耐心,能答多少就答多少;或者先暂时放下,把简单的题做完后再回头做。

总之,不能在考试中留下遗憾。

5、考试结束前应留出20分钟左右的时间进行检查。

答卷完毕后不要急于交卷,应把答卷认真仔细地浏览一遍,找出解题过程中的疏漏之处并改正,验算计算的结果是否正确,改写答案要慎重,尽量减少不应当的失分。

对于没有把握的题,也应尽可能地给出答案,尽量争取多得分。

成人高考年数学答题技巧1、直接法有些选择题是由计算题、应用题、证明题、判断题改编而成的。

这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

2、筛选法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。

可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。

(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档

(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档

数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

初中数学答题时间分配技巧(整理8篇)

初中数学答题时间分配技巧(整理8篇)

初中数学答题时间分配技巧〔整理8篇〕篇1:初中数学答题时间分配技巧初中数学答题时间分配技巧第一,充分利用考前五分钟。

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。

这五分钟是不准做题的,但是这五分钟可以看题。

发现很多考生拿到试卷之后,就从第一个题开场看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。

之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。

这六个大题的难度分布一般是从易到难。

我们为了应付这样的一次考试,提早做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。

大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。

特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就可以控制速度和质量。

假如倒数第二题也没有什么感觉,你就想,可能今年这个题出得比拟难,那么我如今最好的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

第二,进入考试阶段先要审题。

审题一定要仔细,一定要慢。

数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。

你在误读的根底上来做的话,你可能感觉做得很轻松,但这个题一分不得。

所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。

会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

第三,一定要培养自己一次就做对的习惯。

如今有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。

殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。

辽宁省铁岭市昌图县2024年数学六年级第一学期期末统考模拟试题含解析

辽宁省铁岭市昌图县2024年数学六年级第一学期期末统考模拟试题含解析

辽宁省铁岭市昌图县2024年数学六年级第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、仔细填空。

(每小题2分,共20分)1.把20分解质因数是,20=_____;a与b都是正整数,如果a=6b,那么a、b的最小公倍数是_____.2.一个盛满水的圆锥体容器高9厘米,如果将水全部倒入与它等底等高的圆柱体容器中,则水高(____)厘米.3.15千米增加它的15后,再减少25%,结果为(________)千米。

4.把红、黄、蓝、白、黑的玻璃珠子各5粒放进一个盒子里,至少取出_____粒珠,就可以确保到两粒颜色相同的珠子.5.一个比例两个内项互为倒数,其中一个外项是43,另一个外项是(________)。

6.走完一段路,甲用12小时,乙用10小时,甲与乙所行速度的最简比是_____.7.如图是鸡蛋各部分重量统计图,一个鸡蛋重80克,那么这个鸡蛋的蛋白_____克,蛋黄与蛋白的比是_____.8.学校有甲乙两个长方形花圃,甲花圃面积是80平方米,乙花圃的长是甲花圃的长的38,乙花圃的宽是甲花圃的宽的25。

