(备战高考)高中几何定理大全

合集下载

高中平面几何60大定理

高中平面几何60大定理

1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

十大高中平面几何几何定理汇总及证明(供参考)

十大高中平面几何几何定理汇总及证明(供参考)

高中平面几何定理汇总及证明1.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=(S△PAM-S△PMB)=(S△PAM/S△PMB-1)×S△PMB=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)同理,S△QAB=(AM/BM-1)×S△QMB所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)定理得证!特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ。

2.正弦定理在任意一个平面三角形中,各边和它所对角的值的比相等且等于外接圆半径的2倍”,即a/sinA=b/sinB=c/sinC= 2r=R(r为外接圆半径,R为直径)证明:现将△ABC,做其,设为O。

我们考虑△C及其对边AB。

设AB长度为c。

若∠C为直角,则AB就是⊙O的直径,即c= 2r。

△(特殊角正弦函数值)△若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R。

若∠C为,则C'与C落于AB的同侧,此时∠C'=∠C(同弧所对的圆周角相等)∴在Rt△ABC'中有若∠C为,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出。

考虑同一个三角形内的三个角及三条边,同理,分别列式可得。

在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD ,则有BD/CD=(sin∠BAD/sin∠CAD)*(AB/AC)。

证明:S△ABD/S△ACD=BD/CD…………(1.1)S△ABD/S△ACD=[(1/2)×AB×AD×sin∠BAD]/[(1/2) ×AC×AD×sin∠CAD]= (sin∠BAD/sin∠CAD) ×(AB/AC)…………(1.2)由1.1式和1.2式得BD/CD=(sin∠BAD/sin∠CAD) ×(AB/AC)4.张角定理在△ABC中,D是BC上的一点,连结AD。

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文高中数学几何定理是基础知识,是解决几何问题的必备工具,也是高考数学中的重点和难点。

本文将针对高中数学几何定理进行知识点总结,帮助同学们更好地掌握和运用这些知识点。

1. 勾股定理勾股定理是几何学中最基本的定理之一,指的是直角三角形中,斜边的平方等于两腰的平方之和。

具体公式为:$c^2=a^2+b^2$。

2. 判定平行的方法(1) 共线法:如果一条直线上两个点分别与另一条直线上两个点连线相交,那么这两条直线平行。

(3) 平行线之间的垂线距离相等法:如果两条直线之间的距离在所有点处均相等,那么这两条直线平行。

3. 三角形内角和定理三角形内角和定理指的是任意一个三角形内的三个角度之和为180度,即$\angleA+\angle B+\angle C=180^\circ$。

5. 同位角、内错角、同旁内角同位角、内错角、同旁内角是三角形内角间的一些关系。

(1) 同位角:指顶点在同一直线上的两组对顶角,它们的大小相等。

(2) 内错角:指一个三角形的两组相邻的补角,也就是比相邻角补角大$180^\circ$的角。

(3) 同旁内角:指非相邻内角,但是在平行直线切割的两个角形中都是外角或都是内角的角。

6. 余弦定理和正弦定理余弦定理和正弦定理是用来求解任意三角形的边长和角度的重要公式。

(1) 余弦定理:对于任意三角形ABC,设其三条边分别为a、b、c,对应的内角分别为$\angle A$、$\angle B$、$\angle C$,则有$c^2=a^2+b^2-2ab\cos C$。

7. 相似三角形相似三角形指的是具有相同形状但是大小不一的三角形。

相似三角形中每一对相似角的度数相等,相似三角形的边长比例称为其相似比。

(1) AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形是相似的。

总结:高中数学几何定理包含了很多基础知识和重要的定理。

培养正确的数学思维和学习方法,扎实掌握这些知识点,掌握数学中的奥妙,合理运用数学知识,才能逐渐成为优秀的数学学习者。

高中数学必备定理

高中数学必备定理

高中数学必备定理
1.中线定理:连接一个三角形两边中点的线段为这个三角形的中线,三条中线交于一点,且这个交点到每条中线的距离相等。

2. 弧度制:圆心角所对的弧长等于半径的长度,该圆心角的大小就是1弧度。

3. 三角函数的基本关系式:sin^2(x) + cos^2(x) = 1,1 + tan^2(x) = sec^2(x),1 + cot^2(x) = csc^2(x)。

