08 第八章 交通流理论

合集下载

交通流理论第八章

交通流理论第八章

第八章无信号交叉口理论平面交叉口把相交的道路路段连接起来,构成路网。

因为在交叉口同一平面上有多股交通流动,考虑到交通安全,有时需要进行适当的交通控制。

按照有无交通控制,可将交叉口分为有交通信号控制的交叉口(简称为信号交叉口)和无交通信号控制的交叉口(简称为无信号交叉口)。

无信号交叉口是最普遍的交叉口类型,虽然它的通行能力可能低于信号交叉口,但它在网络交通控制中起到了非常重要的作用。

一个运行情况不良的无信号交叉口,可能会影响整个信号网络或者智能运输系统的运行,并且无信号交叉口理论是信号交叉口理论的基础,因此首先对无信号交叉口进行研究是非常必要的。

无信号交叉口不像信号交叉口那样会给驾驶员确定的指示或控制,驾驶员必须自己判断何时进入交叉口是安全的。

驾驶员所寻求的在交通流中进入交叉口的安全机会或“间隙”称为可插车间隙,它用时间来度量,并且等于某一车头时距。

可插车间隙理论是分析无信号交叉口运行的基本理论,其它的所有分析过程在某种程度上都依赖于可插车间隙理论,或者即使没有明确地应用该理论,但也是以它为基础的。

在无信号交叉口中,必须考虑车辆的优先权问题。

如果有一辆车试图进入交叉口,但此时存在优先级高于它的交通流,那么它必须让路给这些交通流。

另外,低级别交通流的存在也会影响高级别交通流的运行。

由此可见,无信号交叉口的车流间存在着相互作用。

本章的第一节首先讨论无信号交叉口的理论基础,着重介绍可插车间隙理论以及在该理论中用到的几种基本的车头时距分布。

普通的无信号交叉口(即四路相交)可分为二路停车和四路停车两类,即主路优先控制的交叉口(包括停车控制和让路控制)和主次路不分的交叉口。

在第二节中首先讨论了二路停车的无信号交叉口,第三节接着讨论了四路停车的无信号交叉口。

在考虑交叉口交通运行时还用到了经验方法,并且在许多情况下经验方法的结果也是比较准确的,与实际情况差别并不大,在第四节中介绍了这些方法。

第一节理论基础一、可插车间隙理论1. 可利用间隙可插车间隙理论是分析无信号交叉口的基本理论,理解该理论必须先理解可利用间隙的概念。

交通工程学课件-第八章--交通流理论

交通工程学课件-第八章--交通流理论

m 1)!
Pk
•时间t内到达车辆数小于k的概率P(K<k) •时间t内到达车辆数大于等于k的概率P(K≥k) •时间t内到达车辆数大于等于x但不超过y的概率
P(x≤K≤y)
第八章 交通流理论
• 该分布的均值M和方差D都等于m=λt。
• 实际应用中,均值M=E(X)和方差D(X)可分别由其样本 均值和样本方差S2分别进行估计:
1、负指数分布
• 交通流到达服从泊松分布,则交通流到达的车头时距 服从负指数分布, 反之亦然
• 已知到达某交叉口的车流车头时距(单位:s)服从负
指数分布,且 P(h 10) 0.2
• 试求任意10s到达车辆数不小于2辆的概率
P0 0.2 et P1 t et P( X 2) 1 P0 P1
交通工程中,另一个用于描述车辆到达随机特性的度量 就是车头时距的分布,常用的分布有负指数分布、移位的 负指数分布、M3分布和爱尔朗分布
1、负指数分布(Exponential Distribution)
由泊松分布知 P( X 0) (T )0 eT eT
0!
四、连续性分布(continuous distribution)
第八章 交通流理论
一、概述
• 交通流理论是运用物理学与数学的定律来描述交 通特征的一门科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使 我们能更好地掌握交通现象及其本质,并使城市 道路与公路的规划设计和营运管理发挥最大的功 效。
第八章 交通流理论
一、概述 当前交通流理论的主要内容: • 1、交通流量、速度和密度的相互关系及测量方法 • 2、交通流的统计分布特性 • 3、排队论的应用 • 4、跟驰理论 • 5、驾驶员处理信息的特性 • 6、交通流的流体力学模拟理论 • 7、交通流模拟