乙花圃的面积是(______)平方米。

9.一个扇形的圆心角是90度,半径是4cm,它的面积是(________)平方厘米。

10.把 4 吨煤平均分给 5 户居民,平均每户居民分得总吨数的____,每户居民分得_____.二、准确判断。

初中数学选择填空答题技巧大全

初中数学选择填空答题技巧大全

初中数学选择填空答题技巧⼤全 答题是对于知识点掌握情况的⼀种体现,要让学⽣学得懂做得出,数学答题技巧就显得尤为重要。

下⾯是⼩编为⼤家整理的关于初中数学选择填空答题技巧,希望对您有所帮助。

欢迎⼤家阅读参考学习! 1初中数学选择填空答题技巧 数学试卷答得好坏,主要依靠平⽇的基本功。

只要“双基”扎实,临场不乱,重审题、重思考、轻定势,那么成绩不会差。

切忌慌乱,同时也不可盲⽬轻敌,觉得⾃⼰平时数学成绩不错,再看到头⼏道题简单,就欣喜若狂,导致“⼤意失荆州”。

不是审题有误就是数据计算错误,这也是考试发挥失常的⼀个重要原因,要认真对待考试,认真对待每⼀道题主要把好4个关:(1)把好计算的准确关。

(2)把好理解审题关“宁可多审三分,不抢答题⼀秒”。

(3)把好表达规范关。

(4)把好思维、书写同步关 ⾸先,我们来分析⼀下选择题的特点.与⼤题有所不同,选择题只求正确结论,不⽤遵循步骤,因此,在解答时应该突出⼀个“选”字,尽量减少书写过程,要充分利⽤题⼲和选项两⽅⾯提供的信息,依据题⽬的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.选择题解题的基本原则是:充分利⽤选择题的特点,⼩题⼩做,⼩题巧做,切忌⼩题⼤做! 2中考数学选择题答题技巧 正确的读题习惯提⾼理解准确度 初中阶段的数学题在呈现⽅式来看⽐⼩学数学显得更为复杂,这要求学⽣有较好的分析问题和解决问题的能⼒。

由此如何最快的准备理解题意就显得尤为重要。

⽐如在选择填空题中经常会出现选择正确或错误的选项,学⽣在对“正确”、“错误”这样的关键词进⾏画圈标注后,可以有效避免答题失误;在应⽤题解答过程中,对于体现等量关系的 “倍数”、“相等”、“多少”等关键词的标注,可以⼤⼤减少学⽣构建⽅程求解的时间;在含有图形的证明或解答题中,学会将题⽬中的数学语⾔在图像上⽤具体符号进⾏标注,抽象思维得以形象化,可以较好的辅助学⽣逻辑证明的达成。

恰当的答题顺序常常能够事半功倍 通俗来说要培养学⽣先易后难的答题习惯,然⽽很多孩⼦常常难以在考试中严格执⾏。

解决问题的策略(1)

解决问题的策略(1)

解决问题的策略一、选择题1、小红有5元和2元两种人民币各15张,她要拿39元,有4种不同的拿法。

A、对B、错2、五(2)班第一小组有6个同学,现在他们每人都有一件事要通知其他人,他们至少要通________次电话,每人才能都知道。

(每个人必须亲自对其他人说)A、30B、15C、63、把5件相同的礼物全部分给3个小朋友,使每个小朋友都分到礼物,分礼物的方法一共有()种。

A、3B、4C、5D、64、用8,7,0,0四个数字可以组成()个不同的四位数。

A、8B、7C、6D、55、用1、2、3可以最多组成6个不同的两位数。

A、√B、×6、有A、B、C、D四种不同颜色的球各一个,从中选出一些放入一个袋中,至少放1个,最多放2个,一共有()种不同的放法。

A、8B、10C、127、有几条线段A、3B、5C、68、有1、2、3三个数字,从中挑出任意一个数字,组成不同的一位数、两位数、三位数,一共有________种不同的数。

A、12种B、15种C、18种9、英语单词默写比赛中,五(1)班的王刚、五(2)班的雅洁和五(3)班的陆涛获得了年级组的前三名,没有并列名次,他们三人获前三名的情况共有________种。

A、4种B、3种C、6种10、下图中有()个平行四边形。

A、18B、22C、28D、30二、填空题11、数一数,这个图形共有______条线段。

12、有5元、2元、1元的钱币若干张,要拿出11元,有______种取法。

13、把一张正方形纸(边长为24厘米)对折4次后得到一个小正方形,这个小正方形的面积是(______)平方厘米。

14、在1到100的自然数中,共有______个数字8。

用18根长度是1分米的小棒围成一个周长是18分米的长方形,有()种围法,面积最大是(),最小是()。

15、五年级265名师生乘车外出观光,租用的大客车每车45座,中巴车每车17座。

如果每人一个座位而又没有空余,那么应一次租用大客车___辆,中巴车___辆。

初中数学奥数解题技巧方法归纳

初中数学奥数解题技巧方法归纳

初中数学奥数解题技巧方法归纳奥数的解题技巧倒推法从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

正难则反有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

直观画图法解奥数题时,如果能合理的.、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

枚举法奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。

我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。

巧妙转化在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

整体把握有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。

初中奥数常用的解题方法【配方法】所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

【因式分解法】因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

五年级巧妙的计数方法练习题

五年级巧妙的计数方法练习题

五年级巧妙的计数方法练习题听说你是一位优秀的小学数学教师,今天我给你准备了一份关于五年级巧妙的计数方法的练习题,请你审核一下:一、填空题(每题2分,共30分)1. 小明把1~100的数字都写在了一条长长的纸带上,那么他一共写了____个数字。