4. 对数运算的基本性质:log_a(MN) = log_a(M) + log_a(N),log_a(M/N) = log_a(M) - log_a(N),log_a(M^p) = plog_a(M)。

5. 向量运算的基本性质:向量的加法、减法、数乘、数量积、向量积。

6. 三角函数的周期性质:sin(x + 2π) = sin(x),cos(x + 2π) = cos(x),tan(x + π) = tan(x)。

7. 三角函数的奇偶性质:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。

8. 导数的定义和性质:导数的定义,加减法、乘法、除法、反函数、复合函数的求导法则。

9. 积分的定义和性质:定积分的定义,积分的线性性、区间可加性、换元积分法、分部积分法。

10. 平面向量的坐标表示:向量的坐标表示,向量的模长、方向角、方向余弦。

- 1 -。

高中数学立体几何定理总结

高中数学立体几何定理总结

高中数学立体几何定理总结一、线线平行的判定1.定义:在同一平面内,没有公共点的两条直线,记作a∥b。

2.平行于同一条直线的两条直线互相平行。

即a∥b,b∥c,则a∥c。

3.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

即l∥m,l∥α,则m∥α。

4.如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

即α∥β,α∩γ=a,β∩γ=b,则a∥b。

5.垂直于同一平面的两条直线平行。

即ba⊥α,ba⊥β,则a∥b。

二、线面平行的判定1.定义:直线与平面无公共点,记作a∥α。

2.如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

即l∋α,XXXα,则l∥α。

3.如果在一个平面内的一条直线和这个平面内的一条斜线的射影垂直,则这条直线和这个平面内的任何直线垂直。

即l⊥α,XXX⊥α,则l⊥PA。

三、面面平行的判定1.定义:两个平面没有公共点,记作α∥β。

2.如果一个平面内有两条相交直线分别平行于另一个平面,则这两个平面互相平行。

即a∥β,b∥β,a∩b=A,则α∥β。

3.一个平面内的两条相交直线与另一平面平行,则这两个平面平行。

即a∥α,a∥β,a∩b=A,则α∥β。

垂直判定总结1.定义:两直线所成角为90度。

2.线面垂直的性质:若直线垂直平面,则直线垂直平面内的任何直线。

即l⊥α,XXXα,则XXX。

3.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直。

即PA∩α=A,PB⊥α,则PA⊥PB。

4.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,则它也和这条斜线的射影垂直。

即PA∩α=A,PB⊥AB,则XXX⊥α。

高考数学必考定理

高考数学必考定理

高考数学必考定理高考数学作为一门重要的科目,对学生来说是必不可少的一部分。

而在高考数学中,有一些定理是必考的,掌握这些定理不仅可以帮助同学们在高考中取得好成绩,而且在日常生活中也非常实用。

一、勾股定理勾股定理是高中数学中最基础的定理之一,也是高考数学必考的一部分。

它是由公元前6世纪的中国古代数学家毕达哥拉斯提出的,它描述了一个直角三角形的斜边平方等于两直角边平方和的关系。

这个定理在几何学和三角学中有着广泛的应用,在解决实际问题时也起到了很大的作用。

二、二次函数的图像与性质二次函数是高考数学中的重点内容之一。

它的图像呈现出抛物线的形状。

通过对二次函数的图像和性质进行研究,我们可以判断二次函数的开口方向、顶点坐标、对称轴等信息,进而求解二次函数相关的问题。

这个知识点在高考中经常会出现,掌握好二次函数的图像与性质对于解题非常有帮助。

三、平面向量平面向量是高考数学中的一个重要定理,也是解决几何问题的重要工具。

平面向量有大小和方向,可以用有序实数对来表示。

通过平面向量的加法、减法、数量积和向量积等运算,可以解决距离、面积、角度等与几何相关的问题。

平面向量的应用广泛,比如物理、工程学等领域。

四、导数与应用导数与应用是高考数学中的重要知识点之一。

导数表示函数在某一点的瞬时变化率,是微积分的基础内容之一。

通过求导,我们可以求得函数的最大值、最小值以及函数图像的凹凸性等性质。

导数的应用非常广泛,从物理学中的速度、加速度,到经济学中的成本、收益等都与导数有关。

五、概率论与统计概率论与统计是高考数学中的一大考点。

概率论研究的是随机现象的概率,而统计学研究的是对已有的数据进行分析和推断。