交通流理论基础知识概要课件

交通流理论基础知识概要课件
交通流量
单位时间内通过道路某一断面的车辆数量,单位为辆/小时。
交通流分类
依据车辆类型
可分为机动车流、非机动车流和 行人流等。
01
02
依据交通目的
03
可分为客运交通流、货运交通流 等。
04
依据交通方式
可分为道路交通流、铁路交通流 、水路交通流和航空交通流等。
依据交通组织形式
可分为自由流、信号控制流和潮 汐流等。
噪音污染
交通工具产生的噪音对城市环境造成严重影响,影响居民的生活质 量,甚至导致听力受损。
土地资源占用
交通设施的建设需要占用大量的土地资源,对土地生态环境造成破坏 。
环保型交通方式的发展
公共交通
公共交通工具是环保型交通方式之一,如公交车、地铁等,能够 减少私家车出行,降低交通排放。
非机动车出行
鼓励市民使用自行车、电动车等非机动车出行,减少机动车的使 用,降低排放。
、道路状况、客流量等因素。
公共交通优化需要采用先进的智能调度系统和数据分 析技术,实现实时监控、智能调度和数据分析,以提
高公共交通系统的运行效率和可靠性。
06
交通流与环境保护
Chapter
交通排放对环境的影响
空气污染
交通排放的废气中含有大量的有害物质,如一氧化碳、氮氧化物、 碳氢化合物等,这些物质对大气环境造成严er
仿真软件介绍
软件名称
PanoSim
功能特点
PanoSim是一款基于微观仿真的 交通流模拟软件,能够模拟城市 道路、高速公路等不同交通场景 下的交通流情况。
适用范围
广泛应用于城市规划、交通工程 、道路设计等领域,为交通管理 部门提供决策支持。
仿真流程

交通工程学 第八章 道路交通流理论

交通工程学 第八章 道路交通流理论
数学描述
综上所述,按格林希尔茨的速度—密度模型、流量— 密度模型、速度—流量模型可以看出:Qm、Vm和Km是划 分交通是否拥挤的重要特征值。
当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤;
当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。
8.1.2 连续流特征
例题
1、已知某公路的畅行车速Vf为80km/h,阻塞密度Kj为100辆 /km,速度—密度关系为线性关系,试求: (1)此路段上期望得到的最大流量为多少? (2)此时对应的车速为多少? 解:(1)因为速度—密度关系为线性关系,所以: Kj Vf Km Vm 2 2
概述
交通模型
微观方法处理车辆相互作用下的个体行为,包括跟驰模 型和元胞自动机模型(Cellular Automata, CA)等 宏观方法视交通流为大量车辆构成的可压缩连续流体介 质,研究许多车辆的集体平均行为,比如LWR模型 (Lighthill-Whitham-Richards ) 介于中间的基于概率描述的气动理论模型(gas-kineticbased model)
P( 4) Pi 0.1512
i 0 4 1
不足4辆车的概率: 4辆及4辆以上的概率:
P( 4) 1 P( 4) 0.8488
8.2.2 离散型分布
练习
例题:设80辆汽车随机分布在8km长的道路上,服从 泊松分布,求任意1km路段上有5辆及5辆以上汽车的概 率。
8.1.2 连续流特征
数学描述
(1)速度与密度关系 格林希尔茨(Greenshields)提出了速度-密度线性关系 模型: K
V V f (1
Kj
)
当交通密度很大时,可以采用格林柏(Grenberg)提 出的对数模型: K

交通流理论 - 课件

交通流理论 - 课件
对应于前面车辆的加速或减速刺激,即相对速度是正还是负或者车头间 距是增大还是减小,跟驰车辆的反应具有不对称性。 为了在跟驰模型中反映出这种不对称性,把跟驰理论的基础模型改写成 如下形式:
������ሷ ������+������ ������ + ������ = ������������ ������ሶ ������ ������ − ������ሶ ������+������ ������ + ������
2/39
第三节 稳态流分析
一、何为稳态流?
满足局部稳定性和渐进稳定性要求,即不发生恒幅和增幅波动的交 通流为稳态流。 本节将利用单车道车辆跟驰模型讨论稳态流的特性,针对不同的交通 流状态对跟驰模型进行必要的扩充和修正,并由此推导相应的速度— 间距(或速度—密度)、流量—密度关系式。
3/39
一、线性跟驰模型分析
15/39
积分常数的确定依赖于具体的m和l值(l≥0,m≥0),而且与两个边界 条件(1)������ → ∞时,������ → ������������;(2)s=L时,u=0的满足情况有关(各参数含 义同前),下面分几种情况进行讨论。
(1)������ > 1,0 ≤ ������ < 1的情况,两边界条件均满足,积分常数a、b的值可 由下式求得:
两边进行积分得:
−������ ������ሶ������+1 ������ = ������������ ������ − ������������+1 (������) + ������
因为有: ������ሶ������+1 ������ =v, ������������ ������ − ������������+1 ������ = 1Τ������

第3节---交通流理论

第3节---交通流理论
nT 1 q T h nL 1 k L s
1 h nT 1 s nL T hi nT i 1 L si nL i 1
nL nT
s vg h
3种观测方式
地点观测、移动观测、区间观测
x x x
t 地点观测
固定地点,一段时 间内进行的观测 连续时间 离散空间
t 移动观测
t
Time-Space Diagram
N t , x
N (t , x) :累积车辆台数
固定地点
t
x
:时间 :空间位置
t
交通流的流体力学理论基础(2)
流体力学的近似表现
1 维坐标空间 x:道路前进方向上的个地点的位置 到时刻 t 为止,通过道路某一横断面 x 的累积车辆台 数: N (t , x)
v2 v1 Qw 1 1 k 2 k1
1,2分别代表前后两种车流的状态,v代表车速,k代表 密度
3 种波速的比较
交通量q
空间平均速度
黑色
微弱波速度
绿色,红色
(q1 , k1 ) (q2 , k 2 )
集散波速度
浅蓝色
密度k q-k曲线
应用实例(Signal Control)(1)
qg k g vg
vs k g v g
g 1 n
1 n k g q g q kvs k g 1 g 1
n
Fundamental Diagram(q-k Curve)
交通流量不能超 过在临界密度所 对应的最大值 一个交通流量对 应两个状态
非拥挤区域和拥挤区域
城市道路与交通规划
第三节:交通流理论 3.1 交通流理论基本概念