2. 起床后,小明准备操场跑步,他计划每次跑4个圈,那么他跑完____次就会跑了20个圈。

3. 以下是一列数字:1, 4, 7, 10, 13, 16,接下来的数字是____。

4. 一块巧克力可以分成4块,那么当把一块巧克力分成____块时,每块的大小就是原来的1/4。

5. 用5个2相乘的结果是____。

6. 一家餐厅的午餐套餐有3种选择,主菜可以选2种,甜点可以选4种。

那么在这家餐厅,午餐套餐的组合数是____种。

7. 从1到100,有多少个数既能被2整除,又能被3整除?8. 在一个正方形的格子中,每个格子上写上一个数字,从1开始按照顺时针方向写到9.如下所示:1 2 38 9 47 6 5现在小明从6出发,按照下图的箭头方向依次遍历每个数字,求遍历的路径上数字之和:1 2 → →↑ ↑ ↓ ↓8 ← 9 4↑ → → ↓7 6 59. 一辆巴士上有40个人,其中有x个大人,那么小朋友的个数是____。

10. 将一个长方体盒子的高度、宽度和长度都减小为原来的1/3,那么盒子的体积变成了原来的____。

11. 小明要把6个相同的苹果分成3份,每份都要有苹果。

不同分法的结果是____。

12. 一个正整数加上99等于这个整数的5倍,这个整数是____。

13. 小明家的车库中停放了5辆自行车,其中有x辆是红色的,那么不是红色的自行车有____辆。

14. 从1到100,有多少个数字的个位是2或者5?15. 如果4本书的价格相加等于48元,那么这4本书的每本价格是____元。

二、选择题(每题3分,共15分)1. 以下选项中,可以用1个1元硬币和若干个5角硬币凑出30角的是:A. 10个5角硬币B. 11个5角硬币C. 9个5角硬币和1个1元硬币D. 12个5角硬币和1个1元硬币2. 以下数字中,能被3整除的是:A. 262B. 159C. 438D. 7693. 以下数字中,各位之和等于3的数有:A. 21B. 120C. 30D. 3334. 一条绳子长12米,小明从绳子的一端开始走,每次可以走1米或2米,那么小明一共有几种走法?A. 63种B. 144种C. 233种D. 377种5. 小亮有5个相同的红球和3个相同的蓝球,他要将这些球放到一个盒子里,那么他一共有多少种放球的方式?A. 8种B. 15种C. 20种D. 25种三、解答题(共25分)1. 小明把1~100之间的所有奇数相加,得到的结果是多少?2. 小明用1元、5角、1角硬币凑出了28元,如果他一共使用了x个硬币,请你写出两种满足条件的组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传说中的十二招
你知道选择题和大题最大的区别是什么吗?那就是选择题只需要有一个模糊的方向,而不需要确切的答案;或者,选择题可以用一些歪招解出来,而不是像大题一样算到吐血——如果每道选择题都像大题一样算,一张卷下来,估计你所有的血小板都不够你用的……而传说中应对选择、填空题的十二招其实来自它们可抓的五个特征……
一、答案符合题意
我们目前所学的数学,基本上是按照充分必要的套路。

所以,题目可以推出答案,答案同样必然符合题意所指。

以此本质的基础可以衍生出两大招。

1.特殊值法(适用于选择、填空)
1)对于问区间的题,只需分别找出可选区间中的元素,代入原题检验其真假,其实也就知道了选哪个区间;正如去到陌生的星球,一看满眼纳美人,那么此地当然就是潘多拉星。

