初中数学分式计算题及答案 (2)
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(2)
一、选择题1.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .72.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x =3.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数5.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 6.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-17.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .38.下列各分式中,最简分式是( ) A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 9.若a =1,则2933a a a -++的值为( )A .2B .2-C .12D .12- 10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -1 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.在围棋盒中有x 颗白色棋子和若干颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25;如果再往盒中放进9颗黑色棋子,取得白色棋子的概率是14.则原来围棋盒中有白色棋子________颗. 15.若55||11m m m m m --⋅=--,则m =_______. 16.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 17.计算:262393x x x x -÷=+--______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.当x _______时,分式22x x -的值为负. 20.已知1112a b -=,则ab a b -的值是________. 三、解答题21.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中 1x =. 22.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.解下列分式方程(1)42122x x x x++=--; (2)()()21112x x x x =+++-. 24.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?25.应用题(步骤要完整)(1)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地.求前一小时的行驶速度.(2)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工快?26.根据已知条件,求下列各式的值: ()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫ ⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.2.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 3.C解析:C【分析】先由不等式组无解,求解8,a ≤ 再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠ 再逐一确定a 的值,从而可得答案.【详解】解:52+11{231x x a >-<()①②由①得:25x +>11, x >3,由②得:3x <1a +, x <1,3a + 关于x 的不等式组52+11{231x x a >-<()无解, 1+3,3a ∴≤ 19,a ∴+≤ 8,a ∴≤ 34122y a y y++=--, ()342,y a y ∴-+=-2,2a y +∴= 20,y -≠22,2a +∴≠ 2,a ∴≠ 关于y 的分式方程34122y a y y++=--有非负整数解, 20,2a +∴≥ 2,a ∴≥- 22a +为整数, 2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 6.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 7.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.8.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.9.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.C解析:C【分析】根据a b,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a bA、22a ab b+≠+,故该选项错误;B、22a ab b-≠-,故该选项错误;C、33a ab b=,故该选项正确;D、22a ab b≠,故该选项错误;故选:C.【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x个,则实际每小时生产口罩2x个,依题意得:3000300052x x-=故选:D.【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92【分析】 解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.6【分析】先根据白色棋子的概率是得到一个方程再往盒中放进9颗黑色棋子取得白色棋子的概率变为再得到一个方程解方程组即可求得答案【详解】解:设原来盒中有白色棋子x 颗黑色棋子y 颗则有解得则原来围棋盒中有白 解析:6【分析】 先根据白色棋子的概率是25,得到一个方程,再往盒中放进9颗黑色棋子,取得白色棋子的概率变为14,再得到一个方程,解方程组即可求得答案. 【详解】解:设原来盒中有白色棋子x 颗,黑色棋子y 颗,则有25194x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩, 解得69x y =⎧⎨=⎩. 则原来围棋盒中有白色棋子6颗.故答案为:6.【点睛】本题考查概率的应用问题,利用概率公式求数量,掌握列举法求概率的方法,通过黑、白两色棋子设未知数,利用概率构造方程组是解题关键.15.5或-1【分析】分m-5=0和m-5≠0两种情况分别求解【详解】解:若m-5=0∴m=5若m-5≠0∵∴∴m=-1或1(舍)故答案为:5或-1【点睛】本题考查了等式的性质分式有意义的条件解题的关键是解析:5或-1【分析】分m-5=0和m-5≠0两种情况分别求解.