8交通流理论

8交通流理论

负指数分布
移位的负指数分布
M3分布
爱尔兰分布
公交线路共用同一中途停靠站有利于乘客 换乘,但是如果共用的条数过多,会使公 交车流量超过停靠站的通行能力,导致车 流堵塞排队,大大地增加了乘客的乘行时 间,也会给道路交通带来极不利的影响。
(一) 负指数分布
适用条件 用于描述有充分超车机会的单列车流和密度不大 的多列车流的车头时距 基本公式
适用条件 适用范围广 基本公式
f (t ) e
t
( t )
k 1
( k 1 )!
k=1, 对应的是负指数分布;
k值越大,说明交通越拥挤,驾驶员行为的随机程度 越小; k= ,车头时距为均匀分布
三 拟合优度检验
当把理论分布与一组实验数据间的各种拟合进行比较 时,要求有一些拟合的质量评价法,即拟合优度检验 常用
顾客达到系统时,所有服务窗均被占用,该顾客随即离去
顾客到达时所有窗口繁忙,就排队等候服务(先到先服务,优先服务)
队长<L,排队;队长=L,离去 每一顾客的服务时间相等
各个顾客的服务时间相互独立,具有相同的负指数分布
各个顾客的服务时间相互独立,具有相同的爱尔兰分布
接受服务
服务窗
负指数分布
爱尔兰分布
M
采用概率论中的离散型 分布为工具 考虑固定长度的时段内到达 某场所的交通数量的波动
采用概率论中的连续型 分布为工具 事件发生的间隔时间 的统计特性
拟合优度检验 理论分布与实验数据间的拟合
一 离散型分布
在一定时间间隔内到达的车辆数,或在一定路段 上部分的车辆数,是所谓的随机变数,在描述这 类随机变数的统计规律用的是离散型分布 泊松分布 二项分布 负二项分布

交通流参数的泊松分布

交通流参数的泊松分布
μ=nπ =1000 ×0.0018=1.8
(三)Poisson分布的图形
μ=0.6 μ=6
μ=2 μ=14
(四)Poisson分布的性质
1. Poisson分布的方差等于均数,即 σ2=μ。
2. Poisson分布的可加性。
• 对于服从Poisson分布的 m个相互独立的随机 变量Xl,X2,…, Xm它们之和X1+X2+…+Xm也服 从Poisson分布,且均数为m个随机变量的均数 之和。
P( X k) k e , k 0,1,2,..., n
k!
•则称X服从参数为λ的Poisson分布,记为X~P(λ)。其中 X为单位时间(或面积、容积等)某稀有事件发生数,e= 2.7183,λ是Poisson分布的总体均数。
•也就是,若某现象发生的概率小,而样本例数多时,则 二项分布逼近Poisson分布。
二)单个总体均数的假设检验
1.直接计算概率法 根据Poisson分布的概率分布列计算
概率或累积概率,并依据小概率事件原 理,作出统计推断。
[例]某罕见非传染性疾病的患病率一般为15 /10万,现在某地区调查1000人,发现阳性 者2人,问此地区患病率是否高于一般。
解:H0:此地区患病率与一般患病率相等; H1:此地区患病率高于一般患病率;
即该放射物质每30min平均脉冲数(个) 的95%可信区间为(322.8,397.2)。
SUCCESS
THANK YOU
2019/10/12
(2)查表法 如果X≤50时,样本资料 呈Poisson分布,可查阅正态分布表。
[例]对某地区居民饮用水进行卫生学检测中, 随机抽查1 mL水样,培养大肠杆菌2个,试估计 该地区水中平均每毫升所含大肠杆菌的95%和 99%可信区间。 本例,X=2<50,查附表4,95%可信区间为(0.2 ,7.2);99%可信区间为(0.1,9.3)。

第八章 交通流理论4(流体力学模拟理论)

第八章 交通流理论4(流体力学模拟理论)

