八年级下数学压轴题及问题详解
中学数学八年级下册 期末压轴题(含答案)
八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。
压轴题05:分式与分式方程综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)
压轴题05:分式与分式方程综合专练20题(解析版)一、单选题1.若关于x的方程3133x axx x++=--有正整数解,且关于y的不等式组252510ya y-⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a有()个A.0B.1C.2D.3【答案】D【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a的值,求出之和即可.【详解】解:31 33x axx x++= --解得:6 xa =∴方程有正整数解且63a≠即2a≠∴136 a=、、解不等式组252510ya y-⎧<⎪⎨⎪--≤⎩解得1521yy a⎧<⎪⎨⎪≥-⎩关于y的不等式组至少有两个奇数解∴15a-≤∴6a≤∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.若关于x的分式方程61xx-=3+1axx-的解为整数,且一次函数y=(10﹣a)x+a的图象不经过第四象限,则符合题意的整数a的个数为()A.1B.2C.3D.4【答案】C【分析】根据题意求得满足条件的a 的值,从而可以得到满足条件的所有整数a 的个数.【详解】解:∴一次函数y =(10﹣a )x +a 的图象不经过第四象限,∴1000a a ->⎧⎨≥⎩, 解得010a ≤<, 由分式方程61x x -=3+1ax x -得,x =33a -, ∴分式方程61x x -=3+1ax x -的解为整数,且x≠1, ∴a =0,2,4,∴符合题意的整数a 的个数3个,故选:C .【点睛】本题主要考查分式方程的解和一次函数的图象及性质,掌握一次函数的图象及性质以及正确的解分式方程是解题的关键.3.若整数a 使得关于x 的不等式组341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩的解集为2x <-,且关于y 的分式方程2311a y y y -=+++的解为负数,则所有符合条件的整数a 的和为( )A .0B .-3C .-5D .-8【答案】D【分析】先解不等式组中的两个不等式,由不等式组的解集可得5,a ≥- 再解分式方程,由分式方程的解为负数可得:a <5, 且3,a ≠ 结合a 为整数,从而可得答案.【详解】 解:341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩①②由∴得:22x +>34+x , x <2,-由∴得:324,x a ≤+24,3a x +∴≤ 又由不等式组的解集为2x <-,242,3a +∴≥- 246,a ∴+≥-5,a ∴≥-2311a y y y -=+++ 233,a y y ∴=-++5,2a y -∴= 方程2311a y y y -=+++的解为负数, 52a -∴<0, a ∴<5,由10,y +≠1,y ∴≠-51,2a -∴≠- 3,a ∴≠综上:5a -≤<5且3,a ≠由a 为整数,5a ∴=-或4a =±或3a =-或2a =±或1a =±或0a =,则所有符合条件的整数a 的和为:8.-故选:.D【点睛】本题考查的是由一元一次不等式组的解集求解参数的取值范围,分式方程的负数解问题,掌握以上知识是解题的关键.4.若整数a 使得关于x 的分式方程2x x -+12a x+-=2的解为非负数,且一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,则所有符合条件的a 的和为( )A .﹣3B .2C .1D .4【答案】D【分析】先求出方程的解x =3﹣a ≥0,求出a ≤3,根据分式方程的分母x ﹣2≠0求出a ≠1,根据一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限求出﹣(a +3)<0且a +2>0,求出a >﹣2,再求出答案即可.【详解】 解:2x x -+12a x+-=2, 方程两边乘以x ﹣2得:x ﹣a ﹣1=2x ﹣4,解得:x =3﹣a ,∴关于x 的分式方程2x x -+12a x +-=2的解为非负数, ∴3﹣a ≥0,解得:a ≤3,∴一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,∴﹣(a +3)<0且a +2>0,解得:a >﹣2,∴﹣2<a ≤3,∴分式方程的分母x ﹣2≠0,∴x =3﹣a ≠2,即a ≠1,∴a 为整数,∴a 为﹣1,0,2,3,和为﹣1+0+2+3=4,故选:D .【点睛】本题考查了解分式方程,一次函数的图象和性质,解一元一次不等式等知识点,能灵活运用知识点进行计算是解此题的关键.5.在ABC 中,AE 、BF 、CP 分别在边BC 、CA 、AB 上的高线,已知AE 、BF 、CP 相交于一点D ,且2019AD BD CD DE DF DP ++=,则AD BD CD DE DF DP⋅⋅的值等于( )A .2019B .2020C .2021D .2022 【答案】C【分析】设BDC S a ,ADC S b ,ABD S c ,则AD b c DE a +=,BD a c DF b +=,cD DP C a b +=,然后对所求式子变形整理,整体代入计算即可.【详解】解:设BDC S a ,ADC S b ,ABD S c , 则ADC ABD ADC ABD BDE DEC BDE DEC S S S S S S S S AD b c DE a+====++, 同理可得:BD a c DF b +=,c D DP C a b +=, ∴2019a c a b b c b c a +++++=, ∴AD BD CD DE DF DP ⋅⋅ b c a c a b a b c+++=⋅⋅ ()()()b c a c a b abc+++= 222222a b a c abc ac ab abc b c bc abc+++++++= ()()()()ac a c ab a c ab b c bc b c abc abc++++++=+ a c a c b c b c b c c a++++=+++ 2a c a b b c b c a+++=+++ 20192=+2021=,故选:C .【点睛】本题考查了三角形的面积计算,分式的混合运算,正确化简所求式子是解题的关键.6.若数a 使关于x 的不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩的解集为x <﹣2,且使关于y 的分式方1311--=-++y a y y 的解为负数,则符合条件的所有整数a 的个数为( )A .4B .5C .6D .7【答案】C【分析】表示出不等式组的解集,由不等式组的解集为x <﹣2确定出a 的范围,再由分式方程的解为负数以及分式有意义的条件求出满足题意整数a 的值,进而求出符合条件的a 的个数.【详解】 解:解不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩,得:224x x a <-⎧⎨+⎩, 由不等式组的解集为x <﹣2,得到2a +4≥﹣2,解得:a ≥﹣3; 分式方程1311--=-++y a y y 去分母得:1﹣y ﹣a =﹣3(y +1), 解得:y =42a -, 由分式方程的解为负数以及分式有意义的条件,得412402a a -⎧≠-⎪⎪⎨-⎪<⎪⎩, 解得:a <4且a ≠2;∴﹣3≤a <4且a ≠2,∴a =﹣3,﹣2,﹣1,0,1,3,∴符合条件的所有整数a 的个数为6个;故选:C .【点睛】此题主要考查分式方程与不等式组的求解运用,解题的关键是熟知分式方程与不等式组的解法.7.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由∴得:36x x -+>2,-2x ∴->8,- x <4,由∴得:a x +<2,x x >,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4, 13244ay y y -+=---, ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.8.若关于x 的不等式组52(+)11231x x a ⎧>⎪⎨⎪-<⎩无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 【答案】C【分析】先由不等式组无解,求解8a ≤,再求解分式方程的解22a y +=,由方程的解为非负整数,求解2a ≥-且2a ≠,再逐一确定a 的值,从而可得答案. 【详解】 解:52+11{231x x a ⎛⎫> ⎪⎝⎭-<①②由∴得:2511x +>,∴3x >,由∴得:31x a <+, ∴13x a <+, ∴关于x 的不等式组52+11{231x x a ⎛⎫> ⎪⎝⎭-<无解, ∴1+33a ≤, ∴19a +≤,∴8a ≤, ∴34122y a y y++=--, ∴()342y a y -+=-, ∴22a y +=, ∴20y -≠, ∴222a +≠,∴关于y 的分式方程34122y a y y++=--有非负整数解, ∴202a +≥, ∴2a ≥-, ∴22a +为整数, ∴2a =-或0a =或4a =或6a =或8a =.∴2046816-++++=.故选:C .【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,熟练掌握解不等式组的方法和解分式方程是解题关键,解题时要注意分式方程的解得到y ≠2这一隐含条件.二、填空题9.若223411a a a ++-为不超过3的整数,则整数=a ______. 【答案】0或-1或-3【分析】 先将223411a a a ++-整理得到4331a +≤-,根据题意即可确定a 的值. 【详解】 解:22341(3+1)(1)313(1)4431(1)(1)111a a a a a a a a a a a a ++++-+====+-+----, 因为223411a a a ++-为不超过3的整数, ∴4331a +≤-,且431a +-为整数, ∴ 401a ≤-, 因为a 为整数,所以符合条件的a=0或-1或-3,故答案为:0或-1或-3.【点睛】 本题主要考查了分式的化简,解题的关键是将将223411a a a ++-整理得到431a +-.10.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩,有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所有满足条件的整数a 的值之和是________________. 【答案】1【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出−4<a≤3,再解分式方程2222a y y+=--,根据分式方程有非负数解,得到a≥−2且a≠2,进而得到满足条件的整数a 的值之和.【详解】 解不等式组2122274x x x a -⎧≤-+⎪⎨⎪+>-⎩①②,由∴得,x≤3;由∴得,x >47a +-; ∴不等式组有且仅有四个整数解, ∴−1≤47a +-<0, ∴−4<a≤3, 解分式方程2222a y y+=--,可得y =12(a +2), 又∴分式方程有非负数解,∴y≥0,且y≠2, 即12(a +2)≥0,12(a +2)≠2,解得a≥−2且a≠2,∴−2≤a≤3,且a≠2,∴满足条件的整数a 的值为−2,−1,0,1,3,∴满足条件的整数a 的值之和是1.故答案为:1.【点睛】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.11.2022年北京冬奥会正在火热举办中,冰雪项目中高质量的“人造雪”受到人们的广泛关注,它的生产实际上是一个科学技术难题:要首先通过过滤装置将自然水过滤成纯净的水,接着用制冰装置将纯净的水制成片状的纯冰,再通过碎冰装置把已经造好的纯冰粉碎成粉末,最后,通过把粉末状的冰晶和空气等原料混合加工成“人造雪”.现有若干千克自然水和100千克纯冰,准备将它们加工成人造雪,共8名技术人员,分为甲、乙两组同时工作,甲组负责自然水提纯后加工成纯冰,乙组负责将纯冰加工成人造雪.已知甲组人员每人每小时可将10千克自然水加工成5千克纯冰,乙组人员每人每小时可将10千克纯冰加工成20千克人造雪(不考虑冰雪融化及其他损耗);若加工t 小时后,纯冰质量与人造雪的质量之比为1:8;又加工了几个小时后,自然水全部使用完;接着继续将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪;当自然水正好全部使用完,此时纯冰质量与人造雪质量之比为______. 【答案】1:12##112【分析】设有x 人在甲组,则有(8-x )在乙组,根据纯冰质量与人造雪的质量之比为1:8,列出方程()():20158010018:8t tx t x ⎡⎤+=⎣⎦--,从而()4017t x t-=,根据,x t 都为正整数(<8x ),且40不能被7整除,从而得出x =5,于是得出共加工了8小时,乙组为3人,然后根据将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪,得出自然水正好全部使用完时,纯冰质量和人造雪质量,即可求出答案. 【详解】解:设有x 人在甲组,则有(8-x )在乙组, t 小时后,有纯冰的质量为:()5100108tx t x +--51008010tx t tx =+-+ 1580100tx t =-+(千克)有人造雪的质量为()208t x -千克根据题意可得:()():20158010018:8t tx t x ⎡⎤+=⎣⎦-- ()()815801002108t x tx t ⎡⎤⨯=--+⨯⎣⎦12064080016020tx t t tx -+=- 140800800tx t =-()4017t x t-=,x t 都为正整数(<8x ),且40不能被7整除,∴40能被t整除,t-1能被7整除;∴t=8,x=5.∴ 8-x =3,因此甲组有5人,乙组有3人.生产700千克人造雪需要纯冰的质量为:7002010350÷⨯= (千克),原有纯冰100千克, ∴自然水加工而成的纯冰的质量为:350100250-= (千克),∴甲组生产纯冰的总时间为:2505510÷÷=(小时),自然水用完时,乙组共生产的人造雪的质量为10320600⨯⨯=(千克),此时还剩下的纯冰的质量为:100250600201050+-÷⨯=(千克), ∴此时纯冰与人造雪的质量比为:150:6001:1212==故答案为:1:12或112【点睛】本题主要考查了列方程解应用题,根据题意找出题目中的等量关系列出方程是解题的关键.12.某知名服装品牌在北碚共有A 、B 、C 三个实体店.由于疫情的影响,第一季度A 、B 、C 三店的营业额之比为3:4:5,随着疫情得到有效的控制和缓解,预计第二季度这三个店的总营业额会增加,其中B店增加的营业额占总增加的营业额的27,第二季度B 店的营业额占总营业额的413,为了使A 店与C 店在第二季度的营业额之比为5∴4,则第二季度A 店增加的营业额与第二季度总营业额的比值为______________. 【答案】726【分析】设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,,第二季度A 店、C 店的营业额为5y 、4y ,根据题意求得y 与x 的关系2y x =,第二季度B 店的营业额4y ,第二季度总营业额为13y ,则第二季度A 店增加的营业额与第二季度总营业额的比值为5313y xy-,即可求解. 【详解】解:∴第一季度A 、B 、C 三店的营业额之比为3:4:5∴设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,∴第二季度A 店与C 店在第二季度的营业额之比为5∴4∴设第二季度A 店、C 店的营业额为5y 、4y ,B 店的营业额为z ∴第二季度B 店的营业额占总营业额的413, ∴45413z y y z =++,解得4z y =∴第二季度总营业额为13y∴B店增加的营业额占总增加的营业额的2 7∴44213127y xy x-=-,解得2y x=第二季度A店增加的营业额与第二季度总营业额的比值为537 1326 y xy-=【点睛】此题考查了分式方程的应用,理解题意设合适的未知数,弄清楚题中的等量关系是解题的关键.13.随着我国疫情的有效控制,各地打造了众多春游景点供市民休闲娱乐.某区特别打造了多彩植物园、亲子游乐园、劳动体验园吸引游客.3月份多彩植物园、亲子游乐园、劳动体验园接待游客数量之比为3:3:4.为增加游客数量,该地区通过发抖音、转发朋友圈等多种方式加大宣传力度,预计4月份三个园区接待的游客总人数在3月份的基础上会增加.但因为多彩植物园中部分花期已过,多彩植物园的游客人数在3月份的基础上将减少13.这样4月份,多彩植物园接待的游客总人数占三个园区接待游客总人数的17,而亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,则亲子游乐园新增的人数与4月份这三个园区的总人数之比是___________【答案】3 10【分析】设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,求出4月多彩植物园的人数,得到4月接待总人数,设4月亲子游乐园人数为m,根据4月亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,得到365m a=,再根据题意求出比值.【详解】解:设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,则4月多彩植物园的游客人数为3a(1-13)=2a,∴4月接待总人数为2a÷17=14a,∴4月亲子游乐园、劳动体验园接待游客数量为12a,设4月亲子游乐园人数为m,则劳动体验园人数为12a-m,由题意可得:3 122ma m=-,解得:365m a =,∴4月亲子游乐园新增的人数与4月份这三个园区的总人数之比为:363514a a a-=310, 故答案为:310. 【点睛】本题考查了分式方程的实际应用,题干较长,解题时要细心认真读题,理清题中的条件,用字母表示出相关量,再进行运算.14.今年是脱贫攻坚关键年,大学生小赵利用电商平台帮助家乡售卖当地土特产。
填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)
填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。
八年级下数学压轴题及答案[1]
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
【解答】(1)证明:∵四边形ABCD是正方形,
∴BC=CD,∠B=∠CDF=90°,∵∠ADC源自90°,∴∠FDC=90°.
∴∠B=∠FDC,
∵BE=DF,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)证明:如图2,延长AD至F,使DF=BE,连接CF.
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
八年级下数学压轴题及答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下数学压轴题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为八年级下数学压轴题及答案(word版可编辑修改)的全部内容。
八年级下数学压轴题
1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
出x的值;若不存在,请说明理由.
8.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)
期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
部编数学八年级下册难点特训(一)和勾股定理有关的压轴大题(解析版)含答案
难点特训(一)和勾股定理有关的压轴大题1.正方形ABCD 中,E ,F 分别为CD ,AD 上一点,CE DF =,BE ,CF 交于点G ,O 为BD 的中点.(1)求证:BCE V ≌CDF V ;(2)求证:BE CF ^;(3)求证:BG CG -2.在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(12,0),点A在第一象限,且△ABC 是等边三角形.点D的坐标为(4,0),E是边AB上一动点,连接DE,以DE为边在DE右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,BE=______.∵C(6,0),∵FD=FC,FT⊥CD,3.在□ABCD 中,连接BD ,若BD CD ^,点E 为边AD 上一点,连接CE .(1)如图1,点G 在BD 上,连接CG ,过G 作GH CE ^于点H ,连接DH 并延长交AB 于点M .求证:HGD DCE Ð=Ð;(2)如图1,在(1)的前提下,若HG BM =,DG DC =.求证:BM DB +=;(3)如图2,120ABC Ð=°,AB =点N 在BC 边上,4BC CN =,若CE 是DCB Ð的角平分线,线段PQ (点P 在点Q 的左侧)在线段CE 上运动,PQ =,连接BP ,NQ ,求BP PQ QN ++的最小值.4.如图,在矩形ABCD中,AB=8,BC=16,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是每秒1个单位,连接PQ、AQ、CP,设点P、Q运动的时间为t秒.(1)当t= 时,四边形ABQP是矩形;(2)当t=6时,判断四边形AQCP的形状,并说明理由;(3)直接写出以PQ为对角线的正方形面积为96时t的值;(4)整个运动当中,线段PQ扫过的面积是 .【点睛】本题考查了正方形的判定与性质、矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定、三角形面积公式以及分类讨论等知识;熟练掌握正方形的判定与性质和勾股定理是解题关键.5.已知,如图,在△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4c m/s;同时点P由B点出发,沿BA方向匀速运动,速度为lc m/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=___cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形为平行四边形.根据题意得:PQ=BP=t,AM=4t,AD∴MD=AD-AM=12-4t,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=12-4t,根据题意得:PQ=BP=t,AM=4t,AD∴MD=AM-AD=4t-12,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=4t-12,解得:t=4(s);6.平面直角坐标系中,矩形AOBC的顶点C的坐标为(m,n),m、n满足m﹣8=(1)m=______,n=_______;(2)如图1,连接AB、OC交于点D,过点D作DM⊥DB交x轴于点M,求点M的坐标;(3)如图2,E、F分别为OB、BC上的动点,以AE、EF为边作矩形AEFQ,连接EQ、CQ,当EQ=2CQ时,求点Q的纵坐标.∵m=8,n=4,∴C(8,4),∵四边形AOBC是矩形,∴AO=4,BO=8,AD=BD,∵DM⊥DB,∵四边形AEFQ是矩形,∴AF=EQ,PF=PA12AF=,PE=PQ∴PF12EQ =,7.如图,点P为正方形ABCD的对角转AC上一动点,过点P作PE⊥PB交射线DC于点E.(1)如图1,当点E在边CD上时,求证:PB=PE;(2)如图2,当点E在DC的延长线上时,探求线段PA、PC、CE的数量关系并加以证明;(3)如图3,在(1)的条件下,连接BE交AC于点F,若正方形ABCD的边长为4,当点E为CD的中点,则PF= (请直接写出结果).8.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD 中,AC ⊥BD .垂足为O ,求证:AB 2+CD 2=AD 2+BC 2;(2)解决问题:已知AB =BC =△ABC 的边BC 和AB 向外作等腰Rt △BCE 和等腰Rt △ABD ;①如图2,当∠ACB =90°,连接DE ,求DE 的长;②如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=,则S△ABC = .②连DC、AE相交于点F【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,9.已知平行四边形ABCD中,AD=2AB.(1)作∠ABC的平分线BM交AD于M,连CM.①如图1,求∠BMC的度数;②如图2,若∠ADC=90°,点P是AD延长线上一点,BP交CM于N,CG⊥BP垂足为H,交AD于G,求证:BN=CG+GN;(2)如图3,若∠ADC=60°,AB=4,E是AB的中点,P是BC边上一动点,将EP逆时针旋转90°得到线段EQ,连DQ,直接写出DQ的最小值 .310.在正方形ABCD中,点E是边BC上一动点(不含端点B、C).(1)如图1,AE⊥EP,AE=EF,连接CF.①求∠ECF的大小;②如图2,N为CF的中点,连接DN、DE,求证:DE DN;BE+DE的最小值.(2)如图3.若AD=12则AH EC =,BHE D 为等腰直角三角形,45BHE HEBÐ=Ð=°,45BHE HAE AEH Ð=Ð+Ð=°Q ,180180459045AEH FEC AEF HEB Ð+Ð=°-Ð-Ð=°-°-°=°,HAE FEC \Ð=Ð,在HAE D 和CFE D 中,HAE FEC AH ECAE EF Ð=Ðìï=íï=î,()HAE CFE SAS \D @D ,180********ECF AHE BHE \Ð=Ð=°-Ð=°-°=°,ECF \Ð的大小为135°;②延长DN 到Q 时DN QN =,连接FQ 、EN ,设FQ 交BC 的延长线于点R ,在DNC D 和QNF D 中,DN QN DNC QNF CN FN =ìïÐ=Ðíï=î,()DNC QNF SAS \D @D ,CD FQ \=,CDQ FQD Ð=Ð,//CD FQ \,而CD BR ^,则FQ BR ^,90EFR FER \Ð+Ð=°,11.在平面直角坐标系中,O 为坐标原点,A ,D 两点坐标分别为A (0,a ),D (b ,b ),且a ﹣b =.(1)求A ,D 两点坐标;(2)点B ,C 是x 轴上两动点(B 在C 左侧),且使四边形ABCD 为平行四边形.①如图,当点B ,C 分别在原点两侧时,连接DO ,过点O 作OG ⊥DO 交AB 于点G ,连接DG ,取DG 中点H ,在DO 上截取DE ,使DE =GO ,求证:4AH 2+DE 2=2AE 2;②当点B 在原点左侧时,过点O 的直线MN ⊥AB ,分别交AB ,CD 于M ,N ,试探究OM ,BM ,CN 三条线段之间的数量关系.【答案】(1)A (0,5),D (5,5);(2)见解析;(3)OM =CN +BM 或OM =BM -CN .【分析】(1)根据算术平方根有意义的条件可得50b -³,3150b -³,由此可得5b =,进而可求得5a =,由此可得A ,D 两点的坐标;(2)①延长AH 交CD 于点F ,连接GF ,GE ,先证AOG ADE △≌△,可得AG =AE ,∠GAO =∠EAD ,进而可得GE ²=2AE ²,再证AGF EAO △≌△(SAS ),可得OE = 2AH ,最后再根据OE ²+OG ²=GE ²等量代换,即可得证;②分两种情况讨论:点C 在点O 的右侧时,点C 在点O 的左侧时,画出相应的图形,作出正确的辅助线,证明KCB MAO △≌△(AAS ),由此可得结论.【详解】解:∵50b -³,∴5b £,∵3150b -³,∴5b ³,又∵HG=HD,∴四边形AGFD为平行四边形,∴GF=AD=AO,AD//GF,∴∠AGF+∠GAD=180°,即∠AGF+∠GAO+∠OAD=180°,∴∠AGF+∠GAO=180°-∠OAD=90°,又∵∠OAE+∠EAD=90°,∠GAO=∠EAD,∴∠AGF=∠OAE,∴AGF EAO△≌△(SAS),∴OE=AF=2AH,∵∠GOD=90°,∴OE²+OG²=GE²,∴(2AH)²+DE²=2AE²,即:4AH2+DE2=2AE2;②如图,当点C在点O的右侧时,过点C作CK⊥AB于点K,∵四边形ABCD为平行四边形,∴AD=BC,又∵AO=AD,∴AO=BC,∵MN⊥AB,CK⊥AB,∴∠AMO=∠CKB=90°,MN//CK,∴∠KBC+∠KCB=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠KCB=∠BAO,∴KCB MAO△≌△(AAS),∴OM=KB=KM+BM,∵AB//CD,MN//CK,∴四边形MNCK为平行四边形,∴KM=CN,∴OM=CN+BM,如图,当点C在点O的左侧时,过点C作CK⊥AB于点K,同理可得:KCB MAO△≌△(AAS),∴OM=KB=BM-KM,又∵KM=CN,∴OM=BM-CN,综上所述:OM,BM,CN三条线段之间的数量关系为OM=CN+BM或OM=BM-CN.【点睛】本题考查了算术平方根有意义的条件,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握平行四边形和全等三角形的判定与性质是解决本题的关键.12.如图,在平面直角坐标系中,A,B两点的坐标分别为A(0,a),点B(b,0),且a,b满足:b+4,点C与点B关于y轴对称,点P,点E分别是x轴,直线AB上的两个动点.(1)则点C的坐标为 ;(2)连接PA,PE.①如图1,当点P在线段BO(不包括B,0两个端点)上运动,若△APE为直角三角形,F为斜边PA的中点,连接EF,OF,试判断EF与OF的关系,并说明理由;②如图2,当点P在线段OC(不包括O,C两个端点)上运动,若△APE为等腰三角形,M为底边AE的中点,连接MO,试探索PA与OM的数量关系,并说明理由;(3)如图3,连PA,CE,设它们所在的直线交于点G,设CE交y轴于点F,连接BG,若OP=OF,则BG的最小值为 .∵C(4,0)A(0,4)∴OA=OC=4,又OP=OF ∠AOP=∠COF=90°∴△AOP≌△COF(SAS)13.如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(18,0),B点的坐标为(0,24).(1)求AB的值;(2)点C在OA上,且BC平分∠OBA,求点C的坐标;(3)在(2)的条件下,点M在第三象限,点D为y轴上的一个点,连接DM交x轴于点H,连接CM,点F为BC的中点,点E为AD的中点,AD与BC交于点G,点H为DM的中点,当∠MCG-∠DGF=∠OAB,且AD=CM时,求线段EF的长.14.若△ABC和△ADE均为等腰三角形,且AB=AC=AD=AE,当∠ABC和∠ADE互余时,称△ABC 与△ADE互为“底余等腰三角形”,△ABC的边BC上的高AH叫做△ADE的“余高”.(1)如图1,△ABC与△ADE互为“底余等腰三角形”.①若连接BD,CE,判断△ABD与△ACE是否互为“底余等腰三角形”:_______ (填“是”或“否”);②当∠BAC=90°时,若△ADE的“余高”AH DE=_______;③当0°<∠BAC<180°时,判断DE与AH之间的数量关系,并证明;(2)如图2,在四边形ABCD中,∠ABC=60°,DA⊥BA,DC⊥BC,且DA=DC.①画出△OAB与△OCD,使它们互为“底余等腰三角形”;②若△OCD的“余高”长为a,则点A到BC的距离为_______(用含a的式子表示).①如图1,连接BD 、CE ,∵AB AC AD AE ===,∴A ABC CB =Ð∠,ADE AED Ð=Ð,ABD Ð∵90ABC ADE Ð+Ð=°,∴90ACB AED Ð+Ð=°,∵四边形BCDE 的内角和为360°,∴(3609090)290ABD AEC Ð+Ð=°-°-°¸=∴ABD △与ACE △互为“底余等腰三角形”,①如图2,连接BD ,取BD 中点为点∵DA BA ^,DC BC ^,∴BAD V ,BCD △都是直角三角形,∴OA OB OD OC ===,在Rt BAD V 与Rt BCD △中,AD CD BD BD =ìí=î,∴Rt BAD Rt BCD @△△,115.如图1,点,A 点B 的坐标分别为()(),0,0,a b ,且4,b =将线段BA 绕点B 逆时针旋转90o 得到线段BC .(1)直接写出=a __,b =__ _,点C 的坐标为 _;(2)如图2,作CD x ^轴于点,D 点M 是BD 的中点,点N 在OBD V 内部,,ON DN ^求证:.ON DN +=(3)如图3,点P 是第二象限内的一个动点,若90,OPB Ð=°求线段CP 的最大值.1a \=-,4b \=,\点()1,0A -,点()0,4B ,如图,过点C 作CE BO ^于E ,Q 将线段BA 绕点B 逆时针旋转90°得到线段BC .BA BC \=,90ABC Ð=°,90ABO CBE \Ð+Ð=°,且90ABO BAO Ð+Ð=°,BAO CBE \Ð=Ð,且AB BC =,90AOB CEB Ð=Ð=°,()ABO BCE AAS \D @D 1BE AO \==,4BO CE ==,3OE \=,\点()4,3C 故答案为:1-,4,()4,3(2)连接OM ,作MF MN ^交DN 于F ,CD x ^Q 轴,4OD BO \==,45MDO \Ð=°,Q 点M 是BD 的中点,OM MD \=,90OMD OND Ð=°=Ð,NOM MDN \Ð=Ð,。
上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)
0 8k b, ∴ „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) 4 5k b,
4 k , 3 „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) ∴ 32 b . 3
4 32 .„„„„„„„„„„„„(1 分) x 3 3 26.解: (1)BF +AG= AE.„„„„„„„„„„„„„„„„„„„„„„(1 分) 证明如下:过点 F 作 FH⊥DA,垂足为 H, ∵在正方形 ABCD 中,∠DAE=∠B=90°,∴四边形 ABFH 是矩形.„(1 分) ∴FH=AB=DA.∵BD⊥FG,∴∠G=90°–∠ADE=∠DEA. 又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE. „„„„„„„„„„(1 分) ∴GH=AE,即 HA+AG=AE.∵BF=HA,∴BF+AG=AE.„„„„„„(1 分)
本题满分12分其中第1小题5分第2小题3分第3小题4bcaebcdfdfaeefad四边形aefd是平行四边形efad5aedf?????????????????????????1abcd5rtabertdcfbecfefbccfbecf3在rtabeabaeaebqapaepdcqqcdpabqp当四边形abqp与四边形qcdp的面积相等时3当四边形abqp是平行四边形时pqab当四边形qcdp是平行四边形时可得pqcdcdabpqab此时cqpd11时pqab
FB 3 ,且 AC 10 ,求 FC 的值. BD 5
A
D
F
E
B
C
26. 在梯形 ABCD 中, ∠ABC= 90 , AD∥BC, BC>AD, AB=8cm, BC=18cm, CD=10 cm,点 P 从点 B 开始沿 BC 边向终点 C 以每秒 3cm 的速度移动,点 Q 从点 D 开始沿 DA 边向终点 A 以每秒 2cm 的速度移动,设运动时间为 t 秒. (1)求四边形 ABPQ 为矩形时 t 的值; (2)若题设中的“BC=18cm”改变为“BC= k cm” ,其它条件都不变,要 使四边形 PCDQ 是等腰梯形,求 t 与 k 的函数关系式,并写出 k 的取值范围; (3)在移动的过程中,是否存在 t 使 P、Q 两点 的距离为 10cm ,若存在求 t 的值. 若不存在请说明 理由?