掌握概率论与统计的知识,可以帮助我们分析和解释现实生活中的各种现象。

在高中数学中,概率与统计理论经常与排列组合问题相结合,需要发散思维和灵活运用。

综上所述,高考数学必考的定理不仅是高中数学的重点内容,也是实际生活中必不可少的一部分。

掌握这些定理可以帮助我们在高考中得到高分,也能够在日常生活中解决一些实际问题。

高中数学几何定理大全

高中数学几何定理大全

高中数学几何定理大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于36049 四边形的外角和等于36050 多边形内角和定理 n边形的内角的和等于(n-2)18051 推论任意多边的外角和等于36052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即s=(ab)267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)2 s=lh83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

高中数学立体几何中所有定理 高考必背

高中数学立体几何中所有定理 高考必背
立体几何中所有定理
一、公理
名称
图形
符号
文字
公理 (一)
公理 (二) 公理 (三)
· ·l
αA B
· A
· B·
C
βl
α
·
P
公理 (四) a b c
A∈l
如果一条直线上
B∈l A∈α B∈α
⇒ l⊂α
的两点在一个平 面内,那么这条直
线在此平面内
A、B、C三点不共线 过 不 在 一 条 直 线

上的三点,有且只
它也和这条斜线垂直, 反之亦成立
九、线面垂直的判定
名称 线面垂 直判定 定理
图形 l
a α Ob
线面垂 直的性
a
b

α
面面垂
βB
直的性 C A 质定理 α
面面垂
直的性

α
a βγ
十、面面垂直的判定
名称
图形
面面垂 直的判
βa
定定理 α
面面垂
α
直的性
β

γ
符号
a⊂α b⊂α a∩b=O l⊥a l⊥b
七、面面平行的判定
名称 面面平 行的判 定定理
图形
b
a
αO
β
线面垂 α 直性质 β a
八、线线垂直的判定
符号
a⊂α b⊂α
a∩b=O a∥β b∥β
a⊥α
a⊥β
⇒ α∥β ⇒ α∥β
文字
如果一个平面内有 两条相交直线分别 平行另一个平面, 则这两个平面平行
若一条直线同时与 两个平面垂直,则 这两个平面平行
垂直于同一平面的两 条直线相互平行

高考数学必背公式整理

高考数学必背公式整理

高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。

高中数学立体几何必备定理

高中数学立体几何必备定理

1.平面的性质
公理1 如果一条直线的两点在一个平面内,那么这条直线在此平面内。

A ∈ℓ,
B ∈ℓ,且A ∈α,B ∈α⟹ℓ⊂α
公理2 过不在一条直线上的三点,有且只有一个平面。

直线与平面平行−−−−没有公共点
7.两个平面之间的位置关系:
两个平面平行−−−−没有公共点 两个平面相交−−−−有一条公共直线
8.直线与平面平行的判定定理
定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

a ⊄α,
b ⊂α,且a ∥b ⟹a ∥α
9
定理
β
a
α β
γ a b
12.直线与平面垂直的判定定理
定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

a⊂α,b⊂α,a⋂b=O,ℓ⊥a,ℓ⊥b⟹ℓ⊥α
16.定理垂直于同一个平面的两条直线平行。

a⊥α,b⊥α⟹a∥b。

高中数学公式大全几何证明中常用的定理与公式

高中数学公式大全几何证明中常用的定理与公式

高中数学公式大全几何证明中常用的定理与公式在高中数学学习中,几何证明是一个重要的内容。

几何证明需要运用到各种定理和公式,下面将介绍一些高中几何证明中常用的定理与公式。

一、三角形的定理与公式1. 三角形的内角和定理三角形的三个内角之和等于180度。

2. 三角形的外角和定理三角形的外角之和等于360度。

3. 三角形的角平分线定理三角形内角的平分线所构成的角相等。

4. 三角形的中位线定理三角形的中位线平行于第三边,并且长度等于第三边的一半。

5. 三角形的高定理三角形的高相互垂直。

6. 三角形的面积公式三角形的面积等于底边长乘以高的一半。

7. 三角形的余弦定理对于任意一个三角形ABC,其边长分别为a、b、c,其中角A对应边长a,角B对应边长b,角C对应边长c,则有:c^2 = a^2 + b^2 - 2ab*cosC。