即: q q d d q k t k d d kx
dk dq 0 dt dx
车流连续 性方程
4
交通工程电子教程
第八章 交通流理论
车流波动理论
集结波 车流波由低密度状态向高密度状态转变的界面 移动,车流在交叉口遇红灯,车流通过瓶颈路段、桥梁 等都会产生集结波。
疏散波 车流波由高密度状态向低密度状态转变的界面 移动,交叉路口进口引道上红灯期间的排队车辆绿灯时 开始驶离,车流从瓶颈路段驶出等都会产生疏散波。
Ⅰ w1
5km

w2 Ⅲ
Q1=720 V1=60 K1=12
Q2=1200 V2=30 K2=40
Q3=1250 V3=50 K3=25
18
Ⅰ w1
5km

w2 Ⅲ
Q1=720 V1=60 K1=12
Q2=1200 V2=30 K2=40
Q3=1250 V3=50 K3=25
超限车进入后,车流由状态变Ⅰ为状态Ⅱ ,将产生一
21
• 由此可见,在超限车离去的时刻低速车队最长!
因此,最大排队长度为2.14km (为什么?); • 这2.14km上的车辆数即为最大排队车辆数:
2.14K2=2.14×40=86 (辆) (为什么是K2 ? )
22
交通工程电子教程
第八章 交通流理论
思考题 已知某道路入口处车速限制为13km/h,对应
交通工程电子教程
第八章 交通流理论
第四节 流体力学模拟理论
在实际交通观测中,常会发现交通流的某些行为非常 类似流体波的行为。
1
交通工程电子教程
第八章 交通流理论
1955年,英国学者Lighthill和Whitham将交通流比拟为流 体流,对一条很长的公路隧道,研究了在车流密度高的情况 下的交通流规律,提出了流体动力学模拟理论。

交通工程学电子课件第8章交通流理论

交通工程学电子课件第8章交通流理论
交通工程学电子课件第8 章交通流理论
本章主要介绍交通流理论的基本概念和应用。包括交通流模型、连续介质模 型和微观模型的区别、饱和流的概念和计算、交通流的稳定性分析等内容。
交通流模型的分类和应用
介绍不同类型的交通流模型以及它们在实际交通管理和规划中的应用。包括连续介质模型、微观模型和宏观模 型等。
连续介质模型
2 左转车道的排队
左转车道上的排队会对直
3 转向冲突ቤተ መጻሕፍቲ ባይዱ交叉口拥

行车道的通行产生影响,
转向冲突和交叉口的容量
需要设计合理的信号控制。
限制也会导致交通拥堵。
饱和流的概念和计算方法
定义交通流的饱和流量,介绍饱和流量的计算方法,以及饱和流对道路交通 能力的影响。
交通流的稳定性分析
讨论交通流的稳定性和不稳定性,以及分析交通流稳定性的方法和指标。
交通流的实测数据分析和处理
介绍如何使用实测数据对交通流进行分析和处理,为交通规划和交通管理决 策提供依据。
基于交通流动态的交通控制策 略设计
讨论如何根据交通流的动态变化,设计合理的交通流控制策略,提高交通效 率和交通安全性。
基于交通流的连续性假设,适用于高密度交通流 的分析。
微观模型
基于车辆运动和交互的个体行为,适用于个体驾 驶行为的建模。
宏观模型
基于整体交通流特征的统计模型,适用于交通流 的预测和规划。
应用
交通管理、交通规划、交通仿真等领域都需要使 用不同类型的交通流模型。
经典的连续介质模型:LWR模型
介绍Lighthill-Whitham-Richards (LWR)模型,是一种经典的连续介质模型,用于描述交通流的宏观行为和拥堵现 象。
基于微观视角的交通流模型

(最新整理)第五节交通流理论统计分布

(最新整理)第五节交通流理论统计分布

复习波松分布
波松定理
Pk
P ( xn
k)
C
k n
p
k n
(1
pn )nk ,
设 np n 0,为常数,则有
k 1,2, , n
lim
n
P ( xn
k)
( )k k!
e ,
k 1,2, , n
Pk
n! k!(n
( ) k (1 k )! n
)nk n
n ( n 1)( n 2 ) ( n k 1) ( ) k (1 ) n (1 ) k
则 由 Pk
mk k!
em得
Pk
6k e6 k!

P0
60 0!
e 6
0 .0025
由递推公式
Pk 1
m k 1
Pk 得
P1
6 1
P0
0 .0149
P2
6 2
P1
0 .0446
P3
6 3
P2
0 .0892
3
不足 4 辆车的概率为 P ( 4 ) Pi 0 .1512 i0
则 4 辆及 4 辆以上的概率为 P ( 4 ) 1 P ( 4 ) 0 .8488
1、递推公式
Pk Pk 1
C
k n
p k (1
p)nk
C
k n
1
p
k
1
(1
p ) nk 1
n! p k (1 p ) n k
k!(n k )!
k 1 1 p
n!
p k 1 (1 p ) n k 1 n k p
(k 1)! (n k 1)!
则 Pk 1
nk k 1

第8章 交通流理论

第8章 交通流理论

设计上具有95%置信度的来车数不多于8辆。
聊城大学汽车与交通工程学院
交通工程学
(二)二项分布 1.基本公式 X-B(n,p) 二项分布是说明结果只有两种情况的n次实 验中发生某种结果为k次的概率分布。其概率密 度为:
k P(k ) Cn pk (1 p)nk
t p n
式中:0<p<1,n、p称为分布参数。
i l
i!
聊城大学汽车与交通工程学院
交通工程学
2、递推公式
P(0) e
m
m P(k 1) P (k ) k 1
聊城大学汽车与交通工程学院
交通工程学
3、适用条件 车流密度不大,车辆间的相互影响比较微弱 已知:泊松分布的均值M和方差D均等于m
聊城大学汽车与交通工程学院
交通工程学
例题1: 某信号交叉口的周期为c=97秒,有效绿灯时 间为g=44秒。在有效绿灯时间内排队的车流以 V=900辆/小时的流率通过交叉口,在绿灯时间外 到达的车辆需要排队。设车流的到达率为q=369 辆/小时且服从泊松分布,求到达车辆不致两次排 队的周期数占周期总数的最大百分比。
me P(k ) , k 0,1, 2,...... k!
聊城大学汽车与交通工程学院
交通工程学
到达数小于k辆车的概率:
mi e m P ( k ) i! i 0
k 1
mi e m 到达数小于等于k辆车的概率: P( k ) i! i 0
k
到达数大于k辆车的概率:
k