根与系数的关系(压轴题)—2023-2024学年八年级数学下册(沪科版)(解析版)
z根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、一元二次方程的根与系数的关系如果一元二次方程ax !+bx +c =0(a ≠0)的两个实数根是,那么,. 注意:它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !.(1)若|x "|+|x !|=2√2,求k 的值; (2)当k 取哪些整数时,x ",x !均为整数; (3)当k 取哪些有理数时,x ",x !均为整数. 【思路点拨】(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可; (2)根据根与系数的关系可得若x "+x !=−!#为整数,可得整数k =±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k =−1时,符合题意;由两根之积可得k 应该是整数的倒数,不妨设k ="$,则方程可变形21x x ㄑa b x x -=+21ac x x =21◆思想方法◆典例分析◆知识点总结z为x !+2mx +m −2=0,即为(x +m )!=m !−m +2,再结合整数的意义即可解答. 解:(1)∵Δ=2!−4k (1−2k )=4−4k +8k !=88k !−"!k +"!9=88k −"%9!+&!>0, ∴不论k 为何值,关于x 的一元二次方程kx !+2x +1−2k =0都有两个实数根x ",x !, ∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,分两种情况:①若两根同号,由|x "|+|x !|=2√2可得:x "+x !=2√2,或x "+x !=−2√2, 当x "+x !=2√2时,则−!#=2√2,解得k =−√!!; 当x "+x !=−2√2时,则−!#=−2√2,解得k =√!!; ②若两根异号,由|x "|+|x !|=2√2可得:(x "−x !)!=8, 即(x "+x !)!−4x "x !=8, ∴8−!#9!−4×"'!##=8,解得:k =1, 综上,k 的值为1或 ±√!!; (2)∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,若x ",x !均为整数, 则x "+x !=−!#为整数, ∴整数k =±1,±2, 当k =±2时,x "x !="'!##不是整数,故应该舍去;当k =1时,此时方程为x !+2x −1=0,方程的两个根不是整数,故舍去;当k =−1时,此时方程为−x !+2x +3=0,方程的两个根为x "=−1,x !=3,都是整数,符合题意; 综上,当k 取−1时,x ",x !均为整数; (3)显然,当k =−1时,符合题意; 当k 为有理数时,由于x "x !="'!##="#−2为整数,zxx∴k 应该是整数的倒数,不妨设k ="$ (m ≠0),m 为整数, 则方程kx !+2x +1−2k =0即为x !+2mx +m −2=0, 配方得:(x +m )!=m !−m +2, 即x =−m ±√m !−m +2,当m =2即k ="!时,方程的两根为x "=0,x !=−4,都是整数,符合题意;当m ≠2时,m !−m +2=(m −"!)!+&%不是完全平方数,故不存在其它整数m 的值使上式成立; 综上,k =−1或"!.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax !+bx +c =0(a ≠0)有两个根x "和x !,且1<x "<2<x !<4,那么方程cx !−bx +a =0的较小根x )的范围为( ) A ."!<x )<1 B .−4<x )<−2C .−"!<x )<−"%D .−1<x )<−"!【思路点拨】由根与系数的关系得出x "+x !=−*+,x "⋅x !=,+,再设方程cx !−bx +a =0的为m ,n ,根据根与系数的关系得出m +n =−("-!+"-"),mn ="-"⋅-!,从而得出方程cx !−bx +a =0的两根为−"-",−"-!,然后由1<x "<2<x !<4,求出−"-",−"-!的取值范围,从而得出结论.【解题过程】解:∵方程ax !+bx +c =0(a ≠0)有两个根x "和x !, ∴x "+x !=−*+,x "⋅x !=,+,设方程cx !−bx +a =0的两根为m ,n , 则m +n =*,,mn =+,,∵m +n =*,=−*+⋅(−+,),mn ="-"⋅-!,∴m +n =−(x "+x !)⋅"-"⋅-!=−-"/-!-"⋅-!=−("-!+"-"),∴方程cx !−bx +a =0的两根为−"-",−"-!,◆学霸必刷∵1<x"<2,2<x!<4,∴"!<"-"<1,"%<"-!<"!,∴−1<−"-"<−"!,−"!<−"-!<−"%,∵−"-"<−"-!,∴方程cx!−bx+a=0的较小根x)的范围为−1<x)<−"!.故选:D.2.(22-23九年级下·安徽安庆·阶段练习)若方程x!+2px−3p−2=0的两个不相等的实数根x"、x!满足x"!+x")=4−(x!!+x!)),则实数p的所有值之和为()A.0 B.−)%C.−1D.−0%【思路点拨】先根据一元二次方程解的定义和根与系数的关系得到x"!+2px"−3p−2=0,x"+x!=−2p,进而推出x")=3px"+2x"−2px"!,则x")+x"!=3px"+2x"−2px"!+x"!,x!)+x!!=3px!+2x!−2px!!+ x!!,即可推出(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,然后代入x"+x!=−2p,x"!+x!!= (x"+x!)!−4p得到2p(4p+3)(p+1)=0,再根据判别式求出符号题意的值即可得到答案.【解题过程】解:∵x"、x!是方程x!+2px−3p−2=0的两个相等的实数根,∴x"!+2px"−3p−2=0,x"+x!=−2p,x"x!=−3p−2,∴x"!+2px"=3p+2,∴x")+2px"!=3px"+2x",∴x")=3px"+2x"−2px"!,∴x")+x"!=3px"+2x"−2px"!+x"!,同理得x!)+x!!=3px!+2x!−2px!!+x!!,∵x"!+x")=4−(x!!+x!)),∴x"!+x")+(x!!+x!))=4,∴3px"+2x"−2px"!+x"!+3px!+2x!−2px!!+x!!=4,∴(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,∴(3p+2)(−2p)+(1−2p)[(−2p)!−2(−3p−2)]=4,∴−6p!−4p+(1−2p)(4p!+6p+4)=4,∴−6p!−4p+4p!+6p+4−2p(4p!+6p+4)=4,∴−2p!+2p−2p(4p!+6p+4)=0,∴−2p(4p!+6p+4+p−1)=0,∴2p(4p!+7p+3)=0,∴2p(4p+3)(p+1)=0,解得p"=0,p!=−1,p)=−)%,∵Δ=(2p)!+4(3p+2)>0,∴p!+3p+2>0,∴(p+1)(p+3)>0,∴p=−1不符合题意,∴p"+p)=−)%∴符合题意,故选B.3.(22-23八年级下·安徽合肥·期末)若关于x的一元二次方程x!−2x+a!+b!+ab=0的两个根为x"=m,x!=n,且a+b=1.下列说法正确的个数为( )①m·n>0;②m>0,n>0;③a!≥a;④关于x的一元二次方程(x+1)!+a!−a=0的两个根为x"= m−2,x!=n−2.A.1B.2C.3D.4【思路点拨】根据根与系数的关系得x"x!=mn=a!+b!+ab,利用a+b=1消去b得到mn=a!−a+1=8a−"!9! +)%>0,从而即可对①进行判断;由于x"+x!=m+n=2>0,x"x!=mn>0,利用有理数的性质可对②进行判断;根据根的判别式的意义得到Δ=4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,则可对③进行判断;利用a!+b!+ab=a!−a+1把方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,由于方程(x−1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,所以x+2=m或x+2=n,于是可对④进行判断.【解题过程】解:根据根与系数的关系得x"x!=mn=a!+b!+ab,∵a+b=1,∴b=1−a,∴mn=a!+(1−a)!+a(1−a)=a!−a+1=8a−"!9!+)%>0,所以①正确;∵x"+x!=m+n=2>0,x"x!=mn>0,∴m>0,n>0,所以②正确;∵Δ≥0,∴4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,∴a≥a!,所以③错误;∵a!+b!+ab=a!−a+1,∴方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,即(x−1)!+a!−a=0,∵方程(x+1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,∴x+2=m或x+2=n,解得x"=m−2,x!=n−2,所以④正确.故选:C.4.(22-23九年级上·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程x!−8cx−9d=0的解,c、d是方程x!−8ax−9b=0的解,则a+b+c+d的值为.【思路点拨】由根与系数的关系得a+b,c+d的值,两式相加得的值,根据一元二次方程根的定义可得a!−8ac−9d= 0,代入可得a!−72a+9c−8ac=0,同理可得c!−72c+9a−8ac=0,两式相减即可得a+c的值,进而可得a+b+c+d的值.【解题过程】解:由根与系数的关系得a+b=8c,c+d=8a,两式相加得a+b+c+d=8(a+c).因为a是方程x!−8cx−9d=0的根,所以a!−8ac−9d=0,又d=8a−c,所以a!−72a+9c−8ac=0①同理可得c!−72c+9a−8ac=0②①-②得(a−c)(a+c−81)=0.因为a≠c,所以a+c=81,所以a+b+c+d=8(a+c)=648.故答案为648.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值【思路点拨】用分类讨论的思想,解决问题即可.【解题过程】解:不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,,且b+c=2−a,bc=%+=0的两实根,于是b,c是一元二次方程x!−(2−a)x+%+≥0,即(a!+4)(a−4)≥0,∴Δ=(2−a)!−4×%+所以a≥4.又当a=4,b=c=−1时,满足题意.故a,b,c中最大者的最小值为4.因为abc=4>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,不妨设a>0,b<0,c<0,则|a|+|b|+|c|=a−b−c=a−(2−a)=2a−2,∵a≥4,故2a−2≥6,当a=4,b=c=−1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.故答案为:6.6.(22-23九年级上·四川成都·期末)将两个关于x的一元二次方程整理成a(x+ℎ)!+k=0(a≠0,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”,且方程ax!+ bx+c=0(a≠0)有两个根为x"、x!,则b-2c=,ax"+x"x!+ax!的最大值是.【思路点拨】利用ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”得出b=2a,c=a−2,即可求出b−2c;利用一元二次方程根与系数的关系可得x"+x!=−2,x"x!=+'!+,进而得出ax"+x"x!+ax!=−28a+"+9+1,设a+"+=t(t>0),得a!−t⋅a+1=0,根据方程a!−t⋅a+1=0有正数解可知Δ=t!−4≥0,求出t的取值范围即可求出ax"+x"x!+ax!的最大值.【解题过程】解:根据新的定义可知,方程ax!+bx+c=0(a≠0)可变形为a(x+1)!−2=0,∴a(x+1)!−2=ax!+bx+c,展开,ax!+2ax+a−2=ax!+bx+c,可得b=2a,c=a−2,∴b−2c=2a−2(a−2)=4;∵x"+x!=−2,x"x!=+'!+,∴ax"+x"x!+ax!=a(x"+x!)+x"x!=−2a++'!+=−28a+"+9+1,∵方程ax!+bx+c=0(a≠0)有两个根为x"、x!,∴Δ=b!−4ac=(2a)!−4a(a−2)=8a≥0,且a≠0,∴a>0,设a+"+=t(t>0),得a!−t⋅a+1=0,∵方程a!−t⋅a+1=0有正数解,∴Δ=t!−4≥0,解得t≥2,即a+"+≥2,∴ax"+x"x!+ax!=−28a+"+9+1≤−3.故答案为:4,-3.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x!y+xy!=484,求x)+y).【思路点拨】本题主要考查了代数式求值、一元二次方程的根与系数的关系、因式分解的应用等知识点,综合应用所学知识成为解题的关键.设xy=m,x+y=n,等量代换后可得44=m+n、484=mn,则m、n为t!−44t+484=0的根,可解得m=n=22,然后再对x)+y)变形后将m=n=22代入计算即可.【解题过程】解:设xy=m,x+y=n,∴44=xy+x+y=m+n,484=x!y+xy!=xy(x+y)=mn,∴m、n为t!−44t+484=0的根,∴m=n=22,∴x)+y)=(x+y)(x!+y!−xy)=(x+y)[(x+y)!−3xy]=n[n!−3m]=n)−3mn=9196.8.(2024九年级·全国·竞赛)记一元二次方程x!+3x−5=0的两根分别为x"、x!.(1)求"-"'"+"-!'"的值;(2)求3x"!+6x"+x!!的值.【思路点拨】本题考查了一元二次方程根与系数的关系、一元二次方程的解.在利用根与系数的关系x"⋅x!=,+,x"+x!=−*+时,需要弄清楚a、b、c的意义.(1)利用根与系数的关系求得求"-"'"+"-!'"的值的值;(2)由一元二次方程的解可得x"!+3x"−5=0,再利用根与系数的关系求解即可.【解题过程】(1)∵x"+x!=−3,x"x!=−5,∴1x"−1+1x!−1=x!−1+x"−1 (x"−1)(x!−1)=x"+x!−2 x"x!−(x"+x!)+1=−3−2−5−(−3)+1=5;(2)∵x"是一元二次方程x!+3x−5=0的根,∴x"!+3x"−5=0,∴x"!+3x"=5,又∵x"+x!=−3,x"x!=−5,∴3x"!+6x"+x!!=2(x"!+3x")+(x"+x!)!−2x"x!=29.9.(23-24九年级下·北京·开学考试)已知关于x的方程x!−2mx+m!−n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.【思路点拨】本题考查一元二次方程根的判别式及根与系数的关系,对于一元二次方程ax!+bx+c=0(a≠0),当判别式Δ>0时方程有两个不相等的实数根,Δ=0时方程有两个相等的实数根,Δ<0时方程没有实数根,若方程的两个实数根为x"、x!,则x"+x!=−*+,x"⋅x!=,+.(1)根据方程x!−2mx+m!−n=0有两个不相等的实数根得出判别式Δ>0,列出不等式即可得答案;(2)根据(1)中结果得出n值,利用一元二次方程根与系数的关系列方程求出m的值即可.【解题过程】(1)解:∵关于x的方程x!−2mx+m!−n=0有两个不相等的实数根,∴Δ=(−2m)!−4(m!−n)>0,解得:n>0.(2)设方程的两个实数根为x"、x!,且x">x!,∴x"+x!=2m,x"⋅x!=m!−n,由(1)可知:n>0,∵n为符合条件的最小整数,∴n=1,∵该方程的较大根是较小根的3倍,∴x"=3x!,∴4x!=2m,3x!!=m!−1,∴3×$!%=m!−1,解得:m"=−2,m!=2.当m=2时,x!=1,则x"=3x!=3,符合题意,当m=−2时,x!=−1,则x"=3x!=−3<x!,与x">x!不符,舍去,∴m=2.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x!+2x−m!−m=0.(1)若α和β分别是该方程的两个根,且αβ=−2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α"、β",α!、β!,⋅⋅⋅,α!1!%、β!1!%,求"2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$的值.【思路点拨】(1)根据一元二次方程的根与系数的关系进行求解即可;(2)根据一元二次方程的根与系数的关系x"+x!=−*+,x"⋅x!=,+可得:"-"+"-!=-"/-!-"⋅-!=!$!/$,进一步可寻找"2!#!$+"3!#!$的规律,即可求解.【解题过程】(1)解:∵关于x的一元二次方程x!+2x−m!−m=0,α和β分别是该方程的两个根,∴αβ=−m!−m∵αβ=−2,∴−2=−m!−m∴m=1或m=−2;(2)解:设方程x!+2x−m!−m=0的两个根为:x",x!则x"+x!=−*+=−2,x"⋅x!=,+=−m!−m,∴" -"+"-!=-"/-!-"·-!=!$!/$=!$($/")∴" 2"+"3"=!"×!,"2!+"3!=!!×),"2%+"3%=!)×%…..1α!1!%+1β!1!%=22024×2025∴" 2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$=2×8""×!+"!×)+...+"!1!%×!1!09=2×X1−12+12−13+...+12024−12025Y=2×X1−1 2025Y=4048 202511.(22-23九年级上·湖北武汉·期中)已知α、β是关于x的一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根(1)直接写出m的取值范围(2)若满足"2+"3=−1,求m的值.(3)若α>2,求证:β>2;【思路点拨】(1)根据一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根,得Δ>0,即可列式作答;(2)结合一元二次方程根与系数的关系,得α+β=−(2m+3)和αβ=m!,因为"2+"3=−1,所以!$/)$!=1,解得m"=3,m2=−1,结合m>−)%,即可作答;(3)因为(α−2)(β−2)=αβ−2(α+β)+4,结合α+β=−(2m+3)和αβ=m!,得m!+2(2m+3)+ 4=(m+2)!+6,则(α−2)(β−2)≥6>0,又因为α>2,即可证明β>2.【解题过程】(1)解:∵一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根∴Δ=b!−4ac=(2m+3)!−4×1×m!=4m!+12m+9−4m!=12m+9>0,即m>−)%;(2)解:∵"2+"3=323+223=2/323=−1,且α+β=−*+=−(2m+3),αβ=,+=m!∴!$/)$!=1整理得m!−2m−3=0,解得:m"=3,m2=−1∵由(1)知m>−)%,∴m=3检验:当m=3时,m!≠0,即m=3;(3)证明:因为(α−2)(β−2)=αβ−2(α+β)+4,把α+β=−(2m+3)和αβ=m!代入上式,得m!+2(2m+3)+4=m!+4m+10=(m+2)!+6,∵(m +2)!≥0, ∴(m +2)!+6≥6 ∴(α−2)(β−2)≥6>0 ∵α>2, ∴α−2>0, ∴β−2>0, 即β>2.12.(22-23九年级·浙江·自主招生)已知方程x !+4x +1=0的两根是α、β. (1)求|α−β|的值; (2)求Z 23+Z 32的值;(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x )+y )=(x +y)(x !+y !−xy ). 【思路点拨】(1)利用一元二次方程根与系数的关系可得α+β=−4,αβ=1,再求得(α−β)!的值,进而求得|α−β|的值.(2)先根据二次根式的性质将Z 23+Z 32化为√293+93√2,然后通分化简可得2/3923,最后将α+β=−4,αβ=1代入计算即可;(3)由题意可得新一元二次方程的两个根为8"29)和8"39),然后求得8"29)+8"39)和8"29)8"39)的值,然后根据一元二次方程根与系数的关系即可解答. 【解题过程】(1)解:∵方程x !+4x +1=0的两根是α、β ∴α+β=−4,αβ=1∴(α−β)!=(α+β)!−4αβ=12 ∴|α−β|=2√3;(2)解:由(1)可知:α<0,β<0,∵[\αβ+\βα]!=αβ+βα+2=α!+β!αβ+2=(α+β)!−2αβαβ+2=16,∴Z23+Z32=4(负值舍去);(3)解:由题意可得新一元二次方程的两个根为8"29)和8"39)则8"29)+8"39)=(1α+1β)^X1αY!+X1βY!−1αβ_=α+βαβ^α!+β!α!β!−1αβ_=α+βαβ^(α+β)!−2αβα!β!−1αβ_=−41`16−21!−1a=−52X 1αY)X1βY)=X1αβY)=1所以新的一元二次方程x!+52x+1=0.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx!−(m−1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.【思路点拨】(1)根据关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,先利用一元二次方程的根的判别式确定m的取值范围,再根据一元二次方程的根与系数的关系,可知x"+x!=$'"$,若方程的两根之和为整数,即$'"$为整数,即可确定m的值;(2)分两种情况讨论:当m=0时,此时关于x的方程为x+2=0,求解可得x=−2,符合题意;当m≠0时,对于关于x的方程mx!−(m−1)x+2=0可有x=($'")±√$!'"1$/"!$,若方程的根为有理根,且m为整数,则Δ=m!−10m+1为某一有理数的平方,据此分析即可获得答案.【解题过程】(1)解:∵关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,∴m ≠0,且Δ=[−(m −1)]!−4m ×2=m !−10m +1≥0, 根据一元二次方程的根与系数的关系,可知x "+x !=−'($'")$=$'"$,若方程的两根之和为整数,即$'"$为整数,∵$'"$=1−"$,∴"$是整数, ∴m =±1,当m =1时,Δ=1−10+1=−8<0,不符合题意; 当m =−1时,Δ=1+10+1=12>0,$'"$='"'"'"=2,为整数,符合题意;∴m 的值为−1;(2)当m =0时,此时关于x 的方程为x +2=0,解得x =−2; 当m ≠0时,对于关于x 的方程mx !−(m −1)x +2=0的根为:x =($'")±√$!'"1$/"!$,若方程的根为有理根,且m 为整数, 则Δ=m !−10m +1为完全平方数, 设m !−10m +1=k !(k 为正整数), 则:m ="1±√"11'%/%#!!=5±√24+k !,∵m 为整数,设24+k !=n !(n 为正整数), ∴(k +n )(n −k )=24,∴b k +n =12n −k =2 或b k +n =6n −k =4 或b k +n =8n −k =3 或b k +n =24n −k =1 , 解得:bk =5n =7 或b k =1n =5 或d k =0!n =""!(不合题意,舍去)或d k =!)!n =!0!(不合题意,舍去) ∴m !−10m +1=1!=1或m !−10m +1=5!=25; 当m !−10m +1=1时,解得m =10或m =0(舍去); 当m !−10m +1=25时,解得m =−2或m =12,综上所述,若方程的根为有理根,则整数m 的值为0或10或−2或12.14.(22-23九年级下·浙江·自主招生)设m 为整数,关于x 的方程(m !+m −2)x !−(7m +2)x +12=0有两个整数实根. (1)求m 的值.(2)设△ABC 的三边长a,b,c 满足c =4√2,m !+a !m −12a =0,m !+b !m −12b =0.求△ABC 的面积. 【思路点拨】(1)设原方程的两个解分别为x ",x !,根据两个整数实根,则x "+x !=&$/!$!/$'!,x "x !="!$!/$'!都是整数,进而分类讨论,即可求解;(2)由(1)得出的m 的值,然后代入将m !+a !m −12a =0,m !+b !m −12b =0进行化简,得出a ,b 的值.然后再根据三角形三边的关系来确定符合条件的a ,b 的值,用三角形的面积公式得出三角形的面积. 【解题过程】(1)解:∵m !+m −2≠0, ∴m ≠−2或m =1, ∵方程有两个实数根,∴Δ=b !−4ac =[−(7m +2)]!−4×12×(m !+m −12) =m !−20m +580=(m −10)!+480>0 设原方程的两个解分别为x ",x !∴x "+x !=&$/!$!/$'!,x "x !=∴m !+m −2=1,2,3,4,6,12 m !+m −2=1,解得:m ='"±√")!(舍去) m !+m −2=2,解得:m ='"±√"&!(舍去) m !+m −2=3,解得:m ='"±√!"!(舍去)m !+m −2=4,解得:m =−3或m =2 m !+m −2=6,解得:m ='"±√))!(舍去)m !+m −2=12,解得:m ='"±√"!;!(舍去) 当m =−3时,&$/!$!/$'!='!"/!%=−";%不是整数,舍去当m =2时,&$/!$!/$'!="%/!%=4符合题意,综上所述,m=2;(2)把m=2代入两等式,化简得a!−6a+2=0,b!−6b+2=0,当a=b时,a=b=3±√7,当a≠b时,a、b是方程x!−6x+2=0的两根,而Δ>0,根据根与系数的关系可得,a+b=6>0,ab=2>0,则a>0、b>0,①a≠b,c=4√2时,由于a!+b!=(a+b)!−2ab=36−4=32=c!,故△ABC为直角三角形,且∠C=90°,S<=>?="!ab=1;②a=b=3−√7,c=4√2时,因2(3−√7)<4√2,故不能构成三角形,不合题意,舍去;;③a=b=3+√7,c=4√2时,因2(3+√7)>4√2,故能构成三角形,S<=>?="!×4√2×Z l3+√7m!−l2√2m!=4n4+3√7;综上,△ABC的面积为1或4n4+3√7.15.(22-23九年级上·湖南常德·期中)阅读材料:材料1:若关于x的一元二次方程ax!+bx+c=0(a≠0)的两个根为x1,x2,则x"+x!=−*+,x"x!=,+.材料2:已知一元二次方程x!−x−1=0的两个实数根分别为m,n,求m!n+mn!的值.解:∵一元二次方程x!−x−1=0的两个实数根分别为m,n,∴m+n=1,mn=−1,则m!n+mn!=mn(m+n)=−1×1=−1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x!−3x−1=0的两个根为x1,x2,则x"+x!=___________,x"x!=___________.(2)类比应用:已知一元二次方程x!−3x−1=0的两根分别为m、n,求A$+$A的值.(3)思维拓展:已知实数s、t满足s!−3s−1=0,t!−3t−1=0,且s≠t,求"B −"C的值.【思路点拨】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出m+n=−*+=3,mn=,+=−1,再根据A$+$A=$!/A!$A=($/A)!'!$A$A,最后代入求值即可;(3)由题意可将s、t可以看作方程x!−3x−1=0的两个根,即得出s+t=−*+=3,s⋅t=,+=−1,从而可求出(t−s)!=(t+s)!−4st=13,即t−s=√13或t−s=−√13,最后分类讨论分别代入求值即可.【解题过程】(1)解:∵一元二次方程x!−3x−1=0的两个根为x1,x2,∴x"+x!=−*+=−')"=3,x"⋅x!=,+=−""=−1.故答案为:3,−1;(2)∵一元二次方程x!−3x−1=0的两根分别为m、n,∴m+n=−*+=3,mn=,+=−1,∴A $+$A=$!/A!$A=(m+n)!−2mnmn=3!−2×(−1)−1=−11;(3)∵实数s、t满足s!−3s−1=0,t!−3t−1=0,∴s、t可以看作方程x!−3x−1=0的两个根,∴s+t=−*+=3,st=,+=−1,∵(t−s)!=(t+s)!−4st=3!−4×(−1)=13∴t−s=√13或t−s=−√13,当t−s=√13时," B −"C=C'BBC=√")'"=−√13,当t−s=−√13时," B −"C=C'BBC='√")'"=√13,综上分析可知,"B −"C的值为√13或−√13.16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx +n =0或px +q =0时,多项式A =(mx +n )(px +q )=mpx !+(mq +np )x +nq 的值为0,把此时x 的值称为多项式A 的零点.