2)特殊值一般选取容易算的,代入选项就可以判断真假,假的统统排除。

例题:y = cos(7π2
– 3x ) 是 函数(填奇偶性) 解析:代入x=0 得 y=0
答案:奇
2.代入法(适用于选择)
这个小学生都会。

电池有电没电,放进多啦A 梦看看work 不work 不就知道了吗?题目算不出来,把答案代进去看成不成立不就知道了?然而这种方式不仅对一些题目无效,而且浪费太多时间;如果配合其它招式一起用效果会更强。

例题:函数f(x) = 2x ·ln(x-2) – 3 在下列哪个区间有零点()
A 、(1,2)
B 、(2,3)
C 、(3,4)
D 、(4,5)
解析:我们知道若f(x 1)<0 ,f(x 2)>0,则f(x)在x 1 ~ x 2 之间一定有零点,所以把1、2、3、4、5 代入 x ,发现f(3)<0,
f(4)>0.
答案:C
二、放诸四海皆准
既然叫做“成立”,那么就是不管什么条件均能成立。

我们不妨把题目当做实验品,放到苛刻的条件下,通过观察它的反应剖析其内涵。

3.假设法(选择)
假设是最理想的方法之一,不仅因为这不用钱,而且通过简单的计算就可以知道题目的意思。

对于含有a、b、c 的题目,不妨对a、b、c进行不同值的假设(一般是0、1、2这种),看结果与假设值有什么关系,从而直接排除选项中不符合这种关系的。

例题:给定正数p,q,a,b,c 其中p≠q, 若p,a,q 等差,p,b,c,q 等比,则一元二次方程bx2-2ax+c=0 ()
A、无实根
B、有两个相等实根
C、有两个同号相异实根
D、有两个异号实根
解析:设p,b,c,q 为1 2 4 8 ,则因为p,a,q 等差,故a=4.5 所以方程为2x2-9x+4=0 开口朝上,△>0,画个图看看嘛
答案:C
4.逆向思考法(选择)
逆向思考是创造性课程一直强调的。

有时正面看题目仿佛一只老虎,一摸它屁股才知道是纸老虎。

将部分条件反过来,正确答案也许就“转个身”,而错误答案,没准就七摇八晃了。

三、斑马黑白相间
一道题目总有一定特征,通过观察这些特征可以推导它的本质,正如看到黑白相间的条纹,就可以推导它是斑马。

对关键字眼的分析有时会启发你见过的相似的题目。

5.类比法(选择、大题)
类比是人类的导师。

数学上的类比一般有平面类比空间、二次类比三次等等。

通过对题干和选项进行降次、降维改造,有时正确答案就可以一眼看出。

6.取样法(选择、填空)
第一个数是1,第二个数是2,第三个数是3……你敢保证第十个数是10吗?老师说:“不行,这是不完全归纳。

”然而对于选择题来说,规律总是简单而富有美感的。

对那种2007、2008、2009的题,不妨只算1~10,看有什么规律,再依此规律推出200X……
例题:f(x)= log2(1-x) , x<=0 ,则f(2010) =
{
f(x-1)+1 , x>0
解析:先看看f(3)嘛!f(3)=f(2)+1 = f(1)+1+1 = f(0) +1+1+1 = log21+1+1+1 = 3 因为f(3)=3 故f(2010)=2010
答案:2010
7.特征分析法(选择)
正确选项的特征是题干的反映。

在选项中寻找与题干相对应的特征,有时根本不用看内在的其他方面。

就像某某函数值域那种题,用题干的定义域分析值域的哪边开哪边闭,就可以排除一些选项。

例题:如图,在半径为R 的圆内随机撒一黄豆,它落在内接正三角形内的概率为( )
A 、 3
4 B 、 33 4 C 、 3 4π D 、 33 4π 解析:显然这个概率就是三角形面积与圆面积之比,三角形面积没有π,圆有,故分子中无π,分母中有,排除
A 、
B ;看
C 选项近 1.多12.多
悬殊过大,排除。

