等腰三角形(第一课时)课件

合集下载

1等腰三角形的性质课件(1)

1等腰三角形的性质课件(1)
14.5 等腰三角形的性质(1)
概念巩固
• 等腰三角形的定义是什么?
有两条边相等的三角形是等腰三角形.
• 如图,在△ABC中,AB=AC,我们就说△ABC是等腰三角形
A
顶 腰角
相等的两边AB和AC叫做腰,另一 边BC叫做底边;
B 底角 底边
两腰所夹的角叫做顶角(如∠A),一腰 与底边所夹的角叫底角(如∠B、∠C)。
_A_D_⊥__B_C_(__等__腰__三__角_ 形底边上的中线是底边上的高)
等腰三角形的三线合一
等腰三角形的性质二: 等腰三角形的顶角平分线、底边上的中线、底边上的 高互相重合(简称“等腰三角形的三线合一”)
A
符号语言3
在△ABC中,
∵AB=AC, AD⊥BC(已知)
B
D
C
∴∠__B_A_D_=_∠__C_AD(等腰三角形底边上的高是顶角平分线)
(条件)已知,在△ABC中,AB=AC,
(结论)说明∠B=∠C的理由.
A
解:取底边BC的中点D,联结AD
∵D是BC的中点(已作)
∴BD=CD(线段中点的意义).
在△ABD与△ACD中, AB=AC(已知)
B
D
C
BD=CD(已求)
AD=AD(公共边)
∴△ABD≌△ACD(S.S.S).
∴∠B=∠C(全等三角形的对应角相等)
D
C
∴∠ADB=∠ADC(全等三角形的对应角相等)
又∵∠ADB+∠ADC=180°(邻补角的意义)
∴2∠ADB=2∠ADC=180°(等量代换)
∴∠ADB=∠ADC=90°(等式性质)
性质探究
思考2:通过这些结论你发现了什么?

等腰三角形的性质(八下优质课件)

等腰三角形的性质(八下优质课件)

等边对等角 三线合一
注意是指同一个三角形中
注意是指顶角的平分线,底 边上的高和中线才有这一性 质.而腰上高和中线与底角 的平分线不具有这一性质.
∵AB=AC, ∠1=∠2(已知),
12
∴BD=CD,AD⊥BC(等腰三角形三线合一). B D C
∵AB=AC, BD=CD (已知),
∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
典例精析
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
角∠BAC的角平分线、底边BC上的高线 .
总结归纳
定理:等腰三角形的两个底角相等(等边对等角).
如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
推论:等腰三角形顶角的平分线、底边上的中线及 底边上的高线互相重合(三线合一).
证明后的结论,以后可以直接运用.
A 综上可得:如图,在△ABC中,
(1)若AD=AE,求证:BD=CE;
(2)若BD=CE,F为DE的中点,如图②,求证:
AF⊥BC.
A
A
B
D GE
B C
DF E
C
图①
图②
解析:(1)过A作AG⊥BC于G,根据等腰三角形的性质
得出BG=CG,DG=EG即可证明;(2)先证BF=CF,
再根据等腰三角形的性质证明.
A
A
B
D GE
B C
1.两点确定一条直线;
2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)
(3)结论:∠BAD=2∠EDC. 理由:∵AE=AD,AB=AC, ∴∠B=∠ACB=∠DCE,∠E=∠ADE=∠ADC+∠EDC. ∵∠B+∠BAD+∠ADB=∠ECD+∠E+∠EDC=180°,∴∠B+ ∠BAD+∠ADB=∠ECD+∠ADB+∠EDC+∠EDC, ∴∠BAD=2∠EDC
A.∠B=∠C
B.AD⊥BC
C.AD平分∠BAC D.AB=2BD
(2)若∠BAD=35°,则∠C的度数为( C )
A.35° B.45° C.55° D.65°
7.(4分)如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD =4,则△ABC的周长是__2_0_.
8.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,DE⊥AB. (1)求证:∠BAD=∠BDE; (2)若AC=6,DE=2,求△ABC的面积.
16.(15分)如图,在△ABC中,AB=AC,D是射线BC上一点,E是射 线AC上一点,且AD=AE.
(212).如5°图 ① , 若 ∠ BAC = 90° , D 是 BC 中 点 , 则 ∠ EDC 的 度 数 为 _________;
(2)如图②,当点D在线段BC上时,若∠BAD=40°,求∠EDC的度数; (3)如图③,当点D在线段BC延长线上时,试判断∠BAD和∠EDC的数 量关系,并证明.
13.(易错题)(青海中考)等腰三角形的一个内角为70°,则另外两个内 角的度数分别为____5_5_°__,__5_5_°__或__7_0_°__,__4_0_°____________________.
【变式】等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三
角形的底角的度数为___6_3_°__或__2_7_°________.