(1)已知多项式(3x +1)(x −2),则此多项式的零点为__________;(2)已知多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,求多项式B 的另一个零点; (3)小聪继续研究(x −3)(x −1),x (x −4)及8x −0!98x −)!9等,发现在x 轴上表示这些多项式零点的两个点关于直线x =2对称,他把这些多项式称为“2系多项式”.若多项式M =(2ax +b )(cx −5c )=bx !−4cx −2a −4是“2系多项式”,求a 与c 的值. 【思路点拨】(1)根据多项式的零点的定义即可求解;(2)根据多项式的零点的定义将x =1代入ax !−(a −1)x −+!=0,求得a =2,再解一元二次方程即可求解;(3)令cx −5c =0,求得M 的一个零点为5,根据“2系多项式”的定义求得方程bx !−4cx −2a −4=0的两个根为x "=−1,x !=5,再利用根与系数的关系即可求解. 【解题过程】(1)解:令(3x +1)(x −2)=0, ∴3x +1=0或x −2=0, ∴x =−")或x =2,则此多项式的零点为−")或2; 故答案为:−")或2;(2)解:∵多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,∴将x =1代入ax !−(a −1)x −+!=0,得a −(a −1)−+!=0,解得a =2,∴B =2x !−x −1=(x −1)(2x +1), 令2x +1=0,解得x =−"!, ∴多项式B 的另一个零点为−"!;(3)解:∵M=(2ax+b)(cx−5c)=bx!−4cx−2a−4是“2系多项式”,令cx−5c=0,解得x=5,即M的一个零点为5,∴设M的另一个零点为y,则D/0!=2,解得y=−1,即2ax+b=0时,x=−1,则−2a+b=0①,令M=bx!−4cx−2a−4=0,根据题意,方程bx!−4cx−2a−4=0的两个根为x"=−1,x!=5,∴x"+x!=−'%,*=5+(−1)=4,x"⋅x!='!+'%*=5×(−1)=−5,∴c=b②,5b−2a−4=0③,解①②③得c=b=1,a="!,∴a="!,c=1.17.(22-23九年级上·湖北黄石·期末)(1)x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,且(x"+1)⋅(x!+1)=8,求k的值.(2)已知:α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,设s"=α+β,s!=α!+β!,…,s A=αA+βA.根据根的定义,有α!−α−1=0,β!−β−1=0,将两式相加,得(α!+β!)−(α+β)−2= 0,于是,得s!−s"−2=0.根据以上信息,解答下列问题:①直接写出s",s!的值.②经计算可得:s)=4,s%=7,s0=11,当n≥3时,请猜想s A,s A'",s A'!之间满足的数量关系,并给出证明.【思路点拨】(1)根据一元二次方程根与系数的关系可得出x"+x!=2(k+1),x"x!=k!+2.由(x"+1)(x!+1)=8,可得x"x!+(x"+x!)+1=8,即得出关于k的一元二次方程,解出k的值,再根据一元二次方程根的判别式验证,舍去不合题意的值即可;(2)①根据一元二次方程根与系数的关系可得出α+β=−*+=1,αβ=,+=−1,进而可求出s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=3;②由一元二次方程的解的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,再由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0.最后结合题意即可得出s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.【解题过程】解:(1)∵x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,∴x"+x!=−*+=−'!(#/")"=2(k+1),x"x!=,+=#!/!"=k!+2,∴(x"+1)(x!+1)=x"x!+(x"+x!)+1=k!+2+2(k+1)+1=8,整理,得:k!+2k−3=0,解得:k"=−3,k!=1.当k=−3时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2(−3+1)]!−4[(−3!)+2]=−28<0,∴此时原方程没有实数根,∴k=−3不符合题意;当k=1时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2×(1+1)]!−4(1!+2)=4>0,∴此时原方程有两个不相等的实数根,∴k=1符合题意,∴k的值为1;(2)①∵x!−x−1=0,∴a=1,b=−1,c=−1.∵α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,∴α+β=−*+=1,αβ=,+=−1,∴s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=1!−2×(−1)=3;②猜想:s A=s A'"+s A'!.证明:根据一元二次方程根的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,∵s A=αA+βA,s A'"=αA'"+βA'",s A'!=αA'!+βA'!,∴s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x!−(m+2)x+4m=0有两个实数根x",x!,其中x"<x!.(1)若m=−1,求x"!+x!!的值;(2)一次函数y=3x+1的图像上有两点A(x",y"),B(x!,y!),若AB=√10,求m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x"和x!,求该直角三角形的面积.【思路点拨】该题主要考查了一元二次方程的根判别式“Δ=b!−4ac”,根与系数关系“x"+x!=−*+,x"⋅x!=,+”,一次函数的性质,直角三角形的性质,勾股定理“直角三角形两直角边的平方之和等于斜边的平方”等知识点,解题的关键是分类谈论思想的运用;(1)将m=−1代入方程得出方程,再根据根与系数关系得到x"+x!=−*+=1,x"⋅x!=,+=−4,将x"!+x!!转化即可求解;(2)根据点A(x",y"),B(x!,y!)在函数图像上,得出Alx",3x"+1m,Blx!,3x!+1m,再根据根与系数关系得到x"+x!=m+2,x"⋅x!=4m,根据AB=√10即可求解;(3)根据直角三角形两直角边x",x!为整数,得出Δ=b!−4ac=m!−12m+4,令m!−12m+4=k!(k为正整数),得出(m+k−6)(m−k−6)=32,又m+k−6>m−k−6,然后分三种情况取值即可解答;【解题过程】(1)当m=−1时,方程为x!−x−4=0,Δ=b!−4ac=(−1)!−4×1×(−4)=17>0,∴x"+x!=−*+=1,x"⋅x!=,+=−4,即x"!+x!!=(x"+x!)!−2x"x!=1!−2×(−4)=9;(2)将A(x",y"),B(x!,y!)代入y=3x+1可得Alx",3x"+1m,Blx!,3x!+1m,又Δ=(m+2)!−4×4m>0,故x"+x!=m+2,x"⋅x!=4m,AB!=(x"−x!)!+(y"−y!)!=10(x"−x!)!,即10(x"−x!)!=10,(x"−x!)!=1,(x"−x!)!=(x"+x!)!−4x"x!=1,(m+2)!−4×4m=1,(m−6)!=33,m"=6+√33,m!=6−√33;(3)∵直角三角形两直角边x ",x !为整数,∴Δ=b !−4ac =(m +2)!−4×4m =m !−12m +4为平方数, 不妨令m !−12m +4=k !(k 为正整数), (m −6)!−32=k !,(m +k −6)(m −k −6)=32, m +k −6>m −k −6,当①∴m +k −6=32,m −k −6=1, 解得m =%0!(不合题意舍去);当②m +k −6=16,m −k −6=2, 解得m =15,∴方程x !−17x +60=0, x "=12,x !=5,则斜边为13, 即S =-"⋅-!!=30;当③m +k −6=8,m −k −6=4, 解得m =12,∴方程x !−14x +48=0,x "=6,x !=8,则斜边为10, 即S =-"⋅-!!=24,综上所述:该直角三角形的面积为30或24.19.(22-23九年级上·全国·单元测试)如果方程x !+px +q =0有两个实数根x ",x !,那么x "+x !=−p ,x "x !=q ,请根据以上结论,解决下列问题:(1)已知a ,b 是方程x !+15x +5=0的二根,则+*+*+=?(2)已知a 、b 、c 满足a +b +c =0,abc =16,求正数c 的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知b x =x "y =y "和b x =x !y =y !是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解.问:是否存在实数k ,使得y "y !−-"-!−-!-"=2?若存在,求出的k 值,若不存在,请说明理由.【思路点拨】(1)根据a ,b 是方程x !+15x +5=0的二根,求出a +b ,ab 的值,即可求出+*+*+的值; (2)根据a +b +c =0,abc =16,得出a +b =−c ,ab ="E,,a 、b 是方程x !+cx +"E ,=0的解,再根据c !−4×"E ,≥0,即可求出c 的最小值;(3)运用根与系数的关系求出x "+x !=1,x "x !=k +1,再解y "y !−-"-!−-!-"=2,即可求出k 的值.【解题过程】(1)解:∵a ,b 是方程x !+15x +5=0的二根, ∴a +b =−15,ab =5, ∴+*+*+=(+/*)!'!+*+*=('"0)!'!×0=43,∴+*+*+=43;(2)∵a +b +c =0,abc =16, ∴a +b =−c ,ab ="E ,,∴a 、b 是方程x !+cx +"E ,=0的解,∴c !−4×"E ,≥0,∴c !−%%,≥0,∵c 是正数,∴c )−4)≥0, ∴c )≥4), ∴c ≥4,∴正数c 的最小值是4;(3)存在,当k =−2时,y "y !−-"-!−-!-"=2.理由如下: ∵u x !−y +k =0①x −y =1② ,由①得:y =x !+k , 由②得:y =x −1,∴x !+k =x −1,即x !−x +k +1=0,由题意思可知,x ",x !是方程x !−x +k +1=0的两个不相等的实数根, ∴d (−1)!−4(k +1)>0x "+x !=1x "x !=k +1 , 则k <−)%,∵b x =x "y =y " 和b x =x !y =y ! 是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解,∴y "y !=(x "−1)(x !−1), ∴y "y !−-"-!−-!-"=(x "−1)(x !−1)−(-"/-!)!'!-"-!-"-!=2,∴x "x !−(x "+x !)+1−(-"/-!)!'!-"-!-"-!=2,∴k +1−1+1−"'!(#/")#/"=2,整理得:k !+2k =0,解得:k "=−2,k !=0(舍去), ∴k 的值为−2.20.(22-23九年级上·四川资阳·期末)定义:已知x ",x !是关于x 的一元二次方程ax !+bx +c =0(a ≠0)的两个实数根,若x "<x !<0,且3<-"-!<4,则称这个方程为“限根方程”.如:一元二次方程x !+13x +30=0的两根为x "=−10,x !=−3,因−10<−3<0,3<'"1')<4,所以一元二次方程x !+13x +30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x !+9x +14=0是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程2x !+(k +7)x +k !+3=0是“限根方程”,且两根x "、x !满足x "+x !+x "x !=−1,求k 的值;(3)若关于x 的一元二次方程x !+(1−m )x −m =0是“限根方程”,求m 的取值范围. 【思路点拨】(1)解该一元二次方程,得出x "=−7,x !=−2,再根据“限根方程”的定义判断即可; (2)由一元二次方程根与系数的关系可得出x "+x !=−#/&!,x "x !=#!/)!,代入x "+x !+x "x !=−1,即可求出k "=2,k !=−1.再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出x"=−1,x!=m或x"=m,x!=−1.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出Δ>0,m<0且m≠−1,可求出m 的取值范围.最后分类讨论即可求解.【解题过程】(1)解:x!+9x+14=0,(x+2)(x+7)=0,∴x+2=0或x+7=0,∴x"=−7,x!=−2.∵−7<−2,3<'&'!=&!<4,∴此方程为“限根方程”;(2)∵方程2x!+(k+7)x+k!+3=0的两个根分比为x"、x!,∴x"+x!=−#/&!,x"x!=#!/)!.∵x"+x!+x"x!=−1,∴−#/&!+#!/)!=−1,解得:k"=2,k!=−1.分类讨论:①当k=2时,原方程为2x!+9x+7=0,∴x"=−&!,x!=−1,∴x"<x!<0,3<-"-!=&!<4,∴此时方程2x!+(k+7)x+k!+3=0是“限根方程”,∴k=2符合题意;②当k=−1时,原方程为2x!+6x+4=0,∴x"=−2,x!=−1,∴x"<x!<0,-"-!=2<3,∴此时方程2x!+(k+7)x+k!+3=0不是“限根方程”,∴k=−1不符合题意.综上可知k的值为2;(3)x!+(1−m)x−m=0,(x+1)(x−m)=0,∴x+1=0或x−m=0,∴x"=−1,x!=m或x"=m,x!=−1.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴Δ>0,m<0且m≠−1,∴(1−m)!+4m>0,即(1+m)!>0,∴m<0且m≠−1.分类讨论:①当−1<m<0时,∴x"=−1,x!=m,∵3<-"-!<4,∴3<'"$<4,解得:−")<m<−"%;②当m<−1时,∴x"=m,x!=−1,∵3<-"-!<4,∴3<$'"<4,解得:−4<m<−3.综上所述,m的取值范围为−")<m<−"%或−4<m<−3.。
人教版八年级下册数学 第19章 一次函数 综合(压轴题)示范
人教版八年级下册数学第19章 一次函数 综合(压轴题)示范1.如图,直线l 1的解析式为y =12x+1,且l 1与x 轴交于点D ,直线l 2经过定点A 、B ,直线l 1与l 2交于点C .(1)求直线的解析式; (2)求△ADC 的面积;(3)在x 轴上是否存在一点E ,使△BCE 的周长最短?若存在,请求出点E 的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可直接求得l 2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C 的坐标,然后利用三角形的面积公式即可求解; (3)求得C 关于y 轴的对称点,然后求得经过这个点和B 点的直线解析式,直线与x 轴的交点就是E . 【解析】(1)设l 2的解析式是y =kx+b ,根据题意得:{4k +b =0−k +b =5,解得{k =−1b =4,则函数的解析式是:y =﹣x+4;(2)在y =12x+1中令y =0,即y =12x+1=0,解得:x =﹣2,则D 的坐标是(﹣2,0). 解方程组{y =−x +4y =12x +1,解得{x =2y =2,则C 的坐标是(2,2).则S △ADC =12×AD ×y C =12×6×2=6;(3)存在,理由:设C (2,2)关于y 轴的对称点C ′(2,﹣2),连接BC ′交x 轴于点E ,则点E 为所求点, △BCE 的周长=BC+BE+CE =BC+BE+C ′E =BC+BC ′为最小,设经过(2,﹣2)和B 的函数解析式是y =mx+n ,则{2m +n =−2−m +m =5,解得:{m =−73n =83, 则直线的解析式是y =−73x +83,令y =0,则y =−73x +83=0,解得:x =87.则E 的坐标是(87,0).【小结】本题考查了待定系数法求一次函数的解析式,以及对称的性质,正确确定E 的位置是本题的关键. 2、矩形ABCD 在如图所示的平面直角坐标系中,点A 的坐标为(0,3),BC =2AB ,直线经过点B ,交AD 边于点P 1,此时直线l 的函数表达式是y =2x +1. (1)求BC ,AP 1的长;(2)沿y 轴负方向平移直线l ,分别交AD ,BC 边于点P ,E . ①当四边形BEPP 1是菱形时,求平移的距离;②设AP =m ,当直线l 把矩形ABCD 分成两部分的面积之比为3:5时,求m 的值.解:(1)∵直线y =2x +1经过y 轴上的B 点,∴B (0,1),又∵A 的坐 标为(0,3);∴AB=2;BC=2AB=4;P 1(1,3);AP 1=1;(2)①当四边形BEPP 1是菱形时,BP 1=BE=5;∴E (5,1);设平移之后的直线解析式为:y =2x +b ,将点E 代入;b=1-25; 与y 轴的交点B ’(0,1-25),∴沿y 轴负方向平移距离为25;②∵AP=m ;AP 1=1;PP 1=BE=m-1;而S 梯形ABEP =83S 矩形ABCD 或S 梯形ABEP =85S 矩形ABCD ; ∴53m 1-m 221或)(=+⨯;m=2或3. 3、如图,一次函数y 1=54x+n 与x 轴交于点B ,一次函数y 2=−34x+m 与y 轴交于点C ,且它们的图象都经过点D (1,−74).(1)则点B 的坐标为 ,点C 的坐标为 ;(2)在x 轴上有一点P (t ,0),且t >125,如果△BDP 和△CDP 的面积相等,求t 的值;(3)在(2)的条件下,在y 轴的右侧,以CP 为腰作等腰直角△CPM ,直接写出满足条件的点M 的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y =0和x =0,可得B 、C 点坐标; (2)根据面积的和差,可得关于t 的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y 轴的右侧,有三个符合条件的点M ,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M 的坐标.【解析】(1)将D (1,−74)代入y =54x+n ,解得n =﹣3,即y =54x ﹣3,当y =0时,54x ﹣3=0.解得x =125,即B 点坐标为(125,0); 将(1,−74)代入y =−34x+m ,解得m =﹣1,即y =−34x ﹣1,当x =0时,y =﹣1.即C 坐标为(0,﹣1); (2)如图1,S △BDP =12(t −125)×|−74|=78t −2110,当y =0时,−34x ﹣1=0,解得x =−43,即E 点坐标为(−43,0), S △CDP =S △DPE ﹣S △CPE =12(t +43)×74−12×(t +43)×|﹣1|=38t +12,由△BDP 和△CDP 的面积相等,得:78t −2110=38t +12,解得t =5.2;(3)以CP 为腰作等腰直角△CPM ,有以下两种情况: ①如图2,当以点C 为直角顶点,CP 为腰时,点M 1在y 轴的左侧,不符合题意,过M 2作M 2A ⊥y 轴于A , ∵∠PCM 2=∠PCO+∠ACM 2=∠PCO+∠OPC =90°,∴∠ACM 2=∠OPC ,∵∠POC =∠CAM 2,PC =CM 2,∴△POC ≌△CAM 2(AAS ),∴PO =AC =5.2,OC =AM 2=1, ∴M 2(1,﹣6.2);②如图3,当以点P 为直角顶点,CP 为腰时,过M 4作M 4E ⊥x 轴于E ,同理得△COP ≌△PEM 4,∴OC =EP =1,OP =M 4E =5.2,∴M 4(6.2,﹣5.2), 同理得M 3(4.2,5.2);综上所述,满足条件的点M 的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).【小结】本题考查了一次函数综合题,利用待定系数法求函数解析式;利用面积的和差得出关于t 的方程是解题关键;利用全等三角形的判定与性质得出对应边相等是解题关键.4、如图,已知直线y =2x+2与y 轴、x 轴分别交于A 、B 两点,点C 的坐标为(﹣3,1). (1)直接写出点A 的坐标 ,点B 的坐标 . (2)求证△ABC 是等腰直角三角形.(3)若直线AC 交x 轴于点M ,点P (−52,k )是线段BC 上一点,在线段BM 上是否存在一点N ,使直线PN 平分△BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)作CD ⊥x 轴于点D ,证明△CDB ≌△BOA (SAS )即可解决问题. (3)求出点P 的坐标,利用面积法求出BN 的长即可解决问题.【解答】(1)对于直线y =2x+2,令x =0,得到y =2,令y =0,得到x =﹣1,∴A (0,2),B (﹣1,0). (2)证明:作CD ⊥x 轴于点D ,由题意可得CD =1,OD =3,OB =1,OA =2,∴CD =OB =1,BD =OA =2, ∵∠CDB =∠AOB =90˚,∴△CDB ≌△BOA (SAS ),∴BC =BA ,∠CBD =∠BAO ,∵∠ABO+∠BAO =90˚,∴∠ABO+∠CBD =90˚,即∠ABC =90˚,∴△ABC 是等腰直角三角形. (3)∵P (−52,k )在直线BC :y =−12x −12上,∴P (−52,34),∵直线AC :y =13x +2交x 轴于M ,∴M (﹣6,0),∵S △BCM =12×5×1=52,假设存在点N ,使直线PN 平分△BCM 的面积,则S △BPN =12⋅BN ⋅34=12×52,∴BN =103,∴ON =BN+OB =103+1=133,∴N(−133,0).【小结】本题考查属于一次函数综合题,考查了一次函数的性质,等腰直角三角形的判定,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、如图1,在平面直角坐标系xOy 中,直线y =kx+8分别交x 轴,y 轴于A 、B 两点,已知A 点坐标(6,0),点C 在直线AB 上,横坐标为3,点D 是x 轴正半轴上的一个动点,连结CD ,以CD 为直角边在右侧构造一个等腰Rt △CDE ,且∠CDE =90°.(1)求直线AB 的解析式以及C 点坐标;(2)设点D 的横坐标为m ,试用含m 的代数式表示点E 的坐标;(3)如图2,连结OC ,OE ,请直接写出使得△OCE 周长最小时,点E 的坐标. 【分析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,即可求解; (2)证明△CDF ≌△DEG (AAS ),则CF =DG =4,DF =EG =3﹣m ,OG =4+m ,则E (4+m ,m ﹣3); (3)过点O 作直线l 的对称点O ′,连接CO ′交直线l 于点E ′,则点E ′为所求点,即可求解. 【解析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,∴y =−43x +8,把x =3代入,得y =4,∴C (3,4); (2)作CF ⊥x 轴于点F ,EG ⊥x 轴于点G ,∵△CDE 是等腰直角三角形,∴CD =DE ,∠CDE =90°, ∴∠CDF =90°﹣∠EDG =∠DEG ,且∠CFD =∠DGE =90°,∴△CDF ≌△DEG (AAS )∴CF =DG =4,DF =EG =3﹣m ,∴OG =4+m ,∴E (4+m ,m ﹣3); (3)点E (4+m ,m ﹣3),则点E 在直线l :y =x ﹣7上,设:直线l 交y 轴于点H (0,﹣7),过点O 作直线l 的对称点O ′, ∵直线l 的倾斜角为45°,则HO ′∥x 轴,则点O ′(7,﹣7), 连接CO ′交直线l 于点E ′,则点E ′为所求点,OC 是常数,△OCE 周长=OC+CE+OE =OC+OE ′+CE ′=OC+CE ′+O ′E ′=OC+CO ′为最小,由点C 、O ′的坐标得,直线CO ′的表达式为:y =−114x +494联立{y =x −7y =−114x +494,解得:{x =7715y =−2815,故:E(7715,−2815). 【小结】本题考查的是一次函数综合运用,涉及到一次函数的性质、等腰直角三角形的性质、点的对称性等,综合性很强,难度较大.6.如图①,直线y =x +1交x 轴于点A ,交y 轴于点C ,OB =30A ,M 在直线AC 上,AC =CM . (1)求直线BM 的解析式;(2)如图①,点N 在MB 的延长线上,BN =AC ,连CN 交x 轴于点P ,求点P 的坐标;(3)如图②,连接OM ,在直线BM 上是否存在点K ,使得∠MOK =45°,若存在,求点K 的坐标,若不存在,说明理由.解:(1)利用A(-1,0);C (0,1);AC=AM;∴M (1,2);B (3,0);∴BM :y =-x +3.(2)过C 作CS ∥MN 交x 轴与S 点,可证△PCS ≌△PNB ,可证P 为BS 的中点,可证OA=OS=1; 则BS=2;则P (2,0)。
人教版八年级数学下册经典压轴题考点及例题解析
人教版八年级数学下册经典压轴题考点及例题解析例题1古希腊数学家把数 1 , 3 , 6 , 10 ,15 , 21 ,...... 叫做三角形数,它有一定的规律性。
若把第一个三角形数记为 a1 ,第二个三角形数记为 a2 ,......,第 n 个三角形数记为 an ,则 an + a(n+1) = ?答案:(n + 1)^2 。
例题2在平面直角坐标系中,对于平面内任意一点 P(a , b)若规定以下三种变换:① f(a , b)= (-a , b),如 f(2 , 5)= (-2 , 5);② g(a , b) = (b , a), 如 g(2 , 5)= (5 , 2);③ h(a , b)= (-a , -b),如 h(2 , 5)= (-2 , -5)。
根据以上变换,那么 f(h(5 , -3))等于多少?答案:(5,3)。
例题3如图,已知等腰直角△ABC 的直角边长为 1 ,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt△ACD ,在以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE , ... ,依次类推到第五个等腰 Rt△AFG ,则由这五个等腰直角三角形所构成的图形的面积是多少?答案:31/2 。
例题4如图所示,直线 OP 经过点 P(4,4√3),过 x 轴上的点 1、3、5、7、9、11 ......分别作 x 轴的垂线,与直线 OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为 S1 , S2 , S3 , ... , Sn , 则 Sn 关于 n 的函数关系式是?答案:Sn = 4√3 (2n - 1)。
例题5现将 1、√2、√3、√6 四个数按下列方式排列。
若规定(m , n)表示第 m 排从左到右第 n 个数,则(5 , 4)与(15 , 7)表示的两数之积是多少?答案:2√3 。
例题6现将一块直角三角形的花圃进行改造,已知两直角边长分别为 6 m 、8 m 。
八年级下册数学期末压轴题(含答案)
八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。
因式分解60道压轴题型(6大题型)——2023-2024学年八年级数学下册重难点(北师大版)(解析)