p、β 为负二项布参数。0<p<1,β 为正整数。
1 P( k ) 1 Ck 1 p (1 p)i , k 0,1, 2 i 0 k

第八章交通流理论

第八章交通流理论
– 2、模型假设:车辆处于两种状态行驶:
一部分是车队状态行驶;
另一部分是按自由状态行驶。
– 3、均值和方差
均值:E(H)=
方差:Var(H)=2
2
㈣、爱尔兰分布
– 1、密度函数
f tet
tk1 k1!
k=1,2,3……
• 当k=1时,负指数分布 • 当k=时,车头时距为均匀分布
– 2、实际应用时。
第八章交通流理论
交通流是由单个驾驶员与车辆组成,以 独特的方式在车辆间、公路要素以及总 体环境之间产生影响。受驾驶员的影响, 不存在两个表现完全相同的交通流。
定量描述交通流与描述水流不一样。
–一方面是为了理解交通流特性的内在变 化关系;
–另一方面也是为了限定交通流特征的合 理范围。 故,必须定义和测量一些重要 参数。
– 当h》6s时,车辆自由行驶
– 非自由状态行驶的车队有如下三个特性:
• ㈠、制约性
– “紧随要求”—不愿落后,紧随前进 – 从安全角度考虑,跟驶车辆要满足两个条件:
» “车速条件”——后车车速在前车速度附近摆动 » “间距条件”——前后车之间保持一个安全的距离
• ㈡、延迟性
– 前车t时刻作出的动作,而后车要在(t+T)时刻才 能作出相应的动作。
– 概率密度函数:
F(t)
e (t ) 0
t t
– 可求得:车头时距均值和方差 均值:E(H)= 1
方差:Var(H)= 1
2
2、适用条件
–描述不能超车的单列车流的车头时距分 布和车流量低的车流的车头时距分布。
M3分布
– 1、适用车流:交通较拥挤,出现了部分车辆成 车队状态行驶。。
• 例如:选择信号灯的下游观测,绿灯时交 通流量大多较大,常达饱和;而信号循环 的黄灯和红灯时间,交通流量很小。

交通流理论PPT(讲课)

交通流理论PPT(讲课)

向旭 2009年11月
北京建筑工程学院
向旭 2009年11月
北京建筑工程学院
交通流理论
二、车流连续性方程
设车流顺次通过断面Ⅰ和Ⅱ的时间间隔为△t,两断面得间 距为△x。车流在断面Ⅰ的流入量为Q、密度为K;同时,车 流在断面Ⅱ得流出量为:(Q+△q), (K-△K),其中: △K 的前面加一负号,表示在拥挤状态,车流密度随车流量增加 而减小。 △x Q (K-△K,Q+△Q ) △t Q K Q+△Q K-△K (K,Q)
(K1,Q1)
K
向旭 2009年11月
北京建筑工程学院
交通流理论
三、车流波动状态
•当Q2>Q1 、K2>K1时,产生一个集结波, w为正值,集结波在 波动产生的那一点,沿着与车流相同的方向,以相对路面为w 波动产生的那一点,沿着与车流相同的方向,以相对路面为w 的速度移动。 Q (K1,Q1)
(K2,Q2)
Q
(K2,Q2)
(K1,Q1)
K
向旭 2009年11月
北京建筑工程学院
交通流理论
四、停车波和起动波
1、模型变化 通过速度— 通过速度源自密度模型分析交通模型ui = u f (1 − Ki / K j )
设标准化密度
ηi = Ki / K j
则, u1 = u f (1 −η1 ) u2 = u f (1 −η2 ) uf为自由流速度,将上两式带入下式 uf为自由流速度,将上两式带入下式
uw = u f [1 − (η1 + 1)] = −u f η1
向旭 2009年11月
北京建筑工程学院
交通流理论
四、停车波和起动波
2、起动波 当车辆起动时,k1为阻塞密度,则 当车辆起动时,k1为阻塞密度,则