【详解】解:若m-5=0,∴m=5,若m-5≠0, ∵55||11m m m m m --⋅=--, ∴||1m =, ∴m=-1或1(舍),故答案为:5或-1.【点睛】本题考查了等式的性质,分式有意义的条件,解题的关键是注意分类讨论.16.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键17.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=,∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.11x +,2【分析】根据分式的运算法则先进行化简,然后代入1x =计算即可.【详解】 原式22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭, ()()()211111x x x x +-=⨯-+ 11x =+当1x =时,原式==. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.23.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.6天【分析】设该工程期限是x 天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x 天 根据题意,得1122133x x x x -⎛⎫++=⎪++⎝⎭ 解得6x =经检验,6x =是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.25.(1)60km /h ;(2)乙队快【分析】(1)直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案; (2)由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为13,设乙队如果单独施工x 个月能完成总工程,则乙的工作效率为1x ,根据(甲的工作效率+乙的工作效率)×12=1-13,由此可列方程,从而问题得解. 【详解】解:(1)设前一小时的行驶速度为xkm/h ,根据题意可得:1801804011.560x x x -+=-,解得:x=60, 检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h .(2)设乙队如果单独施工x 个月能完成总工程.依题意列方程:( 113+x )×12=1-13. 解方程得:x=1.经检验:x=1是原分式方程的解.答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.【点睛】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.26.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32mn x x =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪,=()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.。
初二数学分式练习题及答案
初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。
在初中数学学习中,分式的运算是一个关键的内容。
为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。
一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。
求小明旅行一段的总时间。
2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。
如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。
请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。
他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。
初中数学分式方程的应用基础训练2(附答案详解)
(1)求N95口罩进价每只多少元?
(2)国家规定:N95口罩销售价不得高于30元/只.根据市场调研:N95口罩每天的销量y(只)与销售单价x(元/只)之间的函数关系式为y=-10x+500,该药店决定对一次性医用口罩按进价销售,但又想销售口罩每天获利2400元,该药店需将N95口罩的销售价格定为每只多少元?
26.商合杭高铁是国内高速铁路网“八纵八横”主通道的重要组成部分,预计于2020年6月建成通车,建成之后相比普通列车,芜湖到合肥的时间将缩短1个小时,已知芜湖与合肥相距约 ,普通列车速度为 ,则商合杭高铁设计时速为多少?
27.一艘轮船在静水中的最大航速为35千米/时,当江水匀速流动时,这艘轮船以最大航速沿江顺流航行120千米所用时间,与以最大航速沿江逆流航行90千米所用时间相同,求江水的流速.
23.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
24.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.
初中数学试题分类汇编:分式的化简计算专项训练2(培优 附答案)
方法一:解:由分母为 ,可设
则由
对于任意 ,上述等式均成立,
∴ ,解得
∴
这样,分式 就被拆分成一个整式与一个真分式的和(差)的形式.
方法二:解:
这样,分式 就拆分成一个整式与一个真分式的和(差)的形式.
(1)请仿照上面的方法,选择其中一种方法将分式 拆分成一个整式与一个真分式的和(差)的形式;
(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.
14.阅读下列材料,解决问题:
在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.
请根据以上材料解决下列问题:
(1)式子:① ,② ,③ ,④ 中,属于对称式的是(填序号)
(2)已知 .
①若 ,求对称式 的值
②若 ,求对称式 的最大值
9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如: , ,则 和 都是“和谐分式”.
(1)下列分式中,不属于“和谐分式”的是(填序号).
(1)当k=3时,求x2 的值;
(2)当k= 时,求x﹣ 的值;
(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.
16.通过小学的学习我们知道,分数可分为“真分数”和“假分数”,并且假分数都可化为带分数.类比分数,对于分式也可以定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).