因式分解60道压轴题型专训(6大题型)【题型目录】题型一 已知因式分解的结果求参数 题型二 运用公式法分解因式题型三 因式分解在有理数简算中的应用 题型四 十字相乘法 题型五 分组分解法 题型六 因式分解的应用【压轴题型一 已知因式分解的结果求参数】1.已知多项式481x b +可以分解为()()()22492332a b a b b a ++−,则x 的值是( )A .416aB .416a −C .24aD .24a −【答案】B【分析】本题可根据题中条件,多项式分解为单项式,用分解出来的单项式进行相乘后,即可求出x 的值.【详解】解:根据题意可得:()()()224492332=81ab a b b a x b++−+,∵()()()22492332a b a b b a ++− ()()()22=492323a b a b a b −++− ()()2222=4949a b ab −+−()44=1681a b −−44=1681a b −+,∴4=16x a −, 故选:B .【点睛】本题考查因式分解的基本知识,学生需掌握因式分解的基本知识,做此题就不难.2.如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=−+,那么常数c 的值是( )A .3B .-3C .2D .-2【答案】B【分析】将因式分解的结果用多项式乘法的展开,其结果与二次三项式比较即可求解. 【详解】解:∵()()2213x x c x x ++=−+∴22223x x c x x ++=+−故3c =− 故选B【点睛】本题考查了因式分解,多项式的乘法运算,掌握多项式乘法与因式分解的关系是解题的关键. 3.若22266−+++x y xy kx 能分解成两个一次因式的积,则整数k= . 【答案】7±【分析】根据题意设多项式可以分解为:(x+ay+c )(2x+by+d ),则2c+d=k ,根据cd=6,求出所有符合条件的c 、d 的值,然后再代入ad+bc=0求出a 、b 的值,与2a+b=1联立求出a 、b 的值,a 、b 是整数则符合,否则不符合,最后把符合条件的值代入k 进行计算即可.【详解】解:设22266−+++x y xy kx 能分解成:(x +ay +c)(2x +by +d), 即2x2+aby2+(2a +b )xy +(2c +d)x +(ad +bc)y +cd , ∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad +bc=6a +b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=6,d=1时,ad +bc=a +6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ②c=2,d=3时,ad +bc=3a +2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=3,d=2时,ad +bc=2a +3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ③c=-2,d=-3时,ad +bc=-3a -2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=-3,d=-2,ad +bc=-2a -3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ④c=-1,d=-6时,ad +bc=-6a -b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=-6,d=-1时,ad +bc=-a -6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c +d=2×2+3=7,k=2c +d=2×(-2)+(-3)=-7, ∴整数k 的值是7,-7. 故答案为:7±.【点睛】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a 、b 进行验证,注意不要漏解.4.已知多项式4x mx n ++能分解为()()2223x px q x x +++−,则p = ,q = .【答案】 2−; 7.【分析】把()()2223xpx q x x +++−展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵()()2223xpx q x x +++−432322222333x px qx x px qx x px q =+++++−−−()()()432223233x p x q p x q p x q=++++−+−−4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+−=⎩,解得:27p q =−⎧⎨=⎩.故答案为:2−,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可. 5.【例题讲解】因式分解:31x −.31x −为三次二项式,若能因式分解,则可以分解成一个一次二项式和一个二次多项式的乘积.故我们可以猜想31x −可以分解成()()21x x ax b −++,展开等式右边得:()32(1)x a x b a x b +−+−−,()()33211x x a x b a x b ∴−=+−+−−恒成立.∴等式两边多项式的同类项的对应系数相等,即1001a b a b −=⎧⎪−=⎨⎪−=−⎩,解得11a b =⎧⎨=⎩,()()32111x x x x ∴−=−++.【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法. 【学以致用】(1)若()()21234x mx x x −−=+−,则m =________;(2)若3233x x x k +−+有一个因式是1x +,求k 的值及另一个因式. 【答案】(1)1(2)5k =−,225x x +−【分析】(1)将()()34x x +−展开,再根据题干的方法即可求解;(2)设多项式3233x x x k +−+另一个因式为()2xax b ++,利用题干给出的待定系数法求解即可.【详解】(1)∵()()21234x mx x x −−=+−,∴221212x mx x x −−=−−,∴1m =,故答案为:1;(2)设多项式3233x x x k +−+另一个因式为()2x ax b ++,则()()()()322323311x x x k x x ax b x a x a b x b+−+=+++=+++++13a ∴+=,3a b +=−,b k =,2a ∴=,=5b −,5k ∴=−,即另一个式子为:225x x +−.【点睛】本题主要考查了多项式的乘法,因式分解等知识,掌握题干给出的待定系数法,是解答本题的关键.6.仔细阅读下面例题,解答问题例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()243x x m x x n −+=++则()22433x x m x n x n −+=+++343n m n +=−⎧∴⎨=⎩解得7n =−,21m =−∴另一个因式为()7x −,m 的值为21−.问题:(1)已知二次三项式26x x a ++有一个因式是()5+x ,求另一个因式以及a 的值: (2)已知二次三项式22x x p −−有一个因式是()23x +,求另一个因式以及p 的值. 【答案】(1)另一个因式为1x +,a 的值为5 (2)另一个因式为()2x −,p 的值为6【分析】(1)设另一个因式为()x n +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论; (2)设另一个因式为()x q +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论.【详解】(1)解:设另一个因式为()x n +,得()()265x x a x x n ++=++,则()22655x x a x n x n++=+++,565n n a +=⎧∴⎨=⎩,解得:15n a =⎧⎨=⎩,∴另一个因式为1x +,a 的值为5;(2)解:设另一个因式为()x q +,得()()2223x x p x q x −−=++,则()2222233x x p x q x q−−=+++,2313q q p +=−⎧∴⎨=−⎩,解得:26q p =−⎧⎨=⎩, ∴另一个因式为()2x −,p 的值为6.【点睛】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是解题的关键. 7.1637年笛卡尔(R .Descartes ,1596-1650)在其《几何学》中,首次应用待定系数法最早给出因式分解定理.关于笛卡尔的“待定系数法”原理,举例说明如下: 分解因式:3235x x x ++−.解:观察可知,当1x =时,原式0=. ∴原式可分解为()1x −与另一个整式的积.设另一个整式为2x bx c ++.则()()322351x x x x x bx c ++−=−++, ∵()()()()23211x x bx c x b x c b x c −++=+−+−−,∴()()3232351x x x x b x c b x c ++−=+−+−−∵等式两边x 同次幂的系数相等,则有:1135b c b c −=⎧⎪−=⎨⎪−=−⎩,解得25b c =⎧⎨=⎩.∴()()32235125x x x x x x ++−=−++.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)根据以上材料的方法,分解因式3223x x +−的过程中,观察可知,当x =______时,原式0=,所以原式可分解为______与另一个整式的积.若设另一个整式为2x bx c ++.则b =______,c =______. (2)已知多项式31x ax ++(a 为常数)有一个因式是1x +,求另一个因式以及a 的值. 下面是小明同学根据以上材料方法,解此题的部分过程,请帮小明完成他的解答过程.解:设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++.……(3)已知二次三项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为______,k 的值为______. 【答案】(1)1;(1)x −;3;3(2)解题过程见详解,321(1)(1)x x x x +=+−+(3)(25)x −;20【分析】(1)根据材料提示,当1x =时,3223x x +−的值为0,由此即可求解;(2)多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,根据材料提示,即可求解;(3)多项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为mx n +,根据材料提示,即可求解.【详解】(1)解:当1x =时,3223x x +−的值为0,∴原式可分解为(1)x −与另一个整式的积,设另一个整式为2x bx c ++,∴32223(1)()x x x x bx c +−=−++,∵232(1)()()()x x bx c x b c x c b x c −++=+−+−−, ∴323223(1)()x x x b x c b x c +−=+−+−−,∴1203b c b c −=⎧⎪−=⎨⎪−=−⎩,解得,33b c =⎧⎨=⎩,∴32223(1)(33)x x x x x +−=−++,故答案为:1;(1)x −;3;3.(2)解:多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++,∵()()2321(1)()x x bx c x b x c b x c +++=+++++,∴3321(1)()x ax x b x c b x c ++=+++++, ∴101b c b a c +=⎧⎪+=⎨⎪=⎩,解方程得,011a b c =⎧⎪=−⎨⎪=⎩,∴多项式31x ax ++(a 为常数)为31x +,∴31x +因式分解为321(1)(1)x x x x +=+−+.(3)解:多项式223x x k +−(k 为常数)有一个因式是4x +,设另一个因式为mx n +,∴223(4)()x x k x mx n +−=++, ∵2(4)()(4)4x mx n mx n m x n ++=+++, ∴2223(4)4x x k mx n m x n +−=+++,∴2434m n m n k =⎧⎪+=⎨⎪=−⎩,解方程组得,2520m n k =⎧⎪=−⎨⎪=⎩,∴多项式223x x k +−(k 为常数)为22320x x +−,∴22320x x +−因数分解为22320(4)(25)x x x x +−=+−,故答案为:(25)x −,20.【点睛】本题主要考查因数分解,掌握整式的混合运算是解题的关键. 8.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值. 解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ). 则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n , 解得n =3,m =6,∴另一个因式为x +3,m 的值为6 依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ; (2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ; (3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值. 【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5. 【分析】(1)仿照题干中给出的方法计算即可; (2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】解:(1)∵2(3)()33x x a x x ax a −+=−+−=2(3)3x a x a +−−=2712x x −+.∴a ﹣3=﹣7,﹣3a =12, 解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +−=+−−=226x x −−.=226x bx +−.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++−=−++. 对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++−=−++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++−=−+−+−=+−+−−.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k . 解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点睛】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.9.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值. 解:设另一个因式为x n +,得25(2)()x x m x x n ++=++, 则225(2)2x x m x n x n ++=+++, 25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6. 依照以上方法解答下列问题:(1)若二次三项式254x x −+可分解为(1)()x x a −+,则=a ________; (2)若二次三项式226x bx +−可分解为(23)(2)x x +−,则b =________; (3)已知二次三项式229x x k +−有一个因式是21x −,求另一个因式以及k 的值. 【答案】(1)4−;(2)1−;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a −+展开,根据所给出的二次三项式即可求出a 的值; (2)(2x+3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】解:(1)∵(1)()x x a −+=x2+(a ﹣1)x ﹣a =254x x −+,∴a ﹣1=﹣5, 解得:a =﹣4; 故答案是:﹣4(2)∵(2x+3)(x ﹣2)=2x2﹣x ﹣6=2x2+bx ﹣6, ∴b =﹣1. 故答案是:﹣1.(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ), 则2x2+9x ﹣k =2x2+(2n ﹣1)x ﹣n , ∴2n ﹣1=9,﹣k =﹣n , 解得n =5,k =5,∴另一个因式为x+5,k 的值为5.【点睛】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.10.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因数及m 的值.解:设另一个因式为()x n +,由题意,得()()243x x m x x n −+=++,化简、整理,得()22433x x m x n x n −+=+++,于是有343n m n +=−⎧⎨=⎩解得217m n =−⎧⎨=−⎩, ∴另一个因式为()7x −,m 的值为21−.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +−有一个因式是()4x +,求另一个因式及k 的值.【答案】另一个因式为()25x −,k 的值为20.【分析】根据所求的式子223x x k +−的二次项系数是2,因式是(x+4)的一次项系数是1,可知另一个因式的一次项系数一定是2,设另一个因式为()2x a +,仿照例题计算即可. 【详解】解:设另一个因式为()2x a +, ∴()()22342x x k x x a +−=++, ∴()2223284x x k x a x a+−=+++, ∴834a a k +=⎧⎨=−⎩ ,解得:5a =−,20k =,故另一个因式为()25x −,k 的值为20.【点睛】考查了因式分解的应用,正确读懂例题,理解题意是解题的关键.【压轴题型二 运用公式法分解因式】1.若20192020,20192021,20192022a x b x c x =+=+=+,则代数式222a b c ab ac bc ++−−−的值是( ) A .0B .1C .2D .3【答案】D【分析】此题考查了因式分解的应用,由a ,b ,c 的代数式,求出a b −,a c −,b c −的值,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:20192020a x =+,20192021b x =+,20192022c x =+,1a b ∴−=−,2a c −=−,1b c −=−,则222a b c ab ac bc ++−−− 2221(222222)2a b c ab ac bc =++−−−2222221[(2)(2)(2)]2a ab b a ac c b bc c =−++−++−+2221[()()()]2a b a c b c =−+−+−,当1a b −=−,2a c −=−,1b c −=−时,原式1(141)32=⨯++=.故选:D . 2.已知x y z 、、满足12x z −=,236xz y +=−,则2x y z ++的值为( )A .4B .1C .0D .-8【答案】C 【分析】根据题目条件可用x 来表示z ,并代入代数式中,运用公式法因式分解可得()226x y −=−,再根据平方数的非负性可分别求出x ,z 的值,最后运算即可. 【详解】解:12x z −=,∴12z x =−,又236xz y +=−,∴()21236x x y −+=−,∴2212+36=-y x x −,()226x y −=−, ()22600x y −≥−≤,,600x y ∴−==,,606x y z ∴===−,,,代入2x y z ++得,2x y z ++=0.故选:C .【点睛】本题考查了运用公式法进行因式分解,平方数的非负性,熟练掌握运用公式法因式分解是解决本题的关键.3.已知a ,b 为自然数,且a b >,若4364()()a a b a ab b b+++−+=,则=a ,b = . 【答案】 8 2【分析】化简原式可得:2264()a b b +=,设a kb =,则2264()kb b b +=,再根据22226416244()k b ∴+==⨯=⨯可求a ,b . 【详解】4364()()a a b a ab b b +++−+=, 4364a a b a ab b b ∴+++−+=, 24464ab ab a b ∴++=,2264()a b b ∴+=.设a kb =,则2264()kb b b +=, a ,b 为自然数,0a ∴≠,0b ≠,22226416244()k b ∴+==⨯=⨯16k ∴=,22b +=或4k = ,24+=b ,160,k b ∴==(不合题意,舍去)或4k =,2b =,428a ∴=⨯=.故答案为:8,2.【点睛】本题主要考查了分式的加减,因式分解的应用,熟记完全平方公式是解决本题的关键.4.如果22344421x y xy y x −−++−因式分解的结果为 .【答案】()()32121x y x y +−−+【分析】把21y −当成一个整体,再因式分解即可.【详解】原式22342441x xy x y y =−+−+− ()()22322121x x y y =−−−−()()32121x y x y =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()32121x y x y =+−−+ 故答案为:()()32121x y x y +−−+.【点睛】题目主要考查利用整体法及公式法进行因式分解,理解题中的整体思想是解题关键.5.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b −+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +−.原式()()()()()22223211314121231x x x x x x x x x =+−=++−−=+−=+++−=+−.【材料2】因式分解:()()221x y x y ++++解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x −+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y −−−+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++−−−+=时,判断ABC 的形状并说明理由.【答案】(1)()()24x x −−;(2)()22x y −−;(3)ABC 是等腰三角形,理由见解析.【分析】(1)凑完全平方公式,再用平方差公式进行因式分解;(2)利用完全平方进行因式分解;(3)先因式分解,判断字母a 、b 、c 三边的关系,再判定三角形的形状.【详解】(1)解:268x x −+26998x x =−+−+()231x =−−()()3131x x =-+-- ()()24x x =−−;(2)解:设A x y =−,()()244x y x y −−−+244A A =−+()22A =−∴()()244x y x y −−−+()22x y =−−;(3)解:ABC 是等腰三角形.理由如下:222464170a b c a b c ++−−−+=,∴2224469440a a b b c c −++−++−+=,∴()()()2222320a b c −+−+−=,∴20a −=,30b −=,20c −=,得,2a =,3b =,2c =.∴a b =,∴ABC 是等腰三角形.【点睛】此题考查了因式分解的应用,乘法公式,配方法的应用以及非负数的性质,熟练掌握完全平方公式是解本题的关键.6.19世纪的法国数学家苏菲·热门给出了一种分解因式44x +的方法:他抓住了该式只有两项,而且属于平方和()2222x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得()()()()()222442222222444424222222x x x x x x x x x x x x +=++−=+−=+−=++−+,人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”.根据以上方法,把下列各式因式分解:(1)444x y +;(2)2244a am n mn −−+.【答案】(1)()()22222222x y xy x y xy +++−; (2)()()4a n a m n −−+.【分析】(1)根据苏菲·热门的做法,将原式配上224x y 后,根据完全平方公式和平方差公式即可进行因式分解;(2)先分组,再利用提公因式法因式分解.【详解】(1)原式442222444x y x y x y =++−()2222224x y x y =+−()()22222222x y xy x y xy =+++−; (2)原式22224444a am m m n mn =−+−−+()()22224444a am m m n mn =−+−+−()()2222a m m n =−−−()()2222a m m n a m m n =−+−−−+ ()()4a n a m n =−−+.【点睛】本题考查因式分解,掌握平方差公式、完全平方公式的结构特征是正确应用的前提,理解苏菲·热门的做法是正确进行因式分解的关键.7.定义一种新运算“a b ⊗”:当a b ≥时,2a b a b ⊗=+;当a b <时,2a b a b ⊗=−.例如:3(4)3(8)(5)⊗−=+−=−,(6)1262430−⊗=−−=−(1)填空:(3)(2)−⊗−=______.(2)若(34)(5)(34)2(5)x x x x −−+⊗+=+,则x 的取值范围为______.(3)利用以上新运算化简:2(23)m m ⊗−(4)已知(57)(2)1x x ⊗−−>,求x 的取值范围.【答案】(1)1 (2)92x ≥(3)246m m +−(4)x 的取值范围为:8x >或819x <<.【分析】(1)由32−<−,利用2a b a b ⊗=−进行计算即可;(2)结合新定义与(34)(5)(34)2(5)x x x x −−+⊗+=+,可得345x x −≥+,再解不等式即可;(3)由()2223120m m m −+=−+>,可得223m m >−,再利用新定义运算即可;(4)分两种情况讨论:当572x x −≥−时,即1x ≥;可得()(57)(2)57221x x x x −−=−+⨯−>⊗,当572x x −<−时,即1x <;可得()(57)(2)57221x x x x −−=−−⨯−>⊗,再解不等式即可.【详解】(1)解:由题意可得:()(3)(2)322341−⊗−=−−⨯−=−+=; (2)解:∵(34)(5)(34)2(5)x x x x −−+⊗+=+,∴345x x −≥+,∴29x ≥, 解得:92x ≥;(3)解:∵()2223120m m m −+=−+>,∴223m m >−,∴()222(23)22346m m m m m m ⊗−=+−=+−;(4)解:当572x x −≥−时,∴77x ≥,即1x ≥;∴()(57)(2)57221x x x x −−=−+⨯−>⊗,∴8x >,综上,此时8x >;当572x x −<−时,∴77x <,即1x <;∴()(57)(2)57221x x x x −−=−−⨯−>⊗,∴98x >, 解得:89x >, 综上:此时819x <<; 综上:x 的取值范围为:8x >或819x <<.【点睛】本题考查的是新定义运算,整式的加减运算,利用完全平方公式分解因式,一元一次不等式的应用,理解新定义的运算法则是解本题的关键.8.【阅读理解,自主探究】把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负数这一性质增加问题的条件,这种解题方法叫做配方法,配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例1 用配方法因式分解:a 2+6a +8.原式= a 2+6a +9-1=(a +3)2-1=(a +3-1)(a +3+1)=(a +2)(a +4).例2若M =a 2-2ab +2b 2-2b +2,利用配方法求M 的最小值;a 2-2ab +2b 2-2b +2=a 2-2ab +b 2+b 2-2b +1+1=(a -b )2+(b -1)2+1;∵(a -b )2≥0,(b -1)2≥0, ∴当a =b =1时,M 有最小值1.请根据上述自主学习材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+10a +________;(2)用配方法因式分解:a 2-12a +35.(3)若M =a 2-3a +1,则M 的最小值为________;(4)已知a 2+2b 2+c 2-2ab +4b -6c +13=0,则a +b +c 的值为________;【答案】(1)25;(2)(5)(7)a a −−; (3)54−; (4)1−.【分析】(1)利用完全平方公式的结构特征判断即可;(2)原式常数项35分为361−,利用完全平方公式化简,再利用平方差公式分求解即可;(3)M 配方后,利用非负数的性质确定出最小值即可;(4)将已知等式利用完全平方公式配方后,再根据非负数的性质求出a ,b ,c 的值,代入原式计算即可.【详解】(1)解:221025(5)a a a ++=+;故答案为:25;(2)解:21235a a −+212361a a =−+−2(6)1a =−−(61)(61)a a =−+−−(5)(7)a a =−−;(3)解:295(3)44M a a =−+−235()24a =−−, 当302a −=,即32a =时,M 取最小值,最小值为54−; 故答案为:54−; (4)解:2222246130a b c ab b c ++−+−+=,2222(2)(44)(69)0a ab b b b c c ∴−+++++−+=,即222()(2)(3)0a b b c −+++−=,2()0a b −…,2(2)0b +…,2(3)0c −…,0a b ∴−=,20b +=,30c −=,解得:2a b ==−,3c =,则2231a b c ++=−−+=−.