二、四边形的定理与公式1. 平行四边形的性质平行四边形的对边相等并且平行。

2. 矩形的性质矩形的对角线相等,并且互相垂直。

3. 正方形的性质正方形的四条边相等,并且互相垂直。

4. 菱形的性质菱形的对边相等,并且两条对角线互相垂直。

5. 梯形的性质梯形的两底边平行且不相等,并且两个底角和两个顶角互补。

6. 梯形的面积公式梯形的面积等于上底和下底之和乘以高的一半。

三、圆的定理与公式1. 圆的面积公式圆的面积等于π乘以半径的平方。

2. 圆的周长公式圆的周长等于2π乘以半径。

3. 圆的弧长公式圆的弧长等于圆心角度数与圆的半径的乘积。

4. 切线定理切线与半径垂直,并且切线上的点到圆心的距离等于半径的长度。

以上是高中几何证明中常用的一些定理与公式,通过合理运用这些定理与公式,可以帮助我们更好地解决几何证明问题。

在实际的数学学习中,还需要根据不同的几何问题,综合运用这些定理与公式,灵活进行推理与证明,从而得到准确的结论。

高中数学几何定理知识点总结7篇

高中数学几何定理知识点总结7篇

高中数学几何定理知识点总结7篇第1篇示例:高中数学几何定理知识点总结在高中数学中,几何是一个重要的分支,它研究的是空间中的形状、大小、角度等性质。

几何定理是数学中关于几何形状的性质和定律,它们帮助我们解决各种几何问题。

在高中数学学习中,我们需要掌握并运用各种几何定理,下面就是一些常见的几何定理知识点总结。

1. 基本几何定理在几何学中,有一些基本的几何定理是我们需要掌握的。

勾股定理、正弦定理、余弦定理等,这些定理帮助我们解决各种三角形的问题。

勾股定理是最为人熟知的一个几何定理,它指出:直角三角形的两条直角边的平方和等于斜边的平方。

即a² + b² = c²,其中a、b、c 分别为直角三角形的两个直角边和斜边。

正弦定理和余弦定理则是帮助我们解决各种三角形的问题的重要工具。

正弦定理指出:对于一个三角形ABC,其中a、b、c分别为三角形对应的边,A、B、C为对应的角,则有a/sinA = b/sinB = c/sinC。

余弦定理则指出:对于一个三角形ABC,其中a、b、c分别为三角形对应的边,A、B、C为对应的角,则有c² = a² + b² - 2abcosC。

2. 三角形的性质三角形是几何学中最基本的几何形状之一,掌握三角形的性质是解决各种几何问题的基础。

在高中数学中,我们需要了解三角形的内角和外角性质、三角形的边中线、高、中心等性质等。

三角形的内角和外角性质是我们最为熟知的一个定理,它指出:三角形内角和等于180度,即A + B + C = 180°。

三角形的外角等于其不相邻的两个内角之和。

三角形的边中线、高、中心等性质也是我们需要掌握的重要内容。

边中线是连接一个三角形的一个顶点和对边中点的线段,高是从一个顶点到对边所在的直线段。

中心是三角形内的一个点,到三角形三个顶点的距离都相等。

3. 四边形的性质除了三角形,四边形也是我们在几何学中会遇到的几何形状之一。

高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文
高中数学几何定理是高中数学中重要的知识点之一,它们帮助我们理解和解决各种几何问题。

下面是对高中数学几何定理的总结:
1. 同余定理:如果两条直线被一条第三条直线所截,且对于其中一条直线上的两条截线段有相等的比例关系,则另一条直线上的两条截线段也有相等的比例关系。