初中数学-八年级--分式习题(附答案)
分式1、(1)当x 为何值时,分式2122---x x x 有意义? (2)当x 为何值时,分式2122---x x x 的值为零? 2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫ ⎝⎛-+-+(4)x y x y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。
5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n,但窗户的面积与地面面积的比值越大,采光条件越好。
初二数学分式方程试题答案及解析
初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。
最新初中数学—分式的知识点总复习附解析(2)
一、选择题1.已知为整数,且分式的值为整数,则可取的值有( ) A .1个B .2个C .3个D .4个 2.计算1÷11m m +-(m 2-1)的结果是( ) A .-m 2-2m -1 B .-m 2+2m -1C .m 2-2m -1D .m 2-1 3.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个4.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 2 5.已知,则的值是( ) A . B .﹣ C .2 D .﹣26.计算4-(-4)0的结果是( )A .3B .0C .8D .4 7.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥38.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 9.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 11.把分式2n m n +中的m 与n 都扩大3倍,那么这个代数式的值 A .不变B .扩大3倍C .扩大6倍D .缩小到原来的1312.计算23x 11x +--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 13.将分式3ab a b -中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变 B .扩大3倍 C .扩大9倍 D .扩大6倍14.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣515.无论a 取何值,下列分式总有意义的是( )A .21a a +B .211aa -+ C .211a - D .11a +16.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<117.若分式的值为0,则x 的值是( )A .3B -3C .4D .-418.化简﹣的结果是( )m+3 B .m-3 C . D .19.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c +++-+-+-的值是( )A .为正B .为负C .为0D .与a ,b ,c 的取值有关20.下列分式中是最简分式的是( )A .B .C .D .21.下列运算错误的是A .B .C .D .22.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 23.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个24.若a >-1,则下列各式中错误..的是( )A .6a >-6B .2a>-12 C .a +1>0 D .-5a <-525.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3故选:C.2.B解析:B【解析】1÷11mm +-·(m 2-1)=1×11mm -+(m +1)·(m -1)=-(m -1)2=-m 2+2m -1.3.A解析:A【解析】试题分析:根据分式的定义进行解答即可.试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.4.D解析:D【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2.考点:分式的意义5.D解析:D【解析】试题分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.解:∵,∴﹣=,∴,∴=﹣2.故选D.6.A解析:A【解析】试题分析:根据零指数幂的性质和有理数的加减法,可求解为:4-(-4)0=4-1=3.故选A.7.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3.故选:C.8.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b,故选B.9.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值 11.A解析:A【解析】试题解析:分式2n m n+中的m 与n 都扩大3倍,得 6233n n m n m n=++, 故选A .12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.B解析:B【解析】将分式3ab a b -中的a 、b 都扩大到3倍,则为3333333a b ab a b a b⨯⨯=⨯--, 所以分式的值扩大3倍.故选B . 14.A解析:A【解析】由科学记数法知0.0000025=2.5×10−6, 故选A.解析:B【解析】分式有意义的条件是:“分母的值不为0”,在A 中,当0a =时,分式无意义;在C 中当1a =±时,分式无意义;在D 中当1a =-时分式无意义;只有B 中,无论a 为何值,分式都有意义;故选B.16.B解析:B【解析】 试题解析:分式212x x m-+不论x 取何值总有意义,则其分母必不等于0, 即把分母整理成(a+b )2+k (k >0)的形式为 (x 2-2x+1)+m-1=(x-1)2+(m-1),因为论x 取何值(x 2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m >1.故选B . 17.A解析:A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A .考点:分式的值为0的条件. 18.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m m m m m m m -+--===+----,所以选:A . 考点:分式的减法.19.C解析:C .