故答案为:1−.【点睛】本题考查了整式的混合运算,非负数的性质:偶次方,完全平方式,以及因式分解−分组分解法,解题的关键是熟练掌握各自的运算法则及公式.9.阅读材料:若2222440m mn n n −+−+=,求m ,n 的值.解:∵2222440m mn n n −+−+=,∴()()2222440m mn n n n −++−+=,∴22()(2)0m n n −+−=,∴2()0m n −=,2(2)0n −=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +−++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +−−+=,求ABC 的周长.【答案】(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +−++=得 222)((2816)0x xy y y y −+++=+,22()(4)0x y y −++=,∴0x y −=,40y +=,∴4x y ==−,故答案为:-4,-4;(2)由22248180a b a b +−−+=得:222428160a a b b −++−+=,222(1)(4)0a b −+−=,∴a -1=0,b -4=0,∴a=1,b=4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c=4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等. 10.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=[(3)1][(3)1](4)(2)a a a a +++−=++②M =a 2-2a -1,利用配方法求M 的最小值.解:22221212(1)2a a a a a −−=−+−=−−∵(a -b )2≥0,∴当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:223x x +−. (2)若228M x x =−,求M 的最小值.(3)已知x 2+2y 2+z 2-2xy -2y -4z +5=0,求x +y +z 的值.【答案】(1)(3)(1)x x +−;(2)8−;(3)4.【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x 、y 、z 的值,然后代入求解即可.【详解】(1)原式22344x x =+−+−2214x x =++−22(1)2x =+−[][](1)2(1)2x x =+++−(3)(1)x x =+−; (2)22282(4)x x x x −=−22(444)x x =−+−22(2)4x ⎡⎤=−−⎣⎦22(2)8x =−−2(2)0x −≥∴当2x =时,M 有最小值8−;(3)22222245x y z xy y z ++−−−+ 2222(2(21)()44)x xy y y y z z =−++−++−+222()(1)(2)x y y z =−+−+−222()(1)(20)x y y z −+−+−=01020x y y z −=⎧⎪∴−=⎨⎪−=⎩,解得112x y z =⎧⎪=⎨⎪=⎩则1124x y z ++=++=.【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键.【压轴题型三 因式分解在有理数简算中的应用】1.计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−⨯−⨯−⨯−⨯− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为( ). A .512 B .12 C .712D .1130 【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果. 【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−⨯+⨯−⨯+⨯−⨯+⨯−⨯+⨯−⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯, 712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.2.已知()()22113(21)a b ab ++=−,则1b a a ⎛⎫− ⎪⎝⎭的值是( ) A .0B .1C .-2D .-1【答案】D 【分析】先对()()22113(21)a b ab ++=−进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫− ⎪⎝⎭进行因式分解即可.【详解】∵()()22113(21)a b ab ++=−,∴2222163a b a b ab +++=−,22222440a b ab a b ab +−+−+=,()()2220a b ab −+−=,∴a b =,2ab =, ∴1121b b a ab a a ⎛⎫−=−=−=− ⎪⎝⎭故选:D .【点睛】本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.3.若2023a =,2022b =,则计算221122a b −的结果为 . 【答案】2022.5【分析】先提公因式,再用平方差公式进行计算即可. 【详解】221122a b − 22112023202222=⨯−⨯()222023212022=−⨯1=(20232022)(20232022)2⨯+− 140452=⨯2022.5=.故答案为:2022.5.【点睛】本题主要考查了利用平方差公式因式分解进行简便运算,熟练掌握平方差公式是解题的关键. 4.某同学自己设计了一个运算程序,任意输入一个三位数,如567,重复该数,得到567567,将该数除以7,然后除以质数a ,再除以质数b ,结果又得到了567,则a b += .【答案】24【分析】根据题意可知567567÷7÷567=ab ,然后即可得到ab 的值,再将ab 的积分解为两个质数的积,即可得到a 、b 的值,然后作和即可.【详解】解:由题意可得,567567÷7÷567=ab ,解得ab=143,∵143=11×13,∴a=11,b=13或a=13,b=11,∴a+b=24,故答案为:24.【点睛】本题考查有理数的混合运算、质数与合数,解答本题的关键是明确题意,求出a 、b 的值. 5.整体思想是数学解题中常见的一种思想方法.下面是对多项式222(21)2)(a a a a ++++进行因式分解的解题思路:将“22a a +”看成一个整体,令22a a x +=,则原式22(2)121(1)x x x x x =++=++=+.再将“x ”还原为“22a a +”即可.解题过程如下:解:设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步). 问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式()()2244816a a a a −−++进行因式分解;(2)请你模仿以上方法尝试计算:(1232023)(232024)(1232024)(232023)−−−−⨯+++−−−−−⨯+++.【答案】(1)①该同学没有完成因式分解;最后的结果为4(1)a +;②4(2)a −(2)2024【分析】本题考查公式法分解因式,理解整体思想是解决问题的前提,掌握完全平方公式的结构特征和必要的恒等变形是正确解答的关键.(1)①根据因式分解的意义进行判断,再利用完全平方公式分解因式即可;②利用换元法进行因式分解即可;(2)设1232023a =−−−−,232024x =+++,则原式(2024)(2024)ax a x =−−−,整体代入计算即可.【详解】(1)①该同学没有完成因式分解;设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步)22(1)a =+⎡⎤⎣⎦4(1)a =+.∴最后的结果为4(1)a +.②设24a a x −=, 原式(8)16x x =++2816x x =++.2()4x =+()2244a a =−+4()2a =−;(2)设1232023a =−−−−,232024x =+++, 则123202320242024,2320232024a x −−−−−=−+++=−, 120242025a x +=+=,原式(2024)(2024)ax a x =−−−22024()2024ax ax a x =−++−2202420252024=⨯−22024(20241)2024=⨯+−22202420242024=+−2024=.6.(1)若100799611A =⨯⨯,119951008B =⨯⨯,求A B −;(2)证明5799449999⨯+⨯−能被100整除.【答案】(1)132;(2)证明见解析【分析】(1)先提取公因数11,再把1007996⨯化成()()1001.5 5.51001.5 5.5+⨯−,把9951008⨯化成()()1001.5 6.51001.5 6.5+⨯−,进而利用平方差公式进行求解即可;(2)把原式提取公因式99,进而得579944999999100⨯+⨯−=⨯,由此即可证明结论.【详解】解:(1)∵100799611A =⨯⨯,119951008B =⨯⨯,∴A B −100799611119951008=⨯⨯−⨯⨯()()()()111001.5 5.51001.5 5.51001.5 6.51001.5 6.5=⨯+⨯−−+⨯−⎡⎤⎣⎦()()2222111001.5 5.51001.5 6.5⎡⎤=⨯−−+⎣⎦()()11 6.5 5.5 6.5 5.5=⨯+⨯−11121=⨯⨯132=; (2)5799449999⨯+⨯−()9957441=⨯+−99100=⨯,∵99100⨯能被100整除,∴5799449999⨯+⨯−能被100整除.【点睛】本题主要考查了因式分解在有理数简便计算中的应用,熟知因式分解的方法是解题的关键.7.阅读下列材料,解决问题:我们把一个能被17整除的自然数称为“节俭数”.“节俭数”的特征是:若把一个自然数的个位数字截去,再把剩下的数减去截去的那个个位数字的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍尾,差尾,验差”的过程,直到能方便判断为止.例如:判断1675282是不是“节俭数”,判断过程:16752825167518−⨯=,167518516711−⨯=,1671151666−⨯=,16665136−⨯=,到这里如果你仍然观察不出来,就继续136517−⨯=−,17−是17的整数倍,所以1675282能被17整除,所以1675282是“节俭数”.(1)请用上述方法判断7259和2098752是否是“节俭数”,并说明理由.(2)一个五位节俭数213ab ,其中千位上的数字为b ,万位上的数字为a ,且1b a =−,请利用上面方法求出这个数.【答案】(1)7259是“节俭数”; 2098752是“节俭数”(2)54213【分析】(1)模仿例题解决问题即可;(2)模仿例题采用 “截尾,倍尾,差尾,验差”的过程,解决问题即可;【详解】(1)72595680−⨯=,680568−⨯=,68174÷=,所以7259能被17整除,是“节俭数”;20987525209865−⨯=,209865520961−⨯=,2096152091−⨯=,20915204−⨯=,2041712÷=, 所以2098752能被17整除,是“节俭数”;(2)解:∴213506ab ab ⨯=−,300ab −能被17整除∴1b a =−,∴()1001013011040a a a +−−=−能被17整除∴19a ≤≤∴当1a =时,1104070−=,不能被17整除,当2a =时,22040180−=,不能被17整除,当3a =时,33040290−=,不能被17整除,当4a =时,44040400−=,不能被17整除,当5a =时,55040510−=,能被17整除,当6a =时,66040620−=,不能被17整除,当7a =时,77040730−=,不能被17整除,当8a =时,88040840−=,不能被17整除,当9a =时,99040950−=,不能被17整除,∴5a =,4b =∴这个数为54213.【点睛】本题考查了因式分解的应用,数的整除,理解题意,仿照例题的方法是解题的关键.8.观察下列等式,并回答有关问题:22123415(141)⨯⨯⨯+==⨯+222345111(251)⨯⨯⨯+==⨯+223456119(361.......)⨯⨯⨯+==⨯+(1)填空:56781⨯⨯⨯+=(________)2(2)若n 为正整数,猜想(1)(2)(3)1n n n n ++++因式分解的结果并说明理由;(3)利用(2)的结果比较991001011021⨯⨯⨯+与210100的大小.【答案】(1)41(2)22(1)(2)(3)1(31)n n n n n n ++++=++,理由见解析(3)991001011021⨯⨯⨯+210100<【分析】(1)根据式子的规律即可得出答案;(2)根据规律猜想出结果,用因式分解的方法证明即可;(3)应用(2)的结果化简即可得出答案.【详解】(1)根据规律得:256781(581)⨯⨯⨯+=⨯+,故答案为:581⨯+;(2)222(1)(2)(3)1[(3)1](31)n n n n n n n n ++++=++=++, 理由:(1)(2)(3)1n n n n ++++[(3)][(1)(2)]1n n n n =++++22(3)(32)1n n n n =++++222(3)2(3)1n n n n =++++22(31)n n =++;(3)991001011021⨯⨯⨯+22(993991)=+⨯+2(98012971)=++221009910100<=.【点睛】本题考查了规律型−数字的变化类,体现了整体思想,把23n n +看作整体是解题的关键.9.(1)因式分解:①2249a b −②221218x x −+(2)利用因式分解进行简便计算:221.2351 1.2349⨯−⨯【答案】(1)①()()2323a b a b +−;②()223x −;(2)246【分析】(1)①利用平方差公式进行因式分解;②先提取公因式2,再用完全平方公式进行因式分解;(2)先提取公因式1.23,再用平方差公式进行因式分解即可求值.【详解】解:(1)①()()22223934a a b b b a −=+−; ②()()2222121826923x x x x x −+=−+=−;(2)221.2351 1.2349⨯−⨯()2251.14923=⨯−()()1.2351495149=⨯+⨯− 1.231002=⨯⨯246=.【点睛】本题考查了因式分解及因式分解的应用,熟练掌握因式分解的方法是解决本题的关键.10.(1)按下表已填的完成表中的空白处代数式的值: 2()a b −222a ab b −+ 2a =,1b = 11a =−,3b = 462a =−,=5b −(2)比较两代数式计算结果,请写出你发现的2()a b −与222a ab b −+有什么关系?(3)利用你发现的结论,求:222021404220202020−⨯+的值.【答案】(1)见解析;(2)()2222a b a ab b −=−+;(3)1 【分析】(1)把每组,a b 的值分别代入2()a b −与222a ab b −+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b −=−+可得2021,2020,a b == 再代入进行简便运算即可.【详解】解:(1)填表如下: 2()a b −222a ab b −+ 2a =,1b =1 1 1a =−,3b = 16 162a =−,=5b − 9 9(2)观察上表的计算结果归纳可得:()2222a b a ab b −=−+(3)222021404220202020−⨯+ =2220212202120202020−⨯⨯+=()220212020−=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.【压轴题型四 十字相乘法】1.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x −,乙与丙相乘的积为26x x +−,则甲与丙相减的结果是( ) A .5− B .5 C .1 D .1−【答案】D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∵甲与乙相乘的积为29(3)(3)x x x −=+−,乙与丙相乘的积为()262(3)x x x x +−=−+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数, ∴甲为3x −,乙为3x +,丙为2x -, 则甲与丙相减的差为:()(3)21x x −−−=−;故选:D2.如果多项式432237x x ax x b −+++能被22x x +−整除,那么:a b 的值是( ) A . 2− B . 3−C .3D .6【答案】A 【分析】由于()()2221+−=+−x x x x ,而多项式432237x x ax x b −+++能被22x x +−整除,则432237x x ax x b −+++能被()()21x x +−整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,4322370x x ax x b −+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值. 【详解】解:∵()()2221+−=+−x x x x ,∴432237x x ax x b −+++能被()()21x x +−整除,设商是A . 则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,右边都等于0,所以左边也等于0.当2x =−时,43223732244144420x x ax x b a b a b −+++=++−+=++= ①当1x =时,43223723760x x ax x b a b a b −+++=−+++=++= ②−①②,得3360a +=,∴12a =−, ∴66b a =−−=. ∴:12:62a b =−=−, 故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =−和1x =时,原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.3.已知()()20192016100x x −−+=,则40352x −的值为 . 【答案】7±【分析】本题考查了因式分解的应用,解决本题的关键是熟练掌握用十字相乘法进行因式分解,将()()20192016100x x −−+=变形后再因式分解为()()20165201620x x −−−+=,求出x 的值,再代入求值即可. 【详解】解:()()20192016100x x −−+=,()()2019201610x x −−=−, ()()2019201610x x −−=, ()()20163201610x x −−−=,()()2201632016100x x −−−−=,()()20165201620x x −−−+=, ()()202120140x x −−=,解得:2021x =或2014x =,当2021x =时,原式4035220217=−⨯=−, 当2014x =时,原式4035220147=−⨯=, 故答案为:7±4.有甲、乙、丙三种纸片若干张(数据如图,a b >).(1)若用这三种纸片紧密拼接成一个边长为()2a b +大正方形,则需要取乙纸片 张,丙纸片 张. (2)若取甲纸片1张,乙纸片3张,丙纸片2张紧密拼成一个长方形,则这个长方形的长为 ,宽为 .【答案】 4 1()2a b +/()2b a + ()a b +/()b a + 【分析】(1)根据正方形的面积得出()222244a b a ab b +=++,即可求解;(2)根据题意长方形的面积为()()22322a ab b a b a b ++=++,结合题意,即可求解.【详解】解:(1)∵()222244a b a ab b +=++∴需要取乙纸片4张,丙纸片1张 故答案为:4,1. (2)依题意,()()22322a ab b a b a b ++=++,∴这个长方形的长为()2a b +,宽为()a b +,故答案为:()2a b +,()a b +.【点睛】本题考查了完全平方公式与图形面积,因式分解的应用,数形结合是解题的关键. 5.根据以下素材,完成下列任务:素材1在因式分解习题课上,赵老师“随便”写了几个整系数二次三项式,让同学们因式分解,结果小王发现同学们都能在有理数范围内分解,小王也想试一试,就随便写了两个二次三项式∶243x x ++,2414x x −−让同学们因式分解,结果发现有一个不能因式分解,这到底为什么呢?。
最新成都八年级下期末数学B卷几何压轴题汇编一(含答案)
最新成都八年级下期末数学B卷几何压轴题汇编一一.解答题(共60小题)1.如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S▱ABCD=.(2)平行四边形ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.2.如图1,矩形OACB的顶点A、B分别在x轴与y轴上,且点C(6,10),点D(0,2),点P为矩形AC、CB两边上的一个点.(1)当点P与C重合时,求直线DP的函数解析式;(2)如图②,当P在BC边上,将矩形沿着OP折叠,点B对应点B'恰落在AC边上,求此时点P的坐标.(3)是否存在P使△BDP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.4.分层探究(1)问题提出:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF,解题思路:把△ABE绕点A逆时针旋转度至△ADG,可使AB与AD重合.由∠FDG=ADG+∠ADC=180°,则知F、D、G三点共线,从而可证△AFG≌(),从而得EF=BE+DF,阅读以上内容并填空.(2)类比引申:如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.探究:若∠B、∠D都不是直角,当∠B、∠D满足什么数量关系时,仍有EF=BE+DF?(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,并且∠DAE=45°.猜想BD、CE、DE的数量关系,并给出理由.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.6.如图,在平面直角坐标系中,点A的坐标为(﹣2,0),将x轴绕点A逆时针旋转30°得直线l,直线l交y轴于点B,过点B作直线l的垂线交x轴于点C.(1)求直线BC的解析式;(2)线段AB,BC的中点分别是D,E,点F在x轴上,且以点D,E,C,F为顶点的四边形是平行四边形,求点F的坐标;(3)在平面直角坐标系内是否存在两个点,使以这两点及点A,B为顶点的四边形是正方形?若存在,请直接写出所有这两点的坐标;若不存在,请说明理由.7.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C(不与点O重合).将一个120°角的顶点与点C重合,它的两条边分别与直线OA,OB相交于点D,E.(1)如图1,当∠DCE绕点C旋转到CD与OA垂直时,求证:OD+OE=OC;(2)如图2,当∠DCE绕点C旋转到CD与OA不垂直时,(1)中的结论是否还成立?若成立,请证明;若不成立,说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,线段OD,OE与OC之间又有怎样的数量关系?请直接写出你的结论,不需证明.8.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式.(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边,点G为直角顶点向右侧作Rt△FGQ,且FG:GQ=1:2,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.9.如图,在△ABC中,AC=BC=12,∠ACB=120°,点D是AB边上一动点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDA=45°,求CD的长.(2)如图2,点D在AB边上移动过程中,连接AE,取AE的中点F,连接CF.①求证:BC⊥CF.②如图3,连接DF,过点D作DG⊥BC于点G,将△CFD沿CF翻折得△CFD′,连接AD′,求出当AD′取最小值时,DG的长.10.如图1,直线y=﹣2x+b(b为常数)交x轴的正半轴于点A(2,0).交y轴正半轴于点B.(1)求直线AB的解析式;(2)点C是线段AB中点,点P是x轴上一点,点Q是y轴上一点,若以A、C、P、Q为顶点的四边形恰好是平行四边形,请直接写出点P的坐标;(3)如图2,若点P是x轴负半轴上一点,设点P的横坐标为t,以AP为底作等腰△APM(点M在x 轴下方),过点A作直线l∥PM.过点O作OE⊥AM于E,延长EO交直线l于点F,连接PF、OM,若2∠PFO+∠AFE=180°,请用含t的代数式表示△PMO的面积.11.在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连接DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD的面积.12.(1)如图1,在△ABC中,AB=5,AC=3,AD为BC边上的中线.延长AD到点E,使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是.(2)如图2,在Rt△ABC中,∠A=90°,D为BC的中点,E、F分别在边AB、AC上,且DE⊥DF,若BE=2,CF=5,求EF的长.(3)如图3,四边形ABCD中,∠A=90°,∠D=120°,E为AD中点,F、G分别边AB、CD上,且EF⊥EG,若AF=4,DG=,求GF长.13.如图1,将矩形OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA=4,OC=8.把矩形OABC沿对角线OB所在直线翻折,点C落到点D处,OD交AB于点E.(1)求点E坐标.(2)如图2,过点D作DG∥BC,交OB于点G,交AB于点H,连接CG,试判断四边形BCGD的形状,并说明理由.(3)在(2)的条件下,点M是坐标轴上一点,直线OB上是否存在一点N,使以O、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N坐标;若不存在,请说明理由.14.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.15.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P 作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,以B为顶点的等腰Rt△BEF绕点B旋转,连接AF与CE相交于点G,连接DG.(1)求证:CE⊥AF;(2)求证:AG+CG=DG;(3)连接CF,当EG:AG:FG=1:2:5,且S正方形ABCD=100时,求DG的长和△BCF的面积.17.如图1,在平面直角坐标系xOy中,已知直线AB:y=﹣x+3与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A、B、C、D,点P是线段CD延长线上的一个点,△PBM的面积为15.(1)求直线CD解析式和点P的坐标;(2)在(1)的条件下,平面直角坐标系内存在点N,使得以点B、N,M、P为顶点的四边形是平行四边形,请直接写出点N的坐标;(3)如图2,当点P为直线CD上的一个动点时,将BP绕点B逆时针旋转90°得到BQ,连接PQ与OQ.点Q随着点P的运动而运动,请求出点Q运动所形成直线的解析式,以及OQ的最小值.18.如图,在矩形ABCO中,OA=8,OC=6,D,E分别是AB,BC上一点,AD=2,CE=3,OE与CD 相交于点F.(1)求证:OE⊥CD;(2)如图2,点G是CD的中点,延长OG交BC于H,求CH的长.19.如图,在△ABC中,∠B=∠ACB=45°,AB=3,点D是BC上一点,作DE⊥AD交射线AC于E,DF平分∠ADE交AC于F.(1)求证:AB•CF=BD•CD;(2)如图2,当∠AED=75°时,求CF的长;(3)若CD=2BD,求.20.如图1,▱ABCD在平面直角坐标系xOy中,已知点A(﹣1,0)、B(0,4)、C(3,2),点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.(1)求点D的坐标和S四边形BEFC的值;(2)如图2,当直线EF交x轴于点H(5,0),且S△P AC=S四边形BEFC时,求点P的坐标;(3)如图3,当直线EF交x轴于点K(3,0)时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一.