交通流理论---第八章4

交通流理论---第八章4

交通工程学教师:朱艳茹
第二节 交通流中排队理论 2.排队系统的三个组成部分
(1)输入过程 指各种类型的“顾客(车辆或行人)” 按怎样的规律到来。
定长输入——顾客等时距到达。 泊松输入——顾客到达时距符合负指数分布。这种 输入过程最容易处理,因而应用最广泛。
爱尔朗输入——顾客到达时距符合爱尔朗分布。
混合制——顾客到达时,若队长小于L,就排入队 伍;若队长等于L,顾客就离去,永不再来。
交通工程学教师:朱艳茹
第二节 交通流中排队理论
(3)服务方式 指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种:
(2)忙期——服务台连续繁忙的时期,这关系到服务 台的工作强度。
(3)队长——有排队顾客数与排队系统中顾客数之分, 这是排队系统提供的服务水平的一种衡量。
交通工程学教师:朱艳茹
第二节 交通流中排队理论 二、单通道排队服务(M/M/1)系统
由于排队等待接受服务的通道只有单独一条,故称“单 通道服务”系统。如图
第二节 交通流中排队理论 三、条通道排队服务(M/M/N系统
在这种排队系统中,服务通道有N条,所以叫 “多通道服务”系统。根据排队方式的不同,又可分为:
单路排队多通道服务:指排成一个队等待数条通 道服务的情况。排队中头一辆车可视哪个通道有空就到 哪里去接受服务,如图所示。
单路排队多通道服务图
交通工程学教师:朱艳茹
交通工程学教师:朱艳茹
第一节 交通流的统计分布特性
图8-5泊松分布
交通工程学教师:朱艳茹
第一节 交通流的统计分布特性 2、递推公式
m m P( x) P( x 1)( x 1), P(0) e x

第八章 交通流理论

第八章 交通流理论

将影响、传递到车队中的最后一辆车。
N+1 S(t) Xn+1(t)
t时刻N+1车位置 正常情况下两车间距
N
N车停车位置
Xn(t)
t时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
L
安全距离
3.线性跟驰模型分析
S(t) d 1 d 2 L - d 3

n m / p m 2 /(m S 2 )(取整数)
(2)递推公式
P(0) (1 p) n n x 1 p P( X x) P( X x 1) x 1 p
(3)应用条件 车流比较拥挤、自由行驶机会不多的车流用二项分 布拟合较好。此时S2/m小于1.0。
t t
其概率密度函数为:
e (t ) , f (t ) 0,
t t
式中:

1 , t
t 为平均车头时距 。
(2)适用条件
移位负指数分布适用于描述不能超车的单列车流 的车头时距分布和车流量低的车流的车头时距分布。

3.M3分布 (1)基本公式:

m2 l 2 , S
概率密度函数:
p(t ) e
t
(t ) , l 1,2,3, (l 1)!
l 1
第二节 跟驰模型
1.引例
思考
前车紧急制动时,后车在 什么情况下才是安全的?
后车反应

前车刺激
2.线性跟驰模型介绍

跟驰理论——研究在限制超车的单车道上,行驶车

8-1-2 交通流参数的负二项分布

8-1-2 交通流参数的负二项分布
k r 1 r 1 k P( x k ) f (k ; r, p ) p * r 1 * p * (1 p ) k r 1 r k r 1 r k r 1 * p * (1 p ) C k r 1 * p * (1 p )
P( X k ) p * C
k 1 r k 1
p
k 1
(1 p)
k 11
r
P( X k 1) p * C
两式相除,得
k 11 k 11r
p
(1 p)
r
2 k 2 r p * Ckk p ( 1 p ) r 2
1 Ckk P( X k ) k r 1 r 1 k 2 * p *p P( X k 1) Ck r 2 ( r 1) * (k 1)
• 解:根据表中数据,可作出虚线散点图:
70 60 50 40 30 20 10 0

到达车辆数-到达频次

0 1 2 3 4 5 6 7 8 9 10 11
• 解:根据表中数据,可知: 观测频数:N f i 489
i 0
12
样本均值: x
___
x
i 0 12 i 0
12
k r 1 r 1 k Nb( r, p ) f ( k ; r, p ) p * r 1 * p * (1 p )
3、交通参数的负二项分布:
在固定观测间隔内,到第r次观测到车辆到达时,车辆到达 的次数r-1(车辆没到达的次数k)的概率。
P( X k ) p * C
1 49 k 48 Ck49 * 0 . 843 * ( 1 0 . 843 ) C448 * 0.84349 * (1 0.843 )440 491

交通工程学电子课件第8章交通流理论

交通工程学电子课件第8章交通流理论

移位的负指数分布 负指数分布拟合单车道交通流车头时距分布时,理论上会得到车头时距在0~1.0秒的概率较大,与实际情况不符。为了克服负指数分布的这种局限性,引入了移位的负指数分布,即假设最小车头时距不应小于一个给定的值 .
8.1 交通流的概率统计分布
M3分布
假设车辆处于两种行驶状态:一部分是车队状态行驶,另一部分车辆按自由流状态行驶。
常用递推公式 当交通量不大且没有交通信号干扰时,基本上可用泊松分布拟合观测数据;当交通拥挤时,车辆之间的干扰较大,则应考虑用其他分布。
二项分布
——二项分布参数,0<p<1,n为正整数。
01
02
8.1 交通流的概率统计分布
二项分布
01.
——二项分布参数,0<p<1,n为正整数。
02.
8.1 交通流的概率统计分布
8.4 流体力学模拟理论
车流连续性方程的建立
根据质量守恒定律: 流入量-流出量=数量变化
车流量随距离而降低时,车流密度则随时间而增大
01
车流波动理论
02
瓶颈处的车流波
03
紊流
8.4 流体力学模拟理论
时间t内横穿S分界线的车数N:
01
两种密度的车流运行状况
02
8.4 流体力学模拟理论
安全车头间距
02
假定两车停下来所需的加速度和距离都相等
车辆的速度
03
t+T时刻,后车加速度
车辆的加速度
8.2 跟驰理论
模型的稳定性
C ——表示车间距摆动特性的数值。该值越大表示车间距 的摆动越大; ——反应强度系数 ,其值大,表示反应强烈; T ——反应时间,s。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