【解析】试题解析:∵a +b +c=0,∴a=-(b +c ),∴a 2=(b +c )2, 同理b 2=(a +c )2,c 2=(a +b )2. ∴原式=11111()022a b c bc ac ab abc++-++=-⨯=, 故选C . 考点:分式的运算.20.A【解析】选项A ,的分子、分母都不能再分解,且不能约分,是最简分式;选项B ,原式=2x;选项C ,原式=11x + ;选项D ,原式=-1.故选A . 21.D解析:D【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确; C 、,故本选项正确; D 、,故本选项错误;故选D . 22.D解析:D .【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1.故选:D .考点:分式的值为零的条件;负整数指数幂.23.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式; ④是最简分式;最简分式有①④,共2个;故选:B.解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12, 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.25.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8. 故选B .。
初中数学分式的加减乘除化简计算题(附答案)
初中数学分式的加减乘除化简计算题一、计算题1.解方程: 1.311221x x =-++; 2.21212339x x x -=+--. 2.计算: 1.322222a b b b a a ⎛⎫⎛⎫⎛⎫-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 2.3222()x y x x y xy x y ⎛⎫⎛⎫-÷+ ⎪ ⎪-⎝⎭⎝⎭. 3.计算:22214().244x x x x x x x x +---÷--+ 4.计算:2111()().111x x x x x x +⋅+++-+ 5.计算:(1)2161;3962x x x x -+---+ (2)22944(3).33a a a a a a --+-+÷+-- 6.先化简,再求值:24()224a a a a a a ÷----,其中3a =. 7.1. ()3123a b c-- 2. ()32322a b a b---⋅ 3. ()()232322ab ca b ---÷ 4. ()()2252310310--⨯÷⨯ 8.解方程:1.54410 1236x x x x -+=--- 2. 2 -?24124x x x +=+- 9.先化简,再求值: 13(a+)?(a-2+)22a a ++其中a 满足20.a -= 10.已知234a b c ==,求325a b c a b c-+++的值.11.已知关于x 的方程4333k x x x-+=--有增根,试求k 的值.参考答案1.答案:1.方程两边同乘()21x +,得3222x =+-, 解得32x =,检验:当32x =时,()210x +≠, 所以原分式方程的解为32x =. 2.方程两边同乘()()33x x +-,得32612x x -++=,解得3x =, 检验:当3x =时,()()330x x +-=,所以3x =不是原分式方程的解, 所以原分式方程无解.解析:2.答案:1.322322322332232232228448484a b b a b b a b a a b a a b a a b a b b ⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.原式()()()()()233222221x y x y x x x y x y x y x y y +-==-+- 解析:3.答案:解:22214()244x x x x x x x x+---÷--+ 221[](2)(2)4x x x x x x x +-=-⋅--- 22(2)(2)(1)[](2)(2)4x x x x x x x x x x +--=-⋅--- 2224(2)4x x x x x x x --+=⋅-- 24(2)4x x x x x -=⋅-- 21.(2)x =- 解析:4.答案:解:原式221(1)x x x x +=⋅++11[](1)(1)(1)(1)x x x x x x +-++-+- 21(1)(1)x x x x x =+++- 22(1)(1)(1)(1)x x x x x x x -=++-+- (1)(1)(1)x x x x +=+- .1x x =- 解析:5.答案:解:(1)原式2(3)122(3)(3)2(3)(3)x x x x x +=-+-+-(1)(3)2(3)(3)x x x x ---+- 2692(3)(3)x x x x -+-=+- 2(3)2(3)(3)x x x -=-+- 3.2(3)x x -=-+ (2)原式22299(2)()33(3)a a a a a a ---=-÷++-+ 2(2)(3)3(2)a a a a a ---+=⋅+- .2a a =- 解析: 6.答案:24()224a a a a a a ÷---- (2)42(2)(2)a a a a a a a +-=÷-+- (2)2(2)(2)a a a a a a -=÷-+- 22a a a a+=⋅-22a a +=- 当3a =时,原式32532+==-. 解析: 7.答案:1. ()()()633312336939=b ab c a b c a c ----==原式 2. 92366898=b a b a b a b a ---⋅==原式 3. ()()4622466324767=224a c a b c a b a b c b ------÷==原式 4. ()()104661=9109101010---⨯÷⨯==原式 解析: 8.答案:1.方程两边同乘3(2)x -,得()354? 4x 103(2)x x -=+--. 解这个方程,得2x =.检验:当2x =时, 3(2)x -0=,所以2x =是原方程的增根,原方程无解.2.方程的两边同乘以()()22?x x +-,得()()2(2)422? x x x -+=+-, 解得3x =.检验:当3x =时, 240x -≠,所以3x =是原方程的解.解析:9.答案:解:原式2(2)1432+2a a a a a ++-+=÷+ 2(1)2=2(1)(1)a a a a a ++⋅++-\ 11a a +=- 当20a -=,即2a =时,原式 3.=解析:10.答案:解:令=k 234a b c ==,则2,3,4.a k b k c k === ∴原式322354202023499k k k k k k k k ⨯-⨯+⨯===++解析:11.答案:解方程233x m x x -=--得6x m =--它的解是正数60m ∴-->解得1k = 解析:。
初中数学试题分类汇编:分式化简求值综合训练2(解答 附答案)
解:A= • = ,
当a=17时,原式=8.