解答题(共30小题)1.如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段AE,GF;S矩形AEFG:S▱ABCD=1:2.(2)平行四边形ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,EF=5,EH=12,∠FEH=90°,∴FH===13,由折叠的性质得:DH=NH,AH=HM,CF=FN,∴CF=AH,∴AD=DH+AH=HN+FN=FH=13;(3)有以下三种基本折法:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=.③折法3中,如图6所示,作GM⊥BC于M,则E,G分别为AB,CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.2.如图1,矩形OACB的顶点A、B分别在x轴与y轴上,且点C(6,10),点D(0,2),点P为矩形AC、CB两边上的一个点.(1)当点P与C重合时,求直线DP的函数解析式;(2)如图②,当P在BC边上,将矩形沿着OP折叠,点B对应点B'恰落在AC边上,求此时点P的坐标.(3)是否存在P使△BDP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵C(6,10),∴OA=6,OB=10,设此时直线DP解析式为y=kx+b,把D(0,2),C(6,10)分别代入,得,解得,则此时直线DP解析式为y=x+2;(2)设P(m,10),则PB=PB′=m,如题干图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=,则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑,如下图,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).3.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.【解答】解:如图1,过C作CE⊥OA于E,过B作BF⊥OA于F,∵四边形OABC是平行四边形,∴OA=BC,OA∥BC,∵A,C的坐标分别为(10,0),(2,4),∴OA=10,OE=AF=2,∴BC=10,∴B(12,4);(2)设点P运动t秒时,四边形PCDA是平行四边形,由题意得:PC=10﹣2t,∵点D是OA的中点,∴OD=BC=AD=OA=5,∵四边形PCDA是平行四边形,∴PC=AD,即10﹣2t=5,∴t=,∴当t=秒时,四边形PCDA是平行四边形;(3)如图2,①当PD=OD=5时,过P作PE⊥OA于E,则PE=4,∴DE=3,∴P1(8,4),当点P与点C重合时,PD=OD=5;②当PD=OP时,过P作PF⊥OA于F,则PF=4,OF=,∴P3(,4);③当PO=OD=5时,过P作PG⊥OA于G,则PG=4,∴OG=3,∴P2(3,4),综上所述:当△ODP是等腰三角形时,点P的坐标为(8,4),(,4),(3,4),(2,4).4.分层探究(1)问题提出:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF,解题思路:把△ABE绕点A逆时针旋转90度至△ADG,可使AB与AD重合.由∠FDG =ADG+∠ADC=180°,则知F、D、G三点共线,从而可证△AFG≌△AFE(SAS),从而得EF=BE+DF,阅读以上内容并填空.(2)类比引申:如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.探究:若∠B、∠D都不是直角,当∠B、∠D满足什么数量关系时,仍有EF=BE+DF?(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,并且∠DAE=45°.猜想BD、CE、DE的数量关系,并给出理由.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC=∠B=90°,∴∠FDG=180°,∴点F、D、G共线,在△AFE和△AFG中,,∴△AFG≌△AFE(SAS),∴EF=FG,即EF=BE+DF,故答案为:90,△AFE,SAS;(2)当∠B+∠D=180°时,EF=BE+DF,如图2∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC+∠B=180°,∴∠FDG=180°,∴点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即EF=BE+DF,故答案为:∠B+∠D=180°;(3)猜想:DE2=BD2+EC2,证明:把△AEC绕点A顺时针旋转90°得到△ABE′,连接DE′,如图3,∴△ACE≌△ABE′,∴BE′=CE,AE′=AE,∠C=∠ABE′,∠CAE=∠E′AB,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°=∠EAD,在△ADE′和△ADE中,,∴△ADE′≌△ADE(SAS),∴BE′=DE,∴DE2=BD2+CE2.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.【解答】解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.6.如图,在平面直角坐标系中,点A的坐标为(﹣2,0),将x轴绕点A逆时针旋转30°得直线l,直线l交y轴于点B,过点B作直线l的垂线交x轴于点C.(1)求直线BC的解析式;(2)线段AB,BC的中点分别是D,E,点F在x轴上,且以点D,E,C,F为顶点的四边形是平行四边形,求点F的坐标;(3)在平面直角坐标系内是否存在两个点,使以这两点及点A,B为顶点的四边形是正方形?若存在,请直接写出所有这两点的坐标;若不存在,请说明理由.【解答】解:(1)如图1,∵点A的坐标为(﹣2,0),∴OA=2,由旋转得:∠BAO=30°,Rt△ABO中,∴OB=2,AB=4,∴B(0,2),∵AB⊥BC,∴∠ABC=90°,∴BC=,AC=2BC=,∴OC=﹣2=,∴C(,0),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+2;(2)分两种情况:①如图2,四边形DECF是平行四边形,∵A(﹣2,0),B(0,2),∴AB的中点D(﹣,1),同理得BC的中点E(,1),∵C(,0),∴F(﹣,0);②如图3,四边形DEFC是平行四边形,同理得:F(2,0);综上,点F的坐标为(﹣,0)或(2,0);(3)在平面直角坐标系内存在两个点,使以这两点及点A,B为顶点的四边形是正方形,有两种情况:①如图4,AB为边,存在正方形ABNM和正方形ABPQ,过M作MG⊥x轴于G,∵∠MAB=90°=∠MAG+∠BAO=∠BAO+∠ABO,∴∠ABO=∠MAG,∵∠AGM=∠AOB=90°,AM=AB,∴△MGA≌△AOB(AAS),∴MG=AO=2,AG=OB=2,∴M(﹣2﹣2,2),同理得N(﹣2,2+2),P(2,2﹣2),Q(2﹣2,﹣2),②如图5,AB为正方形的对角线,过点P作MN∥x轴交y轴于N,过A作AM⊥MN于M,∵AB=4,四边形APBQ是正方形,∴AP=BP=2,∵∠AMP=∠BNP=90°,∠P AM=∠BPN,∴△AMP≌△PNB(AAS),∴PN=AM=ON,设PN=m,则BN=2+m,Rt△BPN中,由勾股定理得:PB2=PN2+BN2,∴(2)2=m2+(2+m)2,∴(m+1)2=3,解得:m1=﹣1,m2=﹣﹣1(舍),∴P(1﹣,1﹣),同理得:Q(﹣1﹣,1+);综上,这两点的坐标为(﹣2﹣2,2),(﹣2,2+2)或(2,2﹣2),(2﹣2,﹣2)或(1﹣,1﹣),(﹣1﹣,1+).7.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C(不与点O重合).将一个120°角的顶点与点C重合,它的两条边分别与直线OA,OB相交于点D,E.(1)如图1,当∠DCE绕点C旋转到CD与OA垂直时,求证:OD+OE=OC;(2)如图2,当∠DCE绕点C旋转到CD与OA不垂直时,(1)中的结论是否还成立?若成立,请证明;若不成立,说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,线段OD,OE与OC之间又有怎样的数量关系?请直接写出你的结论,不需证明.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:如图2,过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE(ASA),∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)结论为:OE﹣OD=OC,理由:如图3,过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE(ASA),∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.8.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式.(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边,点G为直角顶点向右侧作Rt△FGQ,且FG:GQ=1:2,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【解答】解:(1)直线y=2x+4与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为:(﹣2,0)、(0,4),△ABC面积=×AC×OB=×AC×4=10,解得:AC=5,故点C(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+4…①;(2)设点G(0,m),点F为线段AB中点,则点F(﹣1,2),①当点G在y轴上方时,过点G作x轴的平行线MN,过点F、Q分别作y轴的平行线分别交MN于点M、N,∵∠MGF+∠GFM=90°,∠MGF+∠NGQ=90°,∴∠NGQ=∠GFM,∠GNQ=∠FMG=90°,∴△GNQ∽△FMG,∴,即,故:GN=2m﹣4,QN=2,故点Q(2m﹣4,m﹣2),将点Q的坐标代入y=﹣x+4并解得:m=,故点G的坐标为(0,);②当点G在y轴下方时,同理可得:点G(0,2)(舍去);故点G(0,);(3)设N为线段BC上一点且S△ANB=S△AOB,则ON∥AB,则直线ON的表达式为:y=2x…②,联立①②并解得:x=,故点N(,),∵S△AMB=S△ANB,∴M为NB的中点,∴M(,),同理直线AM的表达式为:y=x+,设点E(m,m+),点D(n,0),①当BC是平行四边形的边时,点B向右平移3个单位向下平移4个单位得到C,同样点E(D)向右平移3个单位向下平移4个单位得到D(E),则m+3=n,m+﹣4=0或m﹣3=n,m++4=0,解得:n=或n=﹣;②当BC是平行四边形的对角线时,由中点公式得:m+n=3,m++4=0,解得:n=,故点D的坐标为:(,0)或(﹣,0)或(,0).9.如图,在△ABC中,AC=BC=12,∠ACB=120°,点D是AB边上一动点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDA=45°,求CD的长.(2)如图2,点D在AB边上移动过程中,连接AE,取AE的中点F,连接CF.①求证:BC⊥CF.②如图3,连接DF,过点D作DG⊥BC于点G,将△CFD沿CF翻折得△CFD′,连接AD′,求出当AD′取最小值时,DG的长.【解答】解:(1)过点C作CH⊥AB于H,∵AC=BC=12,∠ACB=120°,∴∠A=30°=∠B,又∵CH⊥AB,∴CH=AC=6,∵∠CDA=45°,∴∠CDH=∠DCH=45°,∴CH=DH=6,∴CD===6;(2)①延长AC至点N,使CN=AC,连接EN,∵△CDE是等边三角形,∴CD=CE,∠DCE=60°,∵∠ACB=120°,∴∠BCG=60°=∠DCE,∴∠DCB=∠ECG,又∵AC=BC=CG,CD=CE,∴△GCE≌△BCD(SAS),∴∠G=∠B=30°,EG=BD,∵点F是AE的中点,∴AF=EF,又∵AC=CG,∴CF∥EG,CF=EG,∴∠ACF=∠G=30°,∴∠BCF=∠ACB﹣∠ACF=90°,∴BC⊥CF;②由(2)可知:CF=EG,EG=BD,BC⊥CF,∵DG⊥BC,∠B=30°,∴DG=BD,CF∥DG,∴DG=CF,∴四边形CFDG是平行四边形,又∵CF⊥BC,∴四边形CFDG是矩形,∴∠CFD=90°,∵将△CFD沿CF翻折得△CFD′,∴∠CFD=∠CFD'=90°,DF=D'F,∴∠D'F A=∠EFD,又∵AF=EF,∴△AFD'≌△EFD(SAS),∴DE=AD',∵△CDE是等边三角形,∴CD=DE=AD',∴当CD⊥AB时,CD有最小值,即AD'有最小值,此时,∠B=30°,CD⊥AB,∴CD=BC=6,BD=CD=6,∴DG=BD=3.10.如图1,直线y=﹣2x+b(b为常数)交x轴的正半轴于点A(2,0).交y轴正半轴于点B.(1)求直线AB的解析式;(2)点C是线段AB中点,点P是x轴上一点,点Q是y轴上一点,若以A、C、P、Q为顶点的四边形恰好是平行四边形,请直接写出点P的坐标;(3)如图2,若点P是x轴负半轴上一点,设点P的横坐标为t,以AP为底作等腰△APM(点M在x 轴下方),过点A作直线l∥PM.过点O作OE⊥AM于E,延长EO交直线l于点F,连接PF、OM,若2∠PFO+∠AFE=180°,请用含t的代数式表示△PMO的面积.【解答】解:(1)∵直线y=﹣2x+b(b为常数)交x轴的正半轴于点A(2,0),∴0=﹣4+b,∴b=4,∴直线AB解析式为:y=﹣2x+4;(2)∵直线y=﹣2x+4(b为常数)交y轴正半轴于点B,∴点B(0,4),∵点C是线段AB中点,∴点C(1,2),∵点P是x轴上一点,点Q是y轴上一点,∴设点P(x,0),点Q(0,y),当AC为边时,若四边形ACQP是平行四边形时,∴CQ∥AP,CQ=AP,∴y=2,∴CQ=1=AP,∴点P(1,0),若四边形ACPQ是平行四边形时,∴AP与CQ互相平分,∴,∴x=﹣1,∴点P(﹣1,0),当AC为对角线时,若四边形APCQ是平行四边形时,∴AC与PQ互相平分,∴,∴x=3,∴点P(3,0);综上所述:点P坐标为(1,0)或(﹣1,0)或(3,0);(3))∵△AMP是等腰三角形,MP=MA,∴∠MAP=∠MP A,设∠MAP=α,∵直线l∥MP,∴∠F AP=∠MP A=α,∴∠F AE=2α,∵FE⊥AM,∴∠FEA=90°,∴∠AFE=90°﹣2α,又∵∠NFP+∠PFO+∠AFE=180°,2∠PFO+∠AFE=180°,∴∠NFP=∠PFO=(180°﹣∠AFE)=[180°﹣(90°﹣2α)]=45°+α,又∵∠NFP=∠FP A+∠F AP,∴45°+α=∠FP A+α,∴∠FP A=45°,过点P作PN⊥x轴于点P,交直线l于点N,过点M作MQ⊥x轴于点Q,交直线l于点T,如图2所示,∴∠NP A=90°,∴∠FPN=45°,在△NFP和△OFP中,∴△NFP≌△OFP(ASA)∴NP=OP,∵PN∥MT,MP∥直线l,∴四边形NPMT是平行四边形,∴NP=MT,又∵∠TAQ=∠MAQ,AQ=AQ,∠AQT=∠AQM,∴PN=MT=2MQ=2QT,∵点P的横坐标为t,点P是x轴负半轴上一点,∴QM=﹣t,OP=﹣t,∴△PMO的面积=×(﹣t)×(﹣t)=t2.11.在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连接DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB∥CD,∴∠EAG=∠FCG,又∵∠FGC=∠AGE,AE=CF,∴△CFG≌△AEG(AAS),∴FG=EG;(2)(1)中结论依然成立.理由如下:如图2,过点E作EM⊥AB交AC于点M,∵四边形ABCD是正方形,∴∠CAB=45°,∠ABC=90°,∴∠MAE=∠AME=45°,∴AE=EM,又∵AE=FC,∴EM=CF,∵∠AEM=∠ABC,∴ME∥CF,∴∠MEG=∠GFC,又∵∠MGE=∠FGC,∴△MEG≌△CFG(AAS),∴EG=FG;(3)解:如图3,连接DE,DF,EH,∵正方形ABCD中,∠DAE=∠DCB=90°,DC=AD,∴∠DAE=∠DCF=90°,又∵AE=CF,∴△ADE≌△DCF(SAS),∴DE=DF,由(2)知EG=GF,∴DG⊥EF,∴DH是EF的中垂线,∴EH=FH,∵BE=12,BH=5,∴EH===13,∴FH=13,设AE=x,则CF=x,∴AB=CB=12+x,∴CH=7+x,∴FH=CF+CH=x+7+x=2x+7,∴2x+7=13,∴AB=15,∴正方形ABCD的面积为225.12.(1)如图1,在△ABC中,AB=5,AC=3,AD为BC边上的中线.延长AD到点E,使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是1<AD<4.(2)如图2,在Rt△ABC中,∠A=90°,D为BC的中点,E、F分别在边AB、AC上,且DE⊥DF,若BE=2,CF=5,求EF的长.(3)如图3,四边形ABCD中,∠A=90°,∠D=120°,E为AD中点,F、G分别边AB、CD上,且EF⊥EG,若AF=4,DG=,求GF长.【解答】解:(1)如图1,延长AD到点E,使DE=AD,连接BE,∵AD为BC边上的中线,∴BD=CD,∵∠BDE=∠ADC,∴△EDB≌△ADC(SAS),∴BE=AC=3,△ABE中,AB=5,∴AB﹣BE<AE<AB+BE,即5﹣3<AE<5+3,∴2<AE<8,∵AE=2AD,故答案为:1<AD<4;(2)如图2,延长ED至G,使DG=ED,连接FG,CG,同理得:△BED≌△CGD(SAS),∴CG=BE=2,∠B=∠DCG,∴AB∥CG,∴∠A+∠FCG=180°,∵∠A=90°,∴∠FCG=90°,Rt△FCG中,CF=5,∴FG===,∵ED=DG,ED⊥DF,∴EF=FG=;(3)如图3,延长FE至P,使EP=FE,连接DP,PG,同理得:△F AE≌△PDE(SAS),∴PD=AF=4,∠PDE=∠A=90°,∵FE⊥EG,FE=EP,∴FG=PG,延长PD,过G作GH⊥PD于H,∵∠EDG=120°,∠EDH=90°,∴∠GDH=30°,∵DG=2,∴GH==,DH=GH=3,∴PG===2,∴GF=PG=2.13.如图1,将矩形OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA=4,OC=8.把矩形OABC沿对角线OB所在直线翻折,点C落到点D处,OD交AB于点E.(1)求点E坐标.(2)如图2,过点D作DG∥BC,交OB于点G,交AB于点H,连接CG,试判断四边形BCGD的形状,并说明理由.(3)在(2)的条件下,点M是坐标轴上一点,直线OB上是否存在一点N,使以O、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N坐标;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形OABC是矩形,∴AB=OC=8,AB∥OC,∴∠ABO=∠BOC,由翻折可知,∠BOC=∠BOD,∴∠EOB=∠EBO,∴EO=BE,设AE=x,则EB=EO=8﹣x,在Rt△OAE中,∵∠OAE=90°,∴OA2+AE2=OE2,∴42+x2=(8﹣x)2,∴x=3,∴E(3,4).(2)如图2中,四边形BCGD是菱形.∵DG∥BC,∴∠DGB=∠CBG,由翻折的性质可知,∠CBG=∠DBG,BC=BD,∴∠DGB=∠DBG,∴DG=BD=BC,∵DG∥BC,∴四边形BCGD是平行四边形,∵BD=BC,∴四边形BCGD是菱形.(3)当点N与G重合,点M与A重合,四边形DM1ON1是平行四边形,∵DH==,∴EH===,∴AH=3+=,∴D(,),N1(,),当四边形ODN1M是平行四边形时,N1(,),当四边形ODN2M2是平行四边形时,N2(),当四边形ODM1N3是平行四边形时,N3((﹣,﹣),当四边形ODM4N4是平行四边形时,N4(﹣,﹣)综上所述,满足条件的点N的坐标为N1(,),N2(,),N3((﹣,﹣),N4(﹣,﹣).14.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,∴S▱ABCD=AD×BH=AF×BH=5×=5;(2)证明:连接AC,如图2所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形ABCD是平行四边形,AB=AC,∴四边形ABCD是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长AE交DC延长线于P,过点F作FG⊥AP于G,如图3所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得:PG===,∴AP=AG+PG=3+,∴AE=PE=AP=.15.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P 作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵y=﹣x+m交x轴于点A(4,0),∴0=﹣×4+m,解得m=3,∴直线AB解析式为y=﹣x+3,令x=0,y=3,B(0,3);∵A(4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴==6;(2)∵OA=4,OB=3,∴AB═=5=BC,∴OC=2,∴点C(0,﹣2),设直线AC解析式为y=kx+n,∴,∴,∴直线AC解析式为y=x﹣2,∵P在直线y=﹣x+3上,∴可设点P(t,﹣t+3),∵PQ∥y轴,且点Q在y=x﹣2上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=4,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线AB:y=﹣x+3上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,).16.如图,在正方形ABCD中,对角线AC与BD相交于点O,以B为顶点的等腰Rt△BEF绕点B旋转,连接AF与CE相交于点G,连接DG.(1)求证:CE⊥AF;(2)求证:AG+CG=DG;(3)连接CF,当EG:AG:FG=1:2:5,且S正方形ABCD=100时,求DG的长和△BCF的面积.【解答】(1)证明:设AF交BE于J.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵△EBF是等腰直角三角形,∴BE=BF,∠EBF=∠ABC=90°,∴∠FBA=∠EBC,∴△FBA≌△EBC(SAS),∴∠AFB=∠BEC,∵∠FJB=∠EJG,∴∠EGJ=∠FBJ=90°,∴CE⊥AF.(2)证明:如图,过点D作DM⊥GA的延长线于M,过点D作DN⊥CG于N.∵∠M=∠MGN=∠DNG=90°,∴四边形DMGN是矩形,∴∠DMN=∠ADC=90°,∴∠ADM=∠CDN,∵∠M=∠DNC=90°,DA=DC,∴△DMA≌△DNC(AAS),∴DM=DN,AM=CN,∴四边形DMGN是正方形,∴GM=GN=DM=DN,。
二次根式全章五类必考压轴题—2023-2024学年八年级数学下册(苏科版)(解析版)
二次根式全章五类必考压轴题题型一:二次根式的双重非负性的运用题型二:二次根式的规律探究题型三:复合二次根式的化简题型四:二次根式运算与求值技巧题型五:分母有理化题型一:二次根式的双重非负性的运用1.实数a 和b 在数轴上的位置如图所示,化简a b − )A .2aB .2b −C .2a −D .2b 【答案】B101b a <−<<<a b +和绝对值的性质,即可得到答案.解题的关键是掌握所学的知识,正确得到101b a <−<<<.【详解】解:根据题意,则101b a <−<<<,∴0a b −>,0a b +<,∴a b −=a b a b−++ =a b a b −−−=2b −;故选:B .2.已知三角形的三边长3,7,a 10a −的值为( )A .7B .7−C .132a −D .213a −【答案】A 【分析】本题主要考查了三角形和非负数.熟练掌握三角形三边关系,二次根式性质和绝对值性质,是解决问题的关键.根据三角形三边关系,得到410a <<,得到30a −>,100a −<,根据二次根式性质和绝对值性质即得 .【详解】∵三角形的三条边长分别为3、7、a ,∴7373a −<<+,即410a <<,∴40a −>,100a −<,∴30a −>,()103103107a a a a a −=−−−=−−+=.故选:A .3.已知a 、b 为有理数,且满足a +=a b −等于( )A .2−B .4−C .2D .4 【答案】D【分析】本题考查了二次根式的性质与化简,解题的关键是把33a 、b 的值,即可计算a b −的值.【详解】解:3==又∵a +=∴3a +=∴3a =,1b =-,∴()31314a b −=−−=+=,故选:D .4.若(20m =,则n m的值是 .【答案】【分析】本题考查了非负数的性质,分母有理化,根据非负数之和为零,则每个非负数都是零可得1m n ==−,进而代入代数式,即可求解.【详解】解:∵(20m =,∴1m n ==−=−,∴n m ==,故答案为:.5.已知x y ,是有理数,且6y =++化简的结果为 .【答案】【分析】本题考查了二次根式有意义的条件、利用二次根式的性质进行化简,先由二次根式有意义的条件得出2x =,从而得出6y =【详解】解:由题意得:20x −≥,20x −≥,解得:2x =,将2x =代入6y =++得6y =,===故答案为:68b =+ .【答案】5【分析】根据二次根式的性质得到170a −≥,170a −≥,求出17a =,8b =−,代入计算可得.【详解】解:由题可得170a −≥,170a −≥,解得17a =,∴08b =+,∴8b =−,5=,故答案为:5.【点睛】此题考查了二次根式有意义的条件,二次根式的化简求值,正确理解二次根式有意义的条件是解题的关键.7成立的条件是 .【答案】x=2【分析】根据二次根式的意义,被开方数要大于等于零,去求x 的范围.【详解】根据二次根式有意义的条件,,∴x 必须满足的条件是20x −≥且20x −≤,则2x =.故答案是:2x =. 【点睛】本题考查二次根式的意义,解题的关键是掌握二次根式有意义的条件.80=的根是 .【答案】6x =【分析】根据二次根式有意义的条件得60x −≥或60x −≥,可得答案.【详解】解:根据二次根式有意义的条件得60x −≥或60x −≥,得:6x =,故答案为:6x =.【点睛】本题考查了二次根式有意义的条件,掌握其非负数的性质是解决此题的关键.题型二:二次根式的规律探究9.如图,在平面直角坐标系中,等腰直角三角形1OAA 的直角边OA 在x 轴上,点1A 的坐标为()1,1,以点1A 为直角顶点,1OA 为一直角边作等腰直角三角形12OA A ,再以点2A 为直角顶点,2OA 为直角边作等腰直角三角形23,OA A ⋅⋅⋅⋅⋅⋅,依此规律,则点2024A 的坐标为( )A .()101110112,2−B .()10112,0C .()101210122,2−D .()10122,0 【答案】D【分析】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意各个象限内点的坐标符号.点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系寻找,再求解.【详解】解:由已知,点A 每次旋转转动45°,则转动一周需转动8次,每次转动点A 到原∵20248253÷=,∴点2024A 的在x 轴的正半轴上,则2024101220242OA ==, ∴()101220242,0A ,故选:D .10.2222222x ⋅⋅⋅⋅⋅⋅,,,第n 个单项式是( )A 2B C 2 D .2n x 【答案】A【分析】本题主要考查了数字变化规律.观察已知式子,总结规律即可得第n 个单项式是2.2,22x 2,22,2⋯⋯,总结规律得第n 2.故选:A .11.如图,12OA A △为等腰直角三角形,11OA =,以斜边2OA 为直角边作等腰23Rt OA A △, 再以3OA 为直角边作等腰34Rt OA A △,…,按此规律作下去便得到了一个海螺图案,则n OA 的长度为 . (用含n 的式子表示)【答案】1n −【分析】本题主要考查等腰直角三角形的性质,熟练掌握等腰直角三角形的性质是解题的关键;由题意易得2OA =32OA =,4OA = 【详解】解:∵12OA A △为等腰直角三角形,11OA =,∴121OA ==,同理可得:2322OA ===,343OA ===,……;综上所述:1n n OA −=;故答案为1n −.题型三:复合二次根式的化简12.