答案:D
四、你拿我没办法
有时选择、填空题真的出得很弱智,因为我们根本不用按照命题人给我们铺的“陷阱路”走。

反正是选择、填空,你不知道我是用什么方式做出来的。

8.准确测量法(选择、填空)
常用于几何题。

按照题目所给条件,在纸上画出一个尽量准确的图形,再用刻度尺、量角器测量,结合常见数值和题目特征,猜出正确答案。

例题:△ABC 中,角C= 90°,圆O 分别切 AC 、 BC 于M 、N ,圆心在AB 上,圆O 半径为12cm , BO=20cm , 则AO 长为
解析:在纸上画一个图,适当调整比例(用24mm 和40mm )先画圆,后画BO ,再AC ……
答案:15cm 9.端点和极端情况考虑法(选择、填空、大题)
数学是具有美感的,我们经常遇到的“等于”“交点”“最/极值”,就是考虑端点情况的例子。

不管选择题还是填空题,考虑、检查极端情况十分重要。

例题:x 、y 满足⎩⎪⎨⎪⎧ x-y+5>=0 x+y>=0 x<=3 ,则Z = (x+y+2)(x+3) 的最小值为 ( )
A 、4
B 、136
C 、13
D 、-23
解析:没有头绪时将三个交点代入分别得 Z=136 Z=13 Z=411 显然最小是13
B N O
C M A
答案:C
五、撞墙也找软的
面对题干、选项一头雾水?如果你完全不知道题目讲什么,又觉得25%选对的概率太低,下面几招可以帮你最大限度地减少错误率。

10.命题人心理分析法(或曰出现频率分析法)(选择)
据说很多人会这招。

如果正确答案是“电脑”,命题人为了给你添加干扰,就会围绕“电脑”,设置“人脑”“电灯”“电视”三个选项。

分析出现频率,我们发现第一个字“电”出现3次,“人”出现一次;第二个字“脑”出现2次,“灯”“视”各出现一次。

所以答案就是“电脑”。

例题:已知cos(π2+ α ) = 35 ,且α∈(π2 ,3π2) , tan α = ( )
A 、43
B 、34
C 、-34
D 、±34 解析:看数字,显然B 、C 、D 都是“34
” , 排除A ; 看符号,A 、B 是 + ,C 是 - , D 是± , 在 A 、B 中选。

综上选B 。

答案:B
11.对立分析法与包含分析法(选择)
1)如果选项A 不成立,那么B 就成立;B 不成立,A 就成立,也就是说A 、B 对立,那么答案肯定在A 、B 选一个。

正确率可以提高到至少50%,再结合其它招式可以得出正确答案。

2)如果选项A 包含选项B (如A.(0,1)B.(-∞,1)),而题干问“在哪个区间成立?”那么在A 、B 间必选A ,因为若A 成立B 不一定成立,若B 成立A 也成立。

例题:f(x)=lg(21-x +a) 是奇函数,则使f(x)<0 的x 取值范围是( )
A 、(-1,0)
B 、(0,1)
C 、(-∞,0)
D 、(-∞,0)∪(1,+∞)
解析:先通过特殊值法,让x=0.00001 和 x=100000 排除B 、D 。

在A 、C 中,C 包含A ,故选A 不选C 。

答案:A
12.山穷水尽选“C ”法(选择)
如果前面11招统统没用,唉,只好用最后这一招了。

据统计,C选项正确的概率高于其它选项。

另外相似的还有“不懂就选最长的”,因为最长的选项往往考虑得全面。

这里要切记一点,把对手打得落花流水的往往不是一招半式,要出组合拳才能成功制敌。

乔峰降龙还得十八掌呢。

我们也要懂得团结就是力量的理念,“有机地”把招式结合着使上,相信问题很快就和谐了。

当然还得谨记马克思的指导,杀什么牲畜用什么刀,解什么题目出什么招,不能生搬硬套。

对于以上传说中的十二招,我不敢保证它们能行之有效,顶多能减少你把题做错的概率,而不是提高你做对的概率。

相关文档
最新文档