而车头时距小于t的概率则为:
P(h<t)=1-e-λt 若Q表示每小时的交通量,则λ=Q/3600(辆/s),前式可以写成:
P(h≥t)=e-Qt/3600
式中Qt/3600是到达车辆数的概率分布的平均值。若令M为负指数分 布的均值,则应有: M=3600/Q=1/λ 负指数分布的方差为:
D
1
2
S(t ) xn (t ) xn1 (t )
d1 —后车在反应时间T内行驶的距离; d1 Txn1 (t ) Txn1 (T t )
d2 —后随车在减速期间行驶的距离;
d3 —前导车在减速期间行驶的距离;
L —停车后的车头间距; xn1 (t ) —第n+1辆车在时刻t 的速度。
跟驰条件(车速条件、间距条件)
2. 延迟性 (也称滞后性)
3. 传递性
二. 线性跟驰模型
t 时刻两车位置 n+1 S(t) n
前车开始减速的位置
x n1 (t ) x n (t )
d3
完全刹车后两车位置 n+1 n+1 n
d1
d2
后车开始减速的位置
L

两车在刹车操作后的相对位置如图所示。 xi (t ) —第i 辆车在时刻t 的位置; S (t ) —两车在时刻 t 的间距,且:

当道路上交道流量增大时,车辆出现拥挤 现象,车辆像某种流体一样流动,车辆行 驶失去相互独立性.不是随机变量,不能 应用概率论方法来分析,可以将道路上整个 交通流看作一种具有特种性质的流体,应用 流体运动理论宏观地研究整个交通流体的演 变过程,特别应用洪水回波理论研究交通拥 挤阻塞回波现象,求出交通流拥挤状态变化 规律。这种研究方法称为流体力学方法。
4. 离散型分布拟合优度检验——χ2检验
(1)χ2检验的基本原理及方法
① 建立原假设H0 ② 选择适宜的统计量 ③ 确定统计量的临界值 ④ 判定统计检验结果
二. 连续型分布
描述事件之间时间间隔的分布称为连续型分布。连续型分布 常用来描述车头时距、或穿越空 档、速度等交通流特性的分布特征。 1.负指数分布 (1)基本公式 计数间隔t内没有车辆到达(k=0)的概率为: P(0)=e-λt 上式表明,在具体的时间间隔t内,如无车辆到达,则上次车 到达和下次车到达之间,车头时距至少有t秒,换句话说,P(0) 也是车头时距等于或大于t秒的概率,于是得: P(h≥t)=e-λt
① 到达数小于k辆车(人)的概率:
mi e m P ( k ) i! i 0
k 1
② 到达数小于等于k的概率:
mi e m P ( k ) i! i 0
k
③ 到达数大于k的概率:
mi e m P( k ) 1 P( k ) 1 i! i 0

道路上一辆跟踪另一辆车的追随现象是很多的, 前一辆车行驶速度的变化,影响后一辆车行驶,后 一辆车为了与前车保持具有最小安全间隔距离。需 要调整车速,这种前后车辆运动过程可以应用动力 学跟踪理论,建立道路上行驶车辆流动线性微分方 程式来分析车辆行驶情况和变化规律。这种研究方 法称为交通跟驰理论。

用样本的均值m代替M、样本的方差S2代替D,即可算出负指数分布
的参数λ。 此外,也可用概率密度函数来计算。负指数分布的概率密度函数为:
P(t )
d d P(h t ) [1 P(h t )] e t dt dt

P(h t ) p(t )dt et dt et

道路上交通流排队现象随时可见,因此,有必 要研究交通流中的排队理论及其应用 排队论是研究“服务“系统因“需求”拥挤 而产生等待行列(即排队)的现象,以及合理协调 “需求”与“服务”关系的一种数学理论,是 运筹学中以概率论为基础的一门重要分支,有 的书中称为“随机服务系统理论”。
从研究方向看




三、一无信号交叉口主要道路交通量1000辆/ 小时,次要道路横穿需要6s,连续通行时所 需车头时距为3s。 求:1、次要道路平均等待时间 2、次要道路可能最大交通量;
1、平均等待时间
w