【点睛】
此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.
8.﹣ , .
【解析】
【分析】
原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x、y代入计算即可求得答案.
【详解】
解:原式=1﹣ =﹣ ,
当x=﹣2,y= 时,原式= .
【详解】
解:
由 可得 或 ,
当 时,原分式无意义,舍去,
∴当 时,原式= .
【点睛】
本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.
17.(1)x+7 ;(2)2或4或﹣10或16;(3),x=2、y=9;x=6、y=2;x=9、y=5.
Hale Waihona Puke 【解析】【分析】(1)将分子x2+6x-3化为(x-1)(x+7)+4,依据题意可解答;
23.已知 , 且 ,求 的值.
24.计算题:
化简:
先化简再求值: ,其中
25.(1)计算: .
(2)运用乘法公式计算:
(3)解分式方程:
(4)先化简,再求值. 其中
26.已知 , , .
(1)当 , , 时,求 的值;
(2)当 时,求 的值.
27.计算
(1) ;
(2)已知a、b是实数,且 + =0.求a、b的值
(1)下列分式中,不属于“和谐分式”的是(填序号).
① ② ③ ④
(2)将“和谐分式” 化成一个整式与一个分子为常数的分式的和的形式.
(3)应用:先化简 ,并求 取什么整数时,该式的值为整数.
12.(1)化简: ;
(2)先化简 ,然后 从-3、0、1、3中选择一个合适的数代入求值.
初中数学分式方程的应用基础训练2(附答案详解)
设第一次进购礼盒x个,则第二次进购3x
解得
经检验, 是方程的解;
故
答:第一次购进200个礼盒,第二次购进600个礼盒.
【点睛】
此题主要考查分式方程的实际应用,解题关键是理解题意,找出等量关系.
2.原计划每天加工400套
【解析】
【分析】
该灯具厂原计划每天加工这种彩灯的数量为x套,由题意列出方程即可求解.
12.2020年新冠病毒在全球蔓延,口罩成为抗击病毒传播的有效物资,某厂需要生产一批口罩,该厂有甲、乙两种型号的生产机器,若用甲机器单独完成这批订单需要消耗原料费76万元,若用乙机器单独完成需要消耗原料费26万元,已知每生产一个口罩,甲机器消耗原料费比乙机器消耗原料费多用0.5元.
(1)求乙机器生产一个口罩需要消耗多少原料费?
5.为了响应国家对本次新型冠状病毒肺炎防疫工作的号召,某口罩生产厂家承担了生产2100万个口罩的任务,甲车间单独生产了700万个口罩后,由于任务紧急,要求乙车间与甲车间同时生产,结果比原计划提前10天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天生产口罩各多少万个?
6.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?
9.(用方程解决问题)新冠疫情期间,N95口罩每只的进价比一次性医用口罩每只进价多10元,某药店分别花20000元和60000元购进一次性医用口罩和N95口罩,购进的一次性医用口罩的数量是N95口罩数量的2倍.
(1)求N95口罩进价每只多少元?
(2)国家规定:N95口罩销售价不得高于30元/只.根据市场调研:N95口罩每天的销量y(只)与销售单价x(元/只)之间的函数关系式为y=-10x+500,该药店决定对一次性医用口罩按进价销售,但又想销售口罩每天获利2400元,该药店需将N95口罩的销售价格定为每只多少元?