2. 三角形内角和定理:三角形的三个内角之和等于180度。

4. 三角形的内心定理:三角形的三条角平分线交于一个点,该点称为三角形的内心。

8. 外接四边形对角线定理:外接四边形的对角线相互垂直且互相平分。

9. 七种特殊四边形的性质:矩形、正方形、菱形、平行四边形、梯形、等腰梯形和直角梯形的性质。

10. 相似三角形的定理:两个三角形对应角相等,且对应边成比例,则这两个三角形相似。

11. 斜边定理:直角三角形的斜边上的高是乘以两直角边的积除以斜边的。

13. 正弦定理:在任意三角形中,三条边与其相对的角的正弦值成比例。

14. 余弦定理:在任意三角形中,两边的平方和减去两边的积的2倍等于这两边之间夹角的余弦与三角形的第三边的比。

15. 面积定理:任意三角形的面积等于半边周长与其对应的内切圆半径的乘积。

这些高中数学几何定理是在解决各种几何问题时非常有用的工具。

学生们在学习和理解这些定理时,需要结合实际问题进行练习和应用,从而加深对几何定理的理解和运用能力。

通过解决几何问题,学生们还能培养逻辑思维能力和分析问题的能力,提高数学解题的技巧和能力。

高三数学几何定理汇总

高三数学几何定理汇总

高三数学几何定理汇总高三数学几何定理(一)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边1/ 416 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角高三数学几何定理(二)1 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合2 定理1 关于某条直线对称的两个图形是全等形3 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线4 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上5 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称6 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^27 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形2/ 48 定理四边形的内角和等于3609 四边形的外角和等于36010 多边形内角和定理n边形的内角的和等于(n-2)18011 推论任意多边的外角和等于36012 平行四边形性质定理1 平行四边形的对角相等13 平行四边形性质定理2 平行四边形的对边相等高三数学几何定理(三)1 全等三角形的对应边、对应角相等2 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等4 推论(高三数学几何定理s) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(sss) 有三边对应相等的两个三角形全等6 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上3/ 49 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边的人还:4/ 4。

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文

高中数学几何定理知识点总结_高中数学工作总结范文几何定理是高中数学中非常重要的一部分,涉及到了图形的性质、相似、全等、投影等多个方面。

以下为高中数学几何定理的知识点总结:1. 三角形的性质:- 三角形的内角和定理:任意三角形内角的和为180度。

- 直角三角形的性质:直角三角形的斜边是最长的,两直角边的平方和等于斜边的平方。

- 等腰三角形的性质:等腰三角形的两底角相等,两腰相等。

- 等边三角形的性质:等边三角形的三个内角都是60度。

- 三角形的外角和定理:三角形的一个外角等于其两个不相邻内角的和。

2. 相似三角形:- 相似三角形的判定:AAA相似判定、AA相似判定。

- 相似三角形的性质:相似三角形的对应角相等,对应边成比例。

- 相似三角形的定理:对应边成比例,三角形面积的比等于边长比的平方。

3. 全等三角形:- 全等三角形的判定:SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定、HL全等判定。

- 全等三角形的性质:全等三角形的对应边相等,对应角相等。

4. 平行线和直线的性质:- 平行线的判定:同位角相等、内错角相等、平行线性质定理、垂直线性质定理。

- 平行线的性质:异位角相等、内错角互补、同旁内角互补。

- 平行线与截线的性质:平行线被截线所截得的对顶角相等。

5. 投影、相似比和中线定理:- 直角三角形中与斜边相应的高和直角边的乘积等于斜边上的投影。

- 投影线段定理:两个相似三角形之间,关联线段的相似比等于所在线段的相似比。

- 中线定理:三角形内任意一条边上的中线,等于另外两边上中线的一半。

以上为高中数学几何定理的知识点总结,希望对你的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中几何定理大全对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]由指数的性质a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N) = log(a)(M) - log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N) / log(b)(a)推导如下N = a^[log(a)(N)]a = b^[log(b)(a)]综合两式可得N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n) / ln(b^n)由基本性质4可得log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1 =1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]cosα·sinβ=1/2 [sin(α+β)-sin(α-β)]cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 -2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等--------------------------------------------------------------------------------2 高中数学公式23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形--------------------------------------------------------------------------------3 高中数学公式77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

相关文档
最新文档