最新2019-2018秋沪科版八年级数学上册第15章教学课件:15.3 第1课时 等腰三角形的性质定理及推论(共36张PPT

最新2019-2018秋沪科版八年级数学上册第15章教学课件:15.3 第1课时 等腰三角形的性质定理及推论(共36张PPT

系,∠ABC、∠C呢?
x

∠BDC= ∠A+ ∠ABD=2 ∠A=2 ∠ABD,
∠ABC= ∠BDC=2 ∠A,
∠C= ∠BDC=2 ∠A.
(2)设∠A=x,请把△ ABC的内角和用含
2x B
x的式子表示出来.
∵ ∠A+ ∠ABC+ ∠ C=180 ° ∴x+2x+2x=180 °,
D 2x
C
解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC, ∠A=∠ABD.
4.(1)等腰三角形一个底角为75°,它的另外两个角为 __7_5_°, 3_0_°;
(2)等腰三角形一个角为36°,它的另外两个角为 _7_2_°__,_7_2_°__或__3_6_°__,1_0_8_°_;
(3)等腰三角形一个角为120°,它的另外两个角为 30°,30°.
5.在△ABC中, AB=AC,AB的垂直平分线与AC 所在的直线相交得的锐角为50°,则底角的大小为 __7_0_°__或__2_0_°_. A
B
DC
BD=DC(作图),
应用格式:
AD=AD(公共边),
∵AB=AC(已知)
∴△ABD≌△ACD(SSS). ∴∠B=∠C(等边对等角)
∴∠B=∠C(全等三角形对应角相等).
证法2: 证明:作顶角∠BAC的平分线AD, 交BC于点D.
∵AD平分∠BAC , ∴∠1=∠2.
在△ABD与△ACD中, AB=AC(已知), ∠1=∠2(已证), AD=AD(公共边), ∴ △ABD ≌ △ACD(SAS), ∴ ∠B=∠C.
图①
图②
证明:(1)如图①,过A作AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.

人教版《等腰三角形》ppt课件初中数学1

人教版《等腰三角形》ppt课件初中数学1

一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°

等腰三角形PPT课件(1)

等腰三角形PPT课件(1)

小结与复习
本节课你学习了等腰三角形的哪些 重要性质?
探究
我们知道,等腰三角形的两底角相等,反过来, 两个角相等的三角形是等腰三角形吗?
如图,在△ABC中,如果∠B=∠C,那么AB 与AC之间有什么关系吗?
我测量后发现AB与AC相等
3cm
3cm
事实上,如图,在△ABC中,∠B=∠C 沿过点A的直线把∠BAC对折,得∠BAC的平
结论
由此得到另一条等边三角形的判定定理: 有一个角是60°的等腰三角形是等边三角形
例3 已知:如图,△ABC是等边三角形,点 D,E分别在BA,CA的延长线上,且AD=AE。求证: △ADE是等边三角形。
证明 ∵△ABC是等边三角形, ∴∠BAC=∠B=∠C= 60° ∵∠EAD=∠BAC= 60° 又 AD=AE, ∴△ADE是等边三角形
腰和底边的夹角叫做底角。
探究
任意画一个等腰三角形 其中AB =AC,如图, 作△ABC 关于 顶角平分线AD 所在直线的轴反射, 由于∠1 =∠2,AB=AC,因此:
射线AB的像是射线AC,射线AC的像是射线 AB ; 线段AB的像是线段AC,线段AC的像是线段 AB ; 点B的像是点C,点C的像是点 B ; 线段BC的像是线段CB。 从而等腰三角形ABC关于直线 AD 对称。
例1 已知:如图,在△ABC中,AB=AC,点D, E 在边BC上, 且AD=AE,求证:BD=CE.
证明:作AF⊥BC,垂足为点F, 则AF是等腰三角形ABC 和等腰三角 形ADE 底边上的高, 也是底边上的 中线。 ∴ BF = CF, DF=EF, ∴ BF-DF=CF-EF, 即BD=CE
(有一个角是60°的等腰三角形是等边三角形)
作业

初中数学课件等腰三角形的性质(几何)ppt课件

初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。

等腰三角形ppt课件

等腰三角形ppt课件
何图形的基本性质把复杂作图拆
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.


∵ DE=EB,∴∠ EBD= ∠ BDE= x°.

∴∠ BDC= ∠ A+ ∠ EBD= x°.


∵ BC=BD,∴∠ C= ∠ BDC= x°.


∵ AB=AC,∴∠ ABC= ∠ C= x°.



∴ x+ x+ x =18 0,解得x =4 5 .∴∠


A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成

17.1 等腰三角形 - 第1课时课件(共23张PPT)

17.1 等腰三角形 - 第1课时课件(共23张PPT)
等边三角形的性质定理
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.