新初中数学分式知识点总复习有答案(2)
新初中数学分式知识点总复习有答案(2)一、选择题1.下列各数中最小的是( )A .22-B .C .23-D 【答案】A 【解析】 【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项. 【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A . 【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.若2250(0)a ab b ab ++=≠,则b aa b+=( ) A .5 B .-5C .5±D .2±【答案】B 【解析】 【分析】根据题意,先得到225a b ab +=-,代入计算即可. 【详解】解:∵2250(0)a ab b ab ++=≠, ∴225a b ab +=-,∴2255b a a b ab a b ab ab+-+===-; 故选:B. 【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】 根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B . 【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1 B .x =1C .x≠0D .x≠1【答案】D 【解析】试题解析:由题意可知:x-1≠0, x≠1 故选D.5.0000025=2.5×10﹣6, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6 B .50.35×10﹣5 C .5.035×106 D .5.035×10﹣5【答案】A 【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.7.已知m ﹣1m ,则1m+m 的值为( )A .BC .D .11【答案】A 【解析】根据完全平方公式即可得到结果. 【详解】1m-mQ 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=. 故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.8.x 的取值范围为( ). A .x≥2 B .x≠2C .x≤2D .x <2【答案】D 【解析】 【分析】根据被开方式大于且等于零,分母不等于零列式求解即可. 【详解】∴2x 0x 20-≥⎧⎨-≠⎩ ∴x <2 故选:D 【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.9.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ?【答案】B 【解析】 【分析】根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断. 【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅, 故选:B. 【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.10.下列运算中正确的是( )A .62652()a a a a a == B .624282()()a a a a == C .62121022()a a a a a == D .6212622()a a a a a== 【答案】C 【解析】 【分析】根据幂的乘方法则、分式的基本性质及同底数幂除法法则计算即可得答案.【详解】6212122102222()a a a a a a a a a÷===÷, 故选:C . 【点睛】本题考查幂的乘方及分式的基本性质,幂的乘方,底数不变,指数相乘;分式的分子、分母同时乘以(或除以)一个不为0的整式,分式的值不变;同底数幂相除,底数不变,指数相减;熟练掌握分式的基本性质是解题关键.11.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .115【答案】B 【解析】 【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案. 【详解】解:∵115a b = ∴设11a x =,5b x =∴11531158a b x x a b x x --==++ 故选:B 【点睛】此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.下列方程中,有实数根的方程是( )A .x 4+16=0 B .x 2+2x +3=0C .2402x x -=-D 0=【答案】C 【解析】 【分析】利用在实数范围内,一个数的偶数次幂不能为负数对A 进行判断;利用判别式的意义对B 进行判断;利用分子为0且分母不为0对C 进行判断;利用非负数的性质对D 进行判断. 【详解】解:A 、因为x 4=﹣16<0,所以原方程没有实数解,所以A 选项错误; B 、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B 选项错误; C 、x 2﹣4=0且x ﹣2≠0,解得x =﹣2,所以C 选项正确; D 、由于x =0且x ﹣1=0,所以原方程无解,所以D 选项错误. 故选:C . 【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则13.213-⎛⎫ ⎪⎝⎭的相反数是( )A .9B .-9C .19D .19-【答案】B 【解析】 【分析】先根据负指数幂的运算法则求出213-⎛⎫ ⎪⎝⎭的值,然后再根据相反数的定义进行求解即可. 【详解】2211113193-⎛⎫== ⎪⎝⎭⎛⎫⎪⎝⎭=9, 9的相反数为-9,故213-⎛⎫ ⎪⎝⎭的相反数是-9, 故选B . 【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.14.a 的取值范围是( ) A .a≥-1 B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B 【解析】 【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2. 故选:B . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.15.计算2111x xx x -+-+的结果为( ) A .-1B .1C .11x + D .11x -【解析】 【分析】先通分再计算加法,最后化简. 【详解】2111x xx x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B. 【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.16.分式可变形为( )A .B .C .D .【答案】B 【解析】 【分析】根据分式的基本性质进行变形即可. 【详解】=.故选B. 【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.17.下列说法正确的是() A .若 A 、B 表示两个不同的整式,则AB一定是分式 B .()2442a a a ÷=C .若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍D .若35,34m n ==则2532m n-=【解析】 【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称AB是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34mn==则()22253332544m nmn -=÷=÷=,故此选项错误. 故选:C 【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.18.已知23x y=,那么下列式子中一定成立的是 ( ) A .5x y += B .23x y =C .32x y =D .23x y =【答案】D 【解析】 【分析】根据比例的性质对各个选项进行判断即可. 