先阅读下列解答过程,然后作答:a ,b 使a b m +=,ab n =,这样22m +==)a b =>,例7m =,12n =;由于437+=,4312⨯=,即227+==2===根据上述例题的方法化简:;【答案】【分析】本题考查二次根式根号内含有根号的式子化简,二次根式的性质及完全平方公式,(1)根据解答过程即可得解,(2(3二次根式根号内含有根号的式子化简主要是根据完全平方公式的特点将该式子转化为平方的形式.【详解】(1=;(2==(3==13.先阅读下列的解答过程,然后再解答:a b 、,使,a b m ab n +==,使得22m +==)a b =>7m =,12n =由于,4312⨯=437+=即227+==2\=(1)______=______;(2)【答案】3【分析】本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方式的运用以及二次根式性质的运用.(1a ,b 值为3和2后,即可得出结论;确定a ,b 值为8和9后,即可得出结论(2a 的形式化简,求解.即可.【详解】(1===3=,3;(2===.14.阅读下面这道例题的解法,并回答问题.11====依据上述计算,填空:, ;(2)199+− 【答案】(1)23(2)9【分析】本题主要考查了化简复合二次根式:(1)根据例题的方法,凑完全平方公式,然后根据二次根式的性质化简即可求解;(2)根据例题的方法,凑完全平方公式,然后根据二次根式的性质化简即可求解.【详解】(1=2==3=;故答案为:23;(2199+−(100+1100+−1101=−9=.15.像这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平方式进行化简,如:1===,再如:=法探索并解决下列问题:(1)化简:(2)化简:(3)若()2a m +=,且a ,m ,n 为正整数,求a 的值.【答案】(3)14或46【分析】此题考查化简二次根式,活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值. (1)利用题中复合二次根式借助构造完全平方式的新方法求解; (2)利用题中复合二次根式借助构造完全平方式的新方法求解; (3)利用完全平方公式,结合整除的意义求解.【详解】(1=(2)==(3)∵2252a m n +=++∴225a m n =+,62mn =,∴3mn =又∵a m 、、n 为正整数, ∴1,3m n ==,或者3,1m n ==, ∴当1,3m n ==时,46a =; 当3,1m n ==时,14a =. ∴a 的值为:14或46.16.【规律探究题】观察下列运算:①由)111=1=;②由1== …… 问题:=______=______; (2)利用(1)中发现的规律计算:)12024+.【答案】n 为正整数) (2)2024【分析】本题考查了二次根式的混合运算,分母有理化和平方差公式等知识点,能根据已知算式得出规律是解此题的关键. (1)根据已知算式得出规律即可;(2)根据(1)中得出的规律进行变形,再根据二次根式的加法法则进行计算,最后根据平方差公式求出答案即可.【详解】(1==−(n 为正整数)(2)原式)120241=+)11202512024==−=17.观察下列等式:第11112⎛⎫=+− ⎪⎝⎭;第211123⎛⎫+− ⎪⎝⎭;第311134⎛⎫+− ⎪⎝⎭, ……按照以上规律,解决下列问题. (1)写出第4个等式:______.(2)写出你猜想的第n 个等式(用含n 的等式表示). (3)请用(2)中发现的规律计算:12024++【答案】11145⎛⎫+− ⎪⎝⎭1111n n ⎛⎫+− ⎪+⎝⎭(3)202420242025【分析】本题考查了二次根式的规律探究,分式的规律探究.根据题意推导一般性规律是解题的关键.(1)由题意可得,第411145⎛⎫+− ⎪⎝⎭;(2)由题意知,第n 1111n n ⎛⎫=+− ⎪+⎝⎭;(3)根据12024++1111111202412233420242025⎛⎫=+−+−+−++− ⎪⎝⎭,计算求解即可.【详解】(1)解:由题意可得,第411145⎛⎫=+− ⎪⎝⎭,11145⎛⎫=+− ⎪⎝⎭;(2)解:由题意知,第n 1111n n ⎛⎫=+− ⎪+⎝⎭;(312024++1111111111112233420242025⎛⎫⎛⎫⎛⎫⎛⎫=+−++−++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111202412233420242025⎛⎫=+−+−+−++− ⎪⎝⎭ 1202412025=+−202420242025=,52024202142220=++.18.观察下列算式的特征及运算结果,探索规律:2=3=4=5.(1)观察算式规律,计算、= ;= ;(2)用含正整数 n 的代数式表示上述算式的规律 ;(3)计算:2020− 【答案】(1)6,37()11n n +≥()2n n =≥(3)1013【分析】本题考查二次根式运算中的规律探究: (1)根据题干给定的等式,进行作答即可;(2)根据题干给定的等式,确定相应的规律作答即可; (3)先根据规律化简各式,再进行计算即可.【详解】(16=37=;故答案为:6,37;(2)由题意,()11n n =+≥()2n n =≥;(32020−3579201920212023=−+−++−+()()2222023=−+−++−+()20191220234+=−⨯+10102023=−+ 1013=.题型四:二次根式运算与求值技巧19.(1(2)2(1(2−−【答案】(1(2)12−【分析】(1)利用二次根式的乘除法运算法则进行计算,再合并即可求解; (2)利用完全平方公式、平方差公式展开,再合并即可求解;本题考查了二次根式的混合运算,掌握二次根式的性质和运算法则是解题的关键.【详解】解:(1)原式===(2)原式()11243=−−−131=−,12=−20.计算:(1)+(2)()21+【答案】(1)(2)8−【分析】本题主要考查了二次根式的混合计算: (1)先化简二次根式,再计算二次根式加减法即可;(2)先利用平方差公式和完全平方公式去括号,然后计算二次根式加减法即可.【详解】(1)解:+=((=+=(2)解:()21+()()2381=−+−19=−+−8=−21.计算:(1)(;【答案】(1)63【分析】本题主要考查了二次根式的混合运算、平方差公式的知识点,灵活运用二次根式的混合运算法则成为解题的关键.(1)先根据平方差公式计算,然后再运用二次根式的混合运算法则计算即可;(2)直接运用二次根式的混合运算法则计算即可.【详解】(1)解:((22=−126=−6=.(2=3=−3=.22.计算:(1)÷(2))22【答案】(1)7 2(2)1【分析】本题主要考查了二次根式的混合运算,熟练掌握运算法则、正确计算是解题的关键. (1)先计算小括号内的二次根式乘法,再化简二次根式并合并同类二次根式,最后计算二次根式除法即可;(2)先计算二次根式乘法,再加减计算即可. 【详解】(1)解:÷=÷(=÷=72=;(2)解:)22222-+=34=−12=−+1=.23.计算下列各小题.(2)()21+.【答案】(1)12(2)24−【分析】(1)关键二次根式乘除的混合运算计算即可; (2)根据二次根式混合运算计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】(112=.(2))()21+22241=−+−2324124=−+−=− 24.计算:(2)(222−【答案】(1)3(2)6+【分析】本题考查了二次根式的混合计算,熟练掌握二次根式的性质,二次根式的乘法和除法法则、乘法公式是解决问题的关键.(1)直接利用二次根式的加减乘除运算法则进行计算;(2)先计算完全平方式及平方差公式,最后再计算加减法即可.【详解】(1)解:原式=3=−3=(2)原式()3245=++−51=+6=+25.计算:(2)⎛÷⎝;(3))(23−.【答案】(1)8(2)73(3)1−【分析】题目主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.(1)将二次根式化简,然后计算乘除法即可;(2)先将二次根式化简,接着计算小括号里面的,然后再算除法即可;(3)利用完全平方公式和平方差公式进行计算,然后计算加减法即可.【详解】(1===;(2)解:⎛÷⎝⎛=÷⎝73=;(3)解:)(23−()59207=−−−5913=−−1=−26.先化简,再求值:()()()()232x y x y y x y x y −+++−−,其中2x =2y = 【答案】5xy ,5【分析】本题考查整式的混合运算,二次根式的混合运算,根据平方差公式,单项式乘多项式及完全平方公式将原式化简,再将x 、y 的值代入,利用平方差公式计算可得结论.掌握相应的运算法则和公式是解题的关键.【详解】解:()()()()232x y x y y x y x y −+++−−()22222322x y xy y x xy y =−++−−+22222322x y xy y x xy y =−++−+− 5xy =,当2x =2y =原式(()5225435=⨯+=⨯−=.27.已知x y = (1)代数式xy 的值; (2)代数式22x y xy +的值. 【答案】(1)1(2)【分析】(1)利用平方差公式即可得答案;(2)由于x y +=1xy =方便运算,故可考虑将代数式化为含()x y +和xy 的项,再整体代入()x y +和xy 的值,进行代数式的求值运算.【详解】(1)xy = 32=− 1=;(2)由已知:x y + =+ =,xy = 32=− 1=,故:原式()xy x y =+=【点睛】本题考查二次根式的化简求值,由于直接代入计算复杂容易出错,因此可考虑整体代入,本题考查了整体代入的思想.28.已知22a b ==(1)22a b +;(2)22a b ab +【答案】(1)12(2)6【分析】(1)根据已知条件式得出4,2a b ab +==,然后根据完全平方公式变形求值即可求解;(2)将2ab =,代入进行计算即可求解.【详解】(1)解:∵22a b ==,∴224a b +==,(22422ab ==−=,∴()2222242212a b a a b b =+−=−=+⨯;(2)解:∵2ab =,∴22a b ab +222=+6=【点睛】本题考查了二次根式的混合运算,熟练掌握完全平方公式与二次根式的运算法则是解题的关键.29.先化简,再求值:2312111a a a a a ++⎛⎫−÷ ⎪++−⎝⎭,其中1a .【答案】1a −【分析】本题主要考查分式的混合运算以及二次根式的化简求值,先通分算括号内的,把除法化为乘法,化简后将a 的值代入计算即可. 【详解】解:2312111a a a a a ++⎛⎫−÷ ⎪++−⎝⎭ ()()22111a a a a a ++=÷++−()()11212a a a a a +−+=⋅++ 1a =−.当1a 时,原式11=−30.先化简,再求值:221121x x x x x −−+++,其中1x =.【答案】11x +,【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.先根据分1x 代入进行计算即可. 【详解】解:221121x x x x x −−+++ ()()()21111x x x x x +−=−++111x x x x −=−++x x 1x 1−+=+11x =+,当1x =1=.31.已知22x y ==(1)22xy +; (2)x y y x−. 【答案】(1)14(2)【分析】(1)先将22x y +变形为2()2x y xy +−,再将x ,y 的值代入,利用二次根式运算法则计算即可,(2)先将x y y x −整理为()()x y x y xy +−,再将x ,y 的值代入,利用二次根式运算法则计算即可,本题考查了二次根式的运算及平方差公式的运用,解题的关键是先将待求式子进行化简,并熟练掌握二次根式的运算法则.【详解】(1)解:∵22x y ==∴222()2x y x y xy +=+−(2(22222=−162=−14=,(2)解:∵22x y == ∴()()22x y x y x y x y y x xy xy +−−−=====题型五:分母有理化32.阅读下列简化过程:1;==== 解答下列问题:(1)(2)2021++ (3)设ab ,c a ,b ,c 的大小关系.【答案】1−(3)a <b <c【分析】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1)解:原式==;(2)解:原式12022=+1;(3)解:a ==2b ==2c ==,22,33.阅读材料,回答下列问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互(0)a a =>,1)1=11互为有理化因式.(1______.这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==,1=,==2==…,(2)用上述方法判断:若a 2b =a ,b 的关系是______.(3)计算:1)2024+.【答案】(1(2)a b =−;(3)2023【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,二次根式的分母有理化是解题的关键.(1)根据有理化因式求解;(2)利用分母有理化把a 进行化简可得到a 与b 的关系; (3)先分母有理化,然后利用平方差公式计算.【详解】解:(1(2)a 与b 互为相反数.理由如下:(2a =−,a b ∴=−,故答案为:a b =−;(3)1)11)=1)=20241=−2023=.34.【阅读理解】 爱思考的小名在解决问题:已知a =,求2281a a −+的值.他是这样分析与解答的:122a ==+2a −= ()223a ∴−=,即2443a a −+=.241a a ∴−=−.()()222812412111a a a a ∴−+=−+=⨯−+=−. 请你根据小名的分析过程,解决如下问题:(1)=______; (2)=______; (3)若a =23121a a −−的值.【答案】1(2)1(3)2【分析】本题考查了二次根式的混合运算,求代数式的值,熟练掌握二次根式的分母有理化(1)仿照题的方法化简即可;(2)把每项按照题中方法化简,再相加减即可;(3)仿照题中方法求代数式值的方法求解即可.【详解】(11=,1;(2=(2024=+12024+11=,故答案为:1;(3)解:∵2a ===,∴2a −=∴2(2)5a −=,即241a a −=, ∴2231213(4)13112a a a a −−=−−=⨯−=.35.阅读下面的材料,解决问题:1==;==2==(1)= ;= ; (2)...+ (3)...【答案】(2)9(3)12−【分析】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.(1)根据题干提供的方法化简即可;(2)先根据题干提供的方法化简,再合并同类二次根式;(3)先根据题干提供的方法化简,再合并同类二次根式.【详解】(1==;==.(2......=+1...1=−110=−+9=(3......=+ 11...2=(112=−12=− 36)4141151⨯⨯==−以上这种化简的步骤叫做分母有理化.回答问题:(1)(2)(m 为正整数).【答案】(2)2.【分析】此题主要考查了分母有理化,第二题是个难点,需要总结规律,再计算.(1(2)各项进行分母有理化,再合并同类项即可.【详解】(14462=−⋅⋅⋅+(242424⋅⋅⋅4()=+++⋅⋅⋅+222222=2。
八年级下册数学期末压轴题专辑(含解析-Word版)
--八年级下册数学期末压轴题专辑(含解析)1.如图,ON为∠AOB 中的一条射线,点 P 在边 OA 上,PH⊥OB 于 H,交 ON 于点 Q,PM∥OB 交 ON 于点 M, MD⊥OB 于点 D,QR∥OB 交 MD于点R,连结 PR 交 QM 于点 S。
(1)求证:四边形 PQRM 为矩形;(2)若 OP= 1 PR,试探究∠AOB 与∠BON 的数量关系,并说明理由。
2(1)证明:∵PH⊥OB,MD⊥OB,∴PH∥MD, ∵PM∥OB,QR∥OB,∴PM∥QR,∴四边形 PQRM 是平行四边形,∵ﻫPH⊥OB,∴∠PHO=90°, ∵PM∥OB,∴∠MPQ=∠PHO=90°,∴四边形 PQRM为矩形; (2)∠AOB=3∠BON.理由如下:∵四边形PQRM 为矩形,∴PS=SR=SQ= 1 PR,∴∠SQR=∠SRQ, 2又∵OP= 1 PR,∴OP=PS,∴∠POS=∠PSO,∵ﻫQR∥OB,∴∠SQR=∠BON, 2在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,∴∠POS=2∠BON, ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,即∠AOB=3∠BON.2.如图,矩形 OABC在平面直角坐标系内(O为坐标原点),点 A 在 x 轴上,点 C 在 y 轴上,点 B 的坐标分别为(-2,2 3 ) ,点 E 是 BC 的中点,点 H 在 OA 上,且 AH= 1 ,过点 H 且平行于 y 轴的 HG 与 EB 交 2于点 G,现将矩形折叠,使顶点 C 落在HG上,并与 HG 上的点D重合,折痕为 EF,点 F 为折痕与 y 轴的 交点。
(1)求∠CEF 的度数和点 D 的坐标; (2)求折痕EF 所在直线的函数表达式; (3)若点 P 在直线 EF 上,当△PFD 为等腰三角形时,试问满足条件的点 P 有几个?请求出点P的坐标,并 写出解答过程。
浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)
浙教版八年级(下)数学期末特殊平行四边形压轴题专项汇编(3)(含详解)1.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.2.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.3.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF 是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=2MN,求AB2、BC2、CD2、AD2之间的关系.4.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.5.已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)若点G在点B的右边.试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.6.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.7.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD 的边AB、BC、DA上.(1)如图1,四边形EFGH 为正方形,AE =2,求GC 的长.(2)如图2,四边形EFGH 为菱形,设BF =x ,△GFC 的面积为S ,且S 与x 满足函数关系S =621x .在自变量x 的取值范围内,是否存在x ,使菱形EFGH 的面积最大?若存在,求x 的值,若不存在,请说明理由.8.如图,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连接GE 、GF . (1)求证:△OAE ≌△OBG .(2)试问:四边形BFGE 是否为菱形?若是,请证明;若不是,请说明理由.9.已知,如图,O 为正方形对角线的交点,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF =CE ,连接DF ,交BE 的延长线于点G ,连接OG . (1)求证:△BCE ≌△DCF .(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8﹣42,求正方形ABCD的面积?10.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过A作AN⊥MB交MB的延长线于点N,请求出线段CM与BN的数量关系.参考答案与解析1.(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB =90°,∠2+∠AEB =90° ∴∠1=∠2,∵BH =BE ,∠BHE =45°,且∠FCG =45°, ∴∠AHE =∠ECF =135°,AH =CE , 在△AHE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF AHE CEAH 21, ∴△AHE ≌△ECF (ASA ), ∴AE =EF ;(2)解:AE =EF 成立,理由如下:如图2,延长BA 到M ,使AM =CE , ∵∠AEF =90°, ∴∠FEG +∠AEB =90°. ∵∠BAE +∠AEB =90°, ∴∠BAE =∠FEG , ∴∠MAE =∠CEF . ∵AB =BC , ∴AB +AM =BC +CE , 即BM =BE . ∴∠M =45°, ∴∠M =∠FCE . 在△AME 与△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ECF M CEAM CEF MAE , ∴△AME ≌△ECF (ASA ), ∴AE =EF .2.(1)证明:能.理由如下:在△DFC 中,∠DFC =90°,∠C =30°,DC =4t , ∴DF =2t , 又∵AE =2t , ∴AE =DF ,∵AB ⊥BC ,DF ⊥BC , ∴AE ∥DF , 又∵AE =DF ,∴四边形AEFD 为平行四边形, 当AE =AD 时,四边形AEFD 为菱形,即60﹣4t =2t ,解得t =10.∴当t =10秒时,四边形AEFD 为菱形.(2)①当∠DEF =90°时,由(1)知四边形AEFD 为平行四边形, ∴EF ∥AD ,∴∠ADE =∠DEF =90°, ∵∠A =60°, ∴∠AED =30°, ∴AD=21AE =t , 又AD =60﹣4t ,即60﹣4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD 为矩形,在Rt △AED 中∠A =60°,则∠ADE =30°, ∴AD =2AE ,即60﹣4t =4t ,解得t=215. ③若∠EFD =90°,则E 与B 重合,D 与A 重合,此种情况不存在. 综上所述,当t=215或12秒时,△DEF 为直角三角形.3.(1)证明:∵四边形ABCD 是正方形, ∴AB =BC ∠A =∠ABC =90°, ∴∠EAF +∠EBC =90°, ∵BE ⊥CF ,∴∠EBC +∠BCF =90°, ∴∠EBF =∠BCF , ∴△ABE ≌△BCF , ∴BE =CF ,∴四边形BCEF 是准矩形;(2)解:连接AN 、DN ,过点C 作CE ∥BD ,过点B 作BE ∥DC , 则四边形BECD 为平行四边形,连接DE ,则D 、N 、E 三点共线,过点B 作BF ⊥CE 于F ,过点D 作DG ⊥EC 交EC 延长线于点G ,如图2所示: ∵四边形BECD 为平行四边形, ∴BE =DC ,BE ∥DC ,ED =2DN , ∴∠BEF =∠DCG , 在△BEF 和△DCG 中,⎪⎩=DC BE ∴△BEF ≌△DCG (AAS ), ∴BF =DG ,EF =CG ,在Rt △BFC 中,BC 2=BF 2+FC 2=BF 2+(EC ﹣EF )2,在Rt △DEG 中,DE 2=DG 2+EG 2=DG 2+(EC +CG )2=BF 2+(EC +EF )2, ∴BC 2+DE 2=2BF 2+2EC 2+2EF 2=2(BF 2+EF 2)+2EC 2=2BE 2+2EC 2=2BD 2+2CD 2, ∴BC 2+4DN 2=2BD 2+2CD 2,∴DN 2=41(2BD 2+2CD 2﹣BC 2) 同理:AN 2=41(2AB 2+2AC 2﹣BC 2),MN 2=41(2AN 2+2DN 2﹣AD 2)=41(BD 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)=41(AC 2+CD 221-BC 2+AB 2+AC 221-BC 2﹣AD 2)21=AC 2+41(AB 2+CD 2﹣BC 2﹣AD 2),∵AC 2=MN ,∴MN 221=AC 2, ∴MN 2=MN 2+41(AB 2+CD 2﹣BC 2﹣AD 2),即:41(AB 2+CD 2﹣BC 2﹣AD 2)=0,∴AB 2+CD 2=BC 2+AD 2.4.(1)证明:∵四边形ABDI 、四边形BCFE 、四边形ACHG 都是正方形, ∴AC =AG ,AB =BD ,BC =BE ,∠GAC =∠EBC =∠DBA =90°. ∴∠ABC =∠EBD (同为∠EBA 的余角). 在△BDE 和△BAC 中,⎪BE⎩=BC∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,=AB.∴AD2又∵四边形ACHG是正方形,∴AC=AG,=AB.∴AC2=AB时,四边形ADEG是正方形.∴当∠BAC=135°且AC25.解:(1)EH﹣BG的值是定值,∵EH⊥AB,∴∠GHE=90°,∴∠GEH+∠EGH=90°,又∠AGD+∠EGH=90°,∴∠GEH=∠AGD,∵四边形ABCD与四边形DGEF都是正方形,∴∠DAG=90°,DG=GE,∴∠DAG=∠GHE,在△DAG和△GHE中,⎪DG⎩=GE∴△DAG≌△GHE(AAS);∴AG=EH,又AG=AB+BG,AB=4,∴EH=AB+BG,∴EH﹣BG=AB=4;(2)(I)当点G在点B的左侧时,如图1,同(1)可证得:△DAG≌△GHE,∴GH=DA=AB,EH=AG,∴BH=AG=EH,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(II)如图2,当点G在点B的右侧时,由△DAG≌△GHE.∴GH=DA=AB,EH=AG,∴AG=BH,又EH=AG,∴EH=HB,又∠GHE=90°,∴△BHE是等腰直角三角形,∴∠EBH=45°;(III)当点G与点B重合时,如图3,同理△DAG≌△GHE,∴GH=DA=AB,EH=AG=AB,∴△GHE(即△BHE)是等腰直角三角形,∴∠EBH=45°综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°.6.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,∴四边形AECF 是平行四边形,由(1)可知,FO =CO ,∴AO =CO =EO =FO ,∴AO +CO =EO +FO ,即AC =EF ,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.∵由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,∵MN ∥BC ,∴∠AOE =∠ACB∵∠ACB =90°,∴∠AOE =90°,∴AC ⊥EF ,∴四边形AECF 是正方形.7.解:(1)如图1,过点G 作GM ⊥BC ,垂足为M .由矩形ABCD 可知:∠A =∠B =90°,由正方形EFGH 可知:∠HEF =90°,EH =EF ,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH ≌△BFE .∴BF =AE =2,同理可证:△MGF ≌△BFE ,∴GM =BF =2,FM =BE =8﹣2=6,∴CM =BC ﹣BF ﹣FM =12﹣2﹣6=4,在Rt △CMG 中,由勾股定理得:CG=524222=+;(2)如图2,过点G 作GM ⊥BC ,垂足为M ,连接HF ,由矩形ABCD 得:AD ∥BC ,∴∠AHF =∠HFM ,由菱形EFGH 得:EH ∥FG ,EH =FG ,∴∠EHF =∠HFM ,∴∠AHE =∠GFM ,又∠A =∠M =90°,EH =FG ,∴△MGF ≌△AEH ,∴GM =AE ,又 BF =x ,∴S △GFC 21=FC•GM 21=(12﹣x )•GM =621-x , ∴GM =1,∴AE =GM =1,BE =8﹣1=7,∵H 在边AD 上,∴菱形边长EH 的最大值14511222=+=,即EH =EF 145=, 此时BF =x ()6496181452==--=, ∴0≤x ≤64,∵EH =EF ,由勾股定理得:AH 2222248171x x EH +=-+=-=,∴S 菱形EFGH =BM •AB ﹣2⨯⨯217x ﹣2248121x +⨯⨯⨯=8(x +FM )﹣7x ﹣FM =x +7248x +, ∴当x 最大时,菱形EFGH 的面积最大,即当x =64时,菱形EFGH 的面积最大.8.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°.∵BH ⊥AF ,∴∠AHG =∠AHB =90°,∴∠GAH +∠AGH =90°=∠OBG +∠AGH ,∴∠GAH =∠OBG ,即∠OAE =∠OBG .在△OAE 与△OBG 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BOG AOE OBOA OBG OAE , ∴△OAE ≌△OBG (ASA );(2)解:四边形BFGE 为菱形;理由如下:在△AHG 与△AHB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AHB AHG AHAH BAH GAH , ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB .∵∠BEF =∠BAE +∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BFGE 是菱形;9.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°,在△BCE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=CF CE DCF BCE DC BC ,∴△BCE ≌△DCF (SAS );(2)OG ∥BF 且OG=21BF , 理由:如图,∵BD 是正方形ABCD 的对角线,∴∠CDB =∠CBD =45°,∵BE 平分∠DBC ,∴∠2=∠3=21∠CBD =22.5°, 由(1)知,△BCE ≌△DCF ,∴∠CDF =∠3=22.5°,∴∠BDF =∠CDB +∠CDF =67.5°,∴∠F =180°﹣∠CBD ﹣∠BDF =67.5°=∠BDF ,∴BD =BF ,而BE 是∠CBD 的平分线,∴DG =GF ,∵O 为正方形ABCD 的中心,∴DO =OB ,∴OG 是△DBF 的中位线,∴OG ∥BF 且OG=21BF ; (3)设BC =x ,则DC =x ,BD=2x ,由(2)知△BGD ≌△BGF , ∴BF =BD ,∴CF =(2-1)x ,∵DF 2=DC 2+CF 2,∴x 2+[(2-1)x ]2=8﹣42,解得x 2=2,∴正方形ABCD 的面积是2.10.解:(1)AG =EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB =BE ,∠ABG =90°,AB =BC ,∠ABC =90°,在△ABG 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠=BC BA EBC ABC BE BG ,∴△ABG ≌△BEC (SAS ),∴CE =AG ,∠BCE =∠BAG ,延长CE 交AG 于点M ,∴∠BEC =∠AEM ,∴∠ABC =∠AME =90°,∴AG =EC ,AG ⊥EC ;(2)∠EMB 的度数不发生变化,∠EMB 的度数为45°理由为: 过B 作BP ⊥EC ,BH ⊥AM ,在△ABG 和△CEB 中,⎪⎩⎪⎨⎧=∠=∠=EB BG EBC ABG BC AB ,∴△ABG ≌△CEB (SAS ),∴S △ABG =S △EBC ,AG =EC ,∴21EC •BP=21AG •BH , ∴BP =BH ,∴MB 为∠EMG 的平分线,∵∠AMC =∠ABC =90°,∴∠EMB=21∠EMG=21×90°=45°;(3)CM=2BN ,理由为:在NA 上截取NQ =NB ,连接BQ , ∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN =45°,∠N =90°,∴△AMN 为等腰直角三角形,即AN =MN ,∴MN ﹣BN =AN ﹣NQ ,即AQ =BM ,∵∠MBC +∠ABN =90°,∠BAN +∠ABN =90°,∴∠MBC =∠BAN ,在△ABQ 和△BCM 中,⎪⎩⎪⎨⎧=∠=∠=BCAB MBC BAN BMAQ ,∴△ABQ ≌△BCM (SAS ),∴CM =BQ ,则CM=2BN .故答案为:CM=2BN。