13.3.1等腰三角形(一) 公开课课件

13.3.1等腰三角形(一) 公开课课件

把剪出的等腰三角形ABC沿折痕对折,找出其
中重合的线段和角,填入下表:
B
重合的线段
重合的角
AB=AC
∠B=∠C
A
D
BD=CD
∠ADB=∠ADC
AD=AD
∠BAD=∠CAD
C
等腰三角形除了两腰相等以外,你还 能发现它的其他性质吗?
性质1 (等边对等角)
A
等腰三角形的两个底角相等。 已知:△ABC中,AB=AC 求证:∠B=C
义务教育教科书(RJ)八年级数学上册
13.3 等腰三角形(一)
等腰三角形:
有两条边相等的三角形,
叫做等腰三角形.

A 顶角 腰
底边
B
C
底角
如图,把一张长方形的纸按图中虚线 对折,并剪去绿色部分,
再把它展开, 得到的△ABC有什么特点?
B
A AB=AC
等腰三角形
C
上面剪出的等腰三角形是轴对称图形吗?
2.如图,∠A=15°,AB=BC=CD=DF=EF,则
∠DEF等于( D )
A.90°
B.75°
C.70°
D.60°
E C
A
B
DF
3.在△ABC中, AB=AC,AB的中垂线与AC所在的直 线相交得的锐角为50°,则底角的大小为__7_0_°_或_ 20°
A A
B
C
B
C
4.已知:在△ABC中,AB=AC,CD⊥AB,∠1=45°,则 ∠BCD的度数_2_2_._5_°__ .
1.(1)如果等腰三角形的一个底角为50°,则其 余两个角为_8_0_°_和__5_0_°.
(2)如果等腰三角形的顶角为80°,则它的一个 底角为__5_0_°.

冀教版初中八年级数学上册17-1等腰三角形第一课时等腰三角形及其性质课件

冀教版初中八年级数学上册17-1等腰三角形第一课时等腰三角形及其性质课件
在遇到等腰三角形时,常见的辅助线是作出底边上的高 线或中线,即“三线合一”中的一条,直接利用这一性质可以 省去证明三角形全等.如果直接给出“三线”其中的一条,那 么其他两线的性质可以直接应用. 1.(2024河北石家庄赵县期末)如图,CD是等边 △ABC的中线,DE⊥AC,垂足为点E.若DE=3 cm, 则点D到BC的距离为 3 cm.
解析 ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC, ∴∠DCE=∠O+∠ODC=2∠ODC,∴∠O+∠OED=∠O+ ∠DCE=3∠ODC=∠BDE=78°,∴∠ODC=26°, ∴∠CDE=180°-∠BDE-∠ODC=76°.
16.(2023山东威海中考改编,24,★★☆)回顾:用数学的思维思考. (1)如图1,在△ABC中,AB=AC. ①BD,CE是△ABC的角平分线,求证:BD=CE. ②点D,E分别是边AC,AB的中点,连接BD,CE,求证:BD=CE. 从①②两题中选择一题加以证明. 猜想:用数学的眼光观察. 经过做题反思,小明同学认为:在△ABC中,AB=AC,点D为边 AC上一动点(不与点A,C重合).对于点D在边AC上的任意位
2
AD⊥BC,∵AD=AE,∴∠ADE=∠AED= 180=75°,BAD
2
∴∠EDB=90°-∠ADE=15°,故选A.
11.(2024河南新ຫໍສະໝຸດ 获嘉一中期中)如图,△ABC是等边三角形, CB=CD,若∠ABD=12°,则∠BAD的度数为 ( C )
A.10°
B.15°
C.18°
D.20°
解析 ∵△ABC是等边三角形,∴∠ABC=60°,∵∠ABD=12°, ∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°-72°-

5.6《等腰三角形》课件1 ( 湘教版七年级下)

5.6《等腰三角形》课件1 ( 湘教版七年级下)

