平行线拐点问题六种模型题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线常见四种易错题型分析
七年级下学期,平行线常见四种易错题型分析:过拐点作已知直线的平行线。本篇内容,我们接着介绍平行线中常见的六种易错题型,早掌握避免遇到时出错。平行线间拐点问题基本模型有三种: 第一种铅笔模型;第二种M型;第三种猪手模型。
我们还介绍了平行线四大拐点模型:“铅笔”模型、“猪蹄”模型、“臭脚”模型、“骨折”模型,这四类模型的共通点是需要做辅助线,做辅助线的方法比较多,通用的方法为:过拐点作已知直线的平行线。
一、性质定理与判定定理的区分
要分清它们,只要注意:(1)由角得到直线平行,是判定定理,选择①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行,这三个定理之一。(2)由平行的直线得到角的关系,是性质定理,选择①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补,这三个定理之一。
【分析】先由垂直的定义得到:∠2=∠3,然后由同位角相等,两直线平行得到:EF∥BD,再由两直线平行,同位角相等得到:∠4=∠5,然后根据等量代换得到:∠1=∠5,再根据内错角相等,两直线平行得到:DG∥BC,最后由两直线平行,同位角相等即可证∠ADG=∠C.
二、三线八角理解不透彻
很多学生遇到两条平行线被第三条直线所截时,会找同位角、内错角、同旁内角,但是遇到两条相交线被第三条直线所截时,却不会找了,主要原因就是对“三线八角”理解不透彻。要想准确地解决这类问题,首先要明确三种角的位置特点,在前一篇文章中我们特地介绍过,七年级下学期,三线八角、平行线的性质与判定定理,掌握解题诀窍其次要搞清楚被哪条直线所截。
【分析】∠A与∠B的共边线为直线AB,那么直线AB为截线,即直线AC与直线BC被第三条直线AB所截,那么∠A与∠B是同旁内角,正确;∠1与∠2是邻补角,错误;∠2与∠A的共边线为直线AC,是同位角,错误;∠2与∠3是内错角,错误。
三、对平行线的概念理解不透彻
例题3:判断题:同一平面内不相交的两条线,叫做平行线.
【分析】这句话,乍看没有问题,但是细看的话,与定义有出入。平行的含义:在同一平面内,不相交的两条直线叫做平行线;可知平行的前提:这两条线必须是直线。而题目中只是说是“两条线”,两条线的情况很多:两条都是直线;两条都是线段;两条都是射线;一条直线、一条线段等等,因此这句话是错误的。
四、不能很好的识别复杂图形
在复杂的图形中正确地找出同位角、内错角或同旁内角,是运用平行线的判定或性质的前提。
【分析】首先证明EF∥DM可得∠3=∠CDM,进而可得∠2=∠CDM,可证明MN ∥CD,再根据平行线的性质可得∠AMN=∠C,结合已知条件再证明AB∥MN.
遇到这四类题目时,不要再犯类似的错误。