【压轴题】初二数学下期末试卷含答案
解析:D 【解析】 【分析】 【详解】
解:根据直角三角形的面积可以导出:斜边 c= ab . h
再结合勾股定理:a2+b2=c2.
进行等量代换,得 a2+b2= a2b2 , h2
两边同除以
a2b2,
得
1 a2
1 b2
1 h2
.
故选 D.
3.C
解析:C 【解析】
【分析】
【详解】
∵等腰三角形 ABC 中,AB=AC,AD 是 BC 上的中线,
6.若点 P 在一次函数
的图像上,则点 P 一定不在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.计算 12 ( 75 +3 1 ﹣ 48 )的结果是( ) 3
A.6
B.4 3
C.2 3 +6
D.12
8.如图 2,四边形 ABCD 的对角线 AC、BD 互相垂直,则下列条件能判定四边形 ABCD
(3)当函数表达式是二次根式时,被开方数非负.
5.D
解析:D 【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项 A 错误; B、对角线垂直且相等的平行四边形是正方形,故选项 B 错误; C、两条对角线相等的平行四边形是矩形,故选项 C 错误; D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项 D 正 确; 故选 D.
以各自的速度匀速行驶,途径 C 地,甲车到达 C 地停留 1 小时,因有事按原路原速返回 A
地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y(千
米)与甲车出发所用的时间 x(小时)的关系如图,结合图象信息解答下列问题:
八年级数学下册期末动点问题及压轴题带答案
1.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2.(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm.一动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动.P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t s,则(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)AB边的长是否存在一数值,使四边形PQCD为菱形.如果存在,请求出AB 边的长,如果不存在,请说出理由.3.(本题10分)已知:在正方形ABCD 中,AB =6,P 为边CD 上一点,过P 点作PE ⊥BD 于点E ,连接BP(1) O 为BP 的中点,连接CO 并延长交BD 于点F① 如图1,连接OE ,求证:OE ⊥OC② 如图2,若53=EF BF ,求DP 的长 (2) CP EP 22+=___________4.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________(2) 若S △COE =S △ADE ,求点D 的坐标(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.5.(11分)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)菱形ABCO的边长是 ;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒.①求S 与t 之间的函数关系式;②在点P 运动过程中,当S =3,请直接写出t 的值.6.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.7、如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、D Q、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x 的值.8、如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P 作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.1.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.2.【解答】解:(1)由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∵四边形PQCD为平行四边形,∴DP=CQ,∴24﹣t=3t,∴t=6;(2)如图2,过点D作DE⊥BC于E,过点P作PF⊥BC于F,∴四边形EFPD是矩形,∴DE=PF,[来源:Z|xx|]∵四边形PQCD是等腰梯形,∴∠PQC=∠DCQ,∵∠PFQ=∠DEC=90°,∴△PFQ≌△DEC,∴FQ=CE,∴BE=AD=24,∴CE=BC﹣BE=2,∵四边形PQCD为等腰梯形,∴CQ=DP+2CE,由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∴24﹣t+2×2=3t,∴t=7,(3)AB边的长是8时,四边形PQCD为菱形,理由:由(1)知,t=6时,四边形PQCD是平行四边形,∴DP=24﹣6=18,∵平行四边形PQCD是菱形,∴CD=DP=18,如图2,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴AB=DE,在Rt△CDE中,CE=2,CD=18,∴DE==8.3.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点∴OE =OB =OP =OC∴∠POE =2∠DBP ,∠POC =2∠CBP∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90°∴OE ⊥OC② 连接OE 、CE∵△COE 为等腰直角三角形∴∠ECF =45°在等腰Rt △BCD 中,BF 2+DE 2=EF 2设BF =3x ,EF =5x ,则DE =4x∴3x +4x +5x =26,解得x =22 ∴DP =2DE =424=x(2) ∵62==-+=+CD C DP CP EP ∴2322=+CP EP4.解:(1) (3,0)、x <3(2) ∵S △COE =S △ADE∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF∵∠CDF =60°∴△CDF 为等边三角形连接AC∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-) 令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6.解:根据题意得:PA=2t ,CQ=3t ,则PD=AD-PA=12-2t .(1)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,在直角△CDE 中,∵∠CED=90°,DC=10cm ,DE=8cm ,∴22DC DE -,∴BC=BE+EC=18cm .…………………………………………………………………2分(直接写出最后结果18cm 即可)(2)∵AD ∥BC ,即PD ∥CQ ,∴当PD=CQ 时,四边形PQCD 为平行四边形,即12-2t=3t ,解得t=125秒, 故当t=125秒时四边形PQCD 为平行四边形;………………………………………4分(3)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,当PQ=CD 时,四边形PQCD 为等腰梯形.过点P 作PF ⊥BC 于点F ,过点D 作DE ⊥BC 于点E ,则四边形PDEF 是长方形,EF=PD=12-2t ,PF=DE .在Rt △PQF 和Rt △CDE 中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103;②当DQ=DC时,36 2t=∴t=4;③当QD=QC时,3t×65 10=∴t=259.故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=25 97.解:(1);-1;(2)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°∵Q点为A点关于BP的对称点∴AB=QB,∠A=∠PQB=90°∴QB=BC,∠BQE=∠BCE∴∠BQC=∠BCQ∴∠EQC=∠EQB-∠CQB=∠ECB-∠QCB=∠ECQ∴EQ=EC在Rt△ABC中∵∠QDE=90°-∠QCE,∠DQE=90°-∠EQC∴∠QDE=∠DQE∴EQ+ED∴CE=EQ=ED即E是CD的中点②(3)或或8.解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵PQ∥y轴,且点Q在y=x﹣4 上,∴Q(t, t﹣4),∴d=(﹣t+6)﹣(t ﹣4)=﹣t+10;(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ,∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=8,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QMN=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∴∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN,∴HN=RM=k,NR=QH=4+k,∵HR=HN+NR,∴k+4+k=8,∴k=2,∴GH=NH=RM=2,∴HQ=6,∵Q(t,t﹣4),∴N(t+2,t﹣4+6)即 N(t+2,t+2)∵N在直线AB:y=﹣x+6上,∴t+2=﹣(t+2)+6,∴t=2,∴P(2,),N(4,3),∴PH=,NH=2,∴PN==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学压轴题1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.4.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.5.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.6.Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)7.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.8.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.9.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.10.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.实用标准文档11.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.文案大全实用标准文档12.已知一次函数的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x 轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.文案大全实用标准文档13.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.文案大全实用标准文档14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x 轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.文案大全实用标准文档15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C 的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边A1B1C1D1重叠部分的面积.文案大全实用标准文档16.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a ,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.文案大全实用标准文档文案大全实用标准文档文案大全2018年06月17日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16小题)1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)【解答】解:(1)如图①AH=AB.(2)数量关系成立.如图②,延长CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND 中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∵∠DAN+∠BAN=45°,∴∠EAB+∠BAN=45°,∴∠EAN=45°,∴∠EAM=∠NAM=45°,在△AEM和△ANM 中,,∴△AEM≌△ANM.∴S△AEM=S△ANM,EM=MN,实用标准文档∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH.(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2∴52=(x﹣2)2+(x﹣3)2(6分)解得x1=6,x2=﹣1.(不符合题意,舍去)∴AH=6.2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.文案大全【解答】(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(易知AF=BF,延长EF交AD于H,△AEF的面积=•EF•AH=•CB•AD=•文案大全•BC•AD,由此即可证明)(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF 中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.文案大全【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,文案大全∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)∴AB=12.∴S梯形ABCD =(AD+BC)•AB=×(6+12)×12=108.即梯形ABCD的面积为108.…(10分)4.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.【解答】(1)解:∵四边形ABCD正方形,∴∠BCD=90°,BC=CD,∴Rt△BCD中,BC2+CD2=BD2,即BC2=()2﹣(BC)2,∴BC=AB=1,∵DF⊥DE,∴∠ADE+∠EDC=90°=∠EDC+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∵,∴△ADE≌△CDF(ASA),文案大全∴AE=CF=BF﹣BC=﹣1,∴BE=AB﹣AE=1﹣(﹣1)=2﹣;(2)证明:在FE上截取一段FI,使得FI=EH,∵△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,∵,∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,∴FH=FI+HI=HE+HD.5.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并文案大全写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.【解答】解:(1)PQ=PB,(1分)过P点作MN∥BC分别交AB、DC于点M、N,在正方形ABCD中,AC为对角线,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°;又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP≌Rt△NPQ中,∵∴Rt△MBP≌Rt△NPQ,(2分)∴PB=PQ.(2)∵S四边形PBCQ=S△PBC+S△PCQ,∵AP=x,∴AM=x,∴CQ=CD﹣2NQ=1﹣x,又∵S△PBC =BC•BM=•1•(1﹣x)=﹣x,S△PCQ =CQ•PN=(1﹣x)•(1﹣x),文案大全=﹣+,∴S四边形PBCQ =﹣x+1.(0≤x ≤).(4分)(3)△PCQ可能成为等腰三角形.①当点P与点A重合时,点Q与点D重合,PQ=QC,此时,x=0.(5分)②当点Q在DC的延长线上,且CP=CQ时,(6分)有:QN=AM=PM=x,CP=﹣x,CN=CP=1﹣x,CQ=QN﹣CN=x﹣(1﹣x)=x﹣1,∴当﹣x=x﹣1时,x=1.(7分).6.Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)文案大全【解答】(1)证明:∵△ABC≌△FCB,∴AB=CF,AC=BF.∴四边形ABFC为平行四边形.(2)解:OP=OQ,理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,∴△COQ≌△BOP.∴OQ=OP.(3)解:90°.理由:∵OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥PQ,∴四边形PCQB为菱形.7.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠1=∠2=45°,DE=DE,∴△ADE≌△CDE.文案大全(2)证明:∵△ADE≌△CDE,∴∠3=∠4,∵CH⊥CE,∴∠4+∠5=90°,又∵∠6+∠5=90°,∴∠4=∠6=∠3,∵AD∥BG,∴∠G=∠3,∴∠G=∠6,∴CH=GH,又∵∠4+∠5=∠G+∠7=90°,∴∠5=∠7,∴CH=FH,∴FH=GH.(3)解:存在符合条件的x 值此时,∵∠ECG>90°,要使△ECG为等腰三角形,必须CE=CG,∴∠G=∠8,又∵∠G=∠4,∴∠8=∠4,∴∠9=2∠4=2∠3,∴∠9+∠3=2∠3+∠3=90°,∴∠3=30°,∴x=DF=1×tan30°=.8.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.文案大全【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,文案大全∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°文案大全9.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAF=∠DFA,∵AF平分∠BAD,∴∠DAF=∠DFA,∴AD=FD,∵DE⊥BC,DH⊥AB,∴∠ADG=∠FDM=90°,在△ADG和△FDM中,,∴△ADG≌△FDM(ASA).(2)AB=DG+EC.证明:延长GD至点N,使DN=CE,连接AN,∵DE⊥BC,AD∥BC,∴∠ADN=∠DEC=90°,文案大全在△ADN和△DEC中,,∴△ADN≌△DEC(SAS),∴∠NAD=∠CDE,AN=DC,∵∠NAG=∠NAD+∠DAG,∠NGA=∠CDE+∠DFA,∴∠NAG=∠NGA,∴AN=GN=DG+CE=DC,∵四边形ABCD是平行四边形,∴AB=CD,∴AB=DG+EC.10.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.【解答】证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,,文案大全∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;(2)连接DG,在△ABG和△ADG中,,∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.11.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,文案大全(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.【解答】解:(1)∵=,∴可设OC=x,则OA=2x,在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(4)2,解得x=4(x=﹣4舍去),∴OC=4,OA=8,∴A(8,0),C(0,4),设直线AC解析式为y=kx+b,∴,解得,∴直线AC解析式为y=﹣x+4;(2)由折叠的性质可知AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2,解得y=5,∴AE=CE=5,∵∠AEF=∠CEF,∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF=5,∴S△CEF =CF•OC=×5×4=10,文案大全即重叠部分的面积为10;(3)由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),设直线EF的解析式为y=k′x+b′,∴,解得,∴直线EF的解析式为y=2x﹣6.12.已知一次函数的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x 轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y 与x之间的函数关系式,并写出函数的定义域.文案大全【解答】解:(1)对于y=﹣x+6,当x=0时,y=6;当y=0时,x=8,∴OA=6,OB=8,在Rt△AOB中,根据勾股定理得:AB=10,则A(0,6),B(8,0);(2)过点E作EG⊥AB,垂足为G(如图1所示),∵AE平分∠BAO,EO⊥AO,EG⊥AG,∴EG=OE,在Rt△AOE和Rt△AGE中,,∴Rt△AOE≌Rt△AGE(HL),∴AG=AO,设OE=EG=x,则有BE=8﹣x,BG=AB﹣AG=10﹣6=4,在Rt△BEG中,EG=x,BG=4,BE=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴E(3,0),设直线AE的表达式为y=kx+b(k≠0),将A(0,6),E(3,0)代入y=kx+b得:,解得:,则直线AE的表达式为y=﹣2x+6;(3)延长BF交y轴于点K(如图2所示),文案大全∵AE平分∠BAO,∴∠KAF=∠BAF,又BF⊥AE,∴∠AFK=∠AFB=90°,在△AFK和△AFB中,∵,∴△AFK≌△AFB,∴FK=FB,即F为KB的中点,又∵△BOK为直角三角形,∴OF=BK=BF,∴△OFB为等腰三角形,过点F作FH⊥OB,垂足为H(如图2所示),∵OF=BF,FH⊥OB,∴OH=BH=4,∴F点的横坐标为4,设F(4,y),将F(4,y)代入y=﹣2x+6,得:y=﹣2,∴FH=|﹣2|=2,则S△OBF =OB•FH=×8×2=8;(4)在Rt△AOE中,OE=x,OA=6,根据勾股定理得:AE==,又BE=OB﹣OE=8﹣x,S△ABE =AE•BF=BE•AO(等积法),∴BF==(0<x<8),又BF=y,则y=(0<x<8).13.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;文案大全(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC =×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD 的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,文案大全∴1.5x﹣6=3x=6,所以P(6,3).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x 轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A 出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,文案大全∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C 的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1=6,高为3﹣1=2,∴重叠部分的面积S=6×2=12.16.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)分别令y=0和x=0,得一次函数y=x+1的图象与x轴.y轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴AB==2∵△ABC为等边三角形,∴S△ABC=;(2)如图1,S△AOB=,S△AOP=,S△BOP=|a|•OB=﹣.∴S四边形ABPO=S△AOB+S△BOP=,而S△ABP=S四边形ABPO﹣S△APO,∴当S△ABP=S△ABC时,=,解得a=﹣;(3)如图2,满足条件的点M有4个:M1(﹣,0),M2(﹣2,0),M3(,0),M4(+2,0).。