B
D
C
操练
在等腰三角形ABC中,如果 AB=AC,且一个角等于70° ,求另两个角 的度数。
1.
A
若顶角即∠A=70° 则∠B=55 ° ∠C=55 ° 若底角即∠B=70° 则∠C=70° ∠A=40° 若底角即∠C=70° 则∠B=70° ∠A=40°
B C
如图:在△ABC中,AB=AC,点D在AC上,且 BC=AD=BD,求△ABC各角的度数。
∴BD=CD(等腰三角 形的高与底边上的中 线重合) 即(等腰三角形三线 合一) ∵BD=2cm(已知) ∴CD=2cm
A
B
D
C
例3 在三角形ABC中,AB=AC,且AD ⊥BC,已知∠ 1=20°, 求∠ 2=_____度 , ∠ A=______度?
等腰三角形的性质
1 等腰三角形的两 个底角相等(等边 对等角) 2等腰三角形顶角的 平分线,底边上的 中线和底边上的高 互相重合(等腰三 角形三线合一)
2.
A
D B C
例2 在三角形ABC中,AB=AC,且AD ⊥BC,已知BD=2cm,求DC=___cm, BC=___cm?
解: ∵AD ⊥BC(已知)
等腰三角形的性质
1 等腰三角形的两 个底角相等(等边 对等角) 2等腰三角形顶角的 平分线,底边上的 中线和底边上的高 互相重合(等腰三 角形三线合一)
∵AD ⊥BC(已知) ∴ ∠ 1= ∠ 2 (等腰三 角形的高与顶角的平 分线重合) 即(等腰三角形三线 合一) ∵ ∠ 1=20° (已知) ∴ ∠ A=40°
A
1 2
B
D
C
操练
在三角形ABC中,AB=AC=5cm, AD=4cm,且BD=CD,求点A到线段BC的距 离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用新知解决问题
例:在△ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求△ABC各角的度数. 解:∵在△ABC中,AB=AC ∴∠ABC=∠ACB,∠A+∠ABC+∠ACB=180° ∵在△ABD中,BD=AD ∴∠ABD=∠A,∠BDC=∠A+∠ABD, 即∠BDC=2∠A ∵ 在△BDC中,BD=BC ∴∠BDC=∠BCD, 即,如图,可得 ∠A+2∠ACB=180° ∠A+2*2∠A=180° 5∠A=180° ∠A=36° ∴∠ABC=∠BCA=2∠A=2*36=72°
D
B (C)
D
等腰三角形的性质
(1)等腰三角形的两个底角相等; (2)等腰三角形顶角的平分线、底边中线、底边上高互相重合
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
已知:如图, 在△ABC中, AB=AC. 求证:∠B=∠C.
证法一: 证明:取BC的中点D, 连接AD. B 在△ABD和△ACD中 ∵ AB=AC, BD=CD, AD=AD ∴ △ABD≌△ACD (SSS) ∴ ∠B=∠C (全等三角形的对应角相等)
抚州市临川区河埠中学
祝水清
想一想、知识回顾:
基本事实:
1.两点确定一条直线。 2.两点之间线段最短。 3.同一平面内,过一点有且只有一条直线与已知直线垂直。 4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 5.过直线外一点有且只有一条直线与这条直线平行 6.两边及其夹角对应相等的两个三角形全等. 7.两角及其夹边对应相等的两个三角形全等 8.三边对应相等的两个三角形全等
A
D
C
证法二: 证明:作△ABC顶角∠A的角平分线AD. 在△ABD和△ACD中 ∵ AB=AC, ∠BAD=∠CAD, AD=AD ∴ △ABD≌△ACD (SAS) ∴ ∠B=∠C (全等三角形的对应角相等)
想一想
在上面的图形中,线段AD还具有怎样的性质?为什么? 由此你能得到什么结论?
A
推论: 等腰三角形顶角的平分线、 底边上的中线、底边上的高互相重 合. (三线合一)
B
D
C
课堂操练, 巩固新知
1、在△ABC中,AB=AC. • 若∠A=50°,则∠B= 65 °,∠C= 65 °; • 若∠B =45°,则∠A = 90 °,∠C= 45 °; • 若∠C =60°,则∠A = 60 °,∠B= 60 °; 2、在△ABC中,AB=AC,若AD平分∠BAC,则AD ⊥ BC, BD = CD. 3、等腰三角形一腰上的高与另一腰的夹角为60°,则这个 等腰三角形的顶角是 120 . 4、已知一个等腰三角形两个内角的度数之比为1:4,则这 个等腰三角形顶角的度数为20或120
总结:“等边对等角”这一定理在证明相等角时有着巨大的应用,请你注意!在求解三角 形内角的度数的题目中,我们经常会想到三角形内角和定理,其内容如下:三角形三 个内角的和等于180°。如果已知三角形中任意两个内角的度数,根据三角形的内角和 定理我们就可以求出第三个角的度数。
课堂小结
(1)等腰三角形的两个底角相等; (2)等腰三角形顶角的平分线、底边中线、底边上相互重 合 (三线合一)
布置作业
P5习题1,2.
再见
推论 两角及其中一角的对边对应相等的两个三角形全等.(AAS)
议一议, 做一做
(1)还记得我们探索过的等腰三角形的性质吗?尽可能回忆出来.
(2)你能利用已有的基本事实和定理证明其中一条性质吗? 如图,先自己折纸观察探索并写出等腰三角形的性质,然后再小组 交流,互相弥补不足.
A A
AБайду номын сангаас

B D C

B C
相关文档
最新文档