1
(
e

1)
e Q次 1e

0
第三节 跟驰模型

跟驰理论 是运用动力学方法,研究在无法超车的单 一车道上车辆列队行驶时,后车跟随前车的行驶状 态的一种理论。




二、交通流理论沿革 随着交通车辆逐渐增多,道路交通拥挤、阻塞 现象出现,促使很多学者对交通流进行理论研究。 创始阶段 交通流理论在20世纪30年代开始发 展起来,首先将交通车流看作是随机独立变量,应 用概率论数理统计理论分析交通流分布规律。 快速发展 50年代汽车工业大发展,道路上行 驶车辆数量急剧增加,出现车队现象,有些学者应 用流体力学理论、波动理论和动力学跟踪理论分析 交通流变化规律。 1959年在美国底特律举行了首届国际交通流学 术讨论会,以后又举行了多次专题讨论会。1964年 由美国公路研究委员会出版“交通流理论人门”专 题报告汇编,以后由美国一些大学编写了交通流理 轮
移位负指数分布适用于描述不能超车的单列车 流的车头时距分布和车流量低的车流的车头时距 分布。
3、其它
为了克服移位负指数分布的局限性,可采用更通用的 连续型分布,如: ① 韦布尔(Weibull)分布; ② 爱尔朗(Erlang)分布; ③ 皮尔逊Ⅲ型分布; ④ 对数正态分布; ⑤ 复合指数分布。
作 业
k
④ 到达数大于等于k的概率:
mi e m P( k ) 1 P( k ) 1 i! i 0
k 1
⑤ 到达数至少是x但不超过y的概率:
mi e m P( x i y ) i! ix
y
⑥ 用泊松分布拟合观测数据时,参数m按下式计算:
观测的总车辆数 j 1 m = g 总计间隔数
三 思想方法



理论上模型应具备: 微分方程 时间空间两变量 非线性 随机性 无穷性
抽象 实际应用模型

发展趋势

在道路上某一地点观测交通流,当交通流量 不是很大时不难看出有这些现象:每一个时间 间隔内的来车数都不是固定一个数,也不可预 知的。可以认为道路上交通车流是相互独立 的随机变量,道路上车辆行驶过程是一种随机 变化过程,交通流分布规律符合概率论数 理统计分布规律,因此可以用概率论数理 统计理论来分析交通流,微观地对各个午辆 行驶规律进行研究,找出交通流变化规律c这种 研究方法,称为概率论方法。


一、 某路段,交道流量为360辆/小时,车辆 到达符合泊松分布。求 1.在95%的置信度下,每60s的最多来车数。 2.在1s、2s、3s时间内无车的概率。
二、一交叉口,设置了专供左转的信号相, 经研究指出:来车符合二项分布,每一周期 内平均到达20辆车,有25%的车辆左转但 无右转。求: 1.到达三辆车中有一辆左转的概率。 2.某一周期不使用左转信号相的概率。
第八章 交通流理论



第一节 概述 第二节 交通流的概率统计分布 第三节 跟驰理论 第四节 排队论 第五节 流体力学模拟理论
第一节 概述
一、定义


交通工程学的基础理论就是交通流理论。 所谓交通流理论是应用数学或物理学原 理对交通流的各参数及其之间关系进行定性 和定量的分析,以寻求道路交通流的变化规 律,从而为交通规划、交通管理和道路设计 及运政、路政管理提供理论依据。
p (m S 2 ) / m n m / p m 2 /(m S 2 )(取整数)
(2)递推公式
P(0) (1 p) n nk p P(k 1) P(k ) k 1 1 p
(3)应用条件 车流比较拥挤、自由行驶机会不多的车流用二项分布 拟合较好。
3. 负二项分布
(1)基本公式 1 P(k ) Ck 1 p (1 p)k ,
k 0,1,2,
式中:p、β为负二项布参数。0<p<1,β为正整数。
1 P( k ) 1 Ck 1 p (1 p)i i 0
k
由 概 率 论 可 知 , 对 于 负 二 项 分 布 , 其 均 值 M=β(1p)/p,D=β(1-p)/p2,M<D。因此,当用负二项分布拟合观测数据 时,利用p、β与均值、方差的关系式,用样本的均值m、方差 S2代替M、D,p、β可由下列关系式估算:
p m / S 2 , m2 /(S 2 m)(取整数)
(2)递推公式
P(0) p k 1 P(k ) (1 p) P(k 1) k
(3)适用条件
当到达的车流波动性很大或以一定的计算间隔观测到达 的车辆数(人数)其间隔长度一直延续到高峰期间与非高峰 期间两个时段时,所得数据可能具有较大的方差。
n——正整数; n! k Cn k!(n k )!
通常记p=λt/n,则二项分布可写成:
k P(k ) Cn pk (1 p)nk ,
k 0,1,2,, n
式中:0<p<1,n、p称为分布参数。 对于二项分布,其均值M=np,方差D=np(1-p),M>D。因此, 当用二项分布拟合观测数时,根据参数p、n与方差,均值的关系式, 用样本的均值m、方差S2代替M、D,p、n可按下列关系式估算:
一. 离散型分布
1. 泊松分布
(1)基本公式
(t ) k e t P(k ) , k! k 0,1,2,
式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——单位时间间隔的平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m); e——自然对数的底,取值为2.71828。
相关文档
最新文档