【详解】 A. ∵23x y=,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y=,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y=,∴23x y =y ,∴ 32x y =不成立,故C 不正确;D. ∵23x y=,∴23x y =,∴ 23x y =成立,故D 正确;故选D. 【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a cb d=,则有a b c d =.19.下列分式中,最简分式是( )A .22115xyyB .22x y x y -+C .222x xy y x y -+-D .22x y x y+-【答案】D 【解析】 【分析】根据最简分式的定义即可求出答案. 【详解】 解:(A )原式=75xy,故A 不是最简分式; (B )原式=()()x y x y x y+-+=x-y ,故B 不是最简分式;(C )原式=2)x y x y--(=x-y ,故C 不是最简分式; (D) 22x y x y+-的分子分母都不能再进行因式分解、也没有公因式.故选:D . 【点睛】本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104 B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D 【解析】。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(答案解析)(2)
一、选择题1.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-2.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 3.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 4.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 7.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16008.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .7511.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a b P c+=,则M ,N ,P 之间的大小关系是( ) A .M P N <<B .M N P <<C .N P M <<D .P M N << 12.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3D .3- 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.若式子11x -有意义,则x 的取值范围是______________. 15.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.16.计算22a b a b a b-=-- _________.17.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1. 23.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式中,_____是和谐分式(填写序号即可); ①211x x -+;②222a b a b--;③22x y x y +-;④222()a b a b -+ (2)若分式219x x ax -++为和谐分式,且a 为整数,请写出所有a 的值; (3)在化简22344a ab ab b b -÷-时,小东和小强分别进行了如下三步变形: 小东:原式()()22232223232232444444a b a ab b a a a a ab b b b ab b b ab b b --=-⨯=-=--- 小强:原式22223222444444()()()a a a a a a a b ab b b b b a b b a b b --=-⨯=-=--- 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:____,请你接着小强的方法完成化简.24.(1)化简:22121a a a a a --+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.某同学化简分式2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭出现了错误,解答过程如下: 原式=22222121121x x x x x x x x x x++÷-÷-+--+=332222(1)(1)x x x x x x -+--- =22(1)2(1)x x x -+- (1)该同学解答过程从第 步开始错误的.(2)写出此题正确的解答过程,并从-2<x <3的范围内选取一个你喜欢的x 值代入求值.26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+. 原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.2.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 3.A解析:A【分析】根据题意得出xy =1,可以用1x表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.4.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2, ∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x +,12月份厨余垃圾分出率=84007840010x + , ∴由题意得6608400147660840010x x ⨯=++, 故选:B .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 8.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.D解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.11.A【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答.【详解】解:∵a+b+c=1, ∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c , ∴1110,0,c b b c bc a--=>< ∴111a c b<<, ∴M<P<N ,故选A .【点睛】 本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.12.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.15.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +.本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)②;(2)10或6或-6;(3)小强通分找的是最简公分母,化简见解析【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题; (2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】解:(1)211x x -+不符合和谐分式的定义,故①不是和谐分式, 2222()()a b a b a b a b a b --=-+-,故②是和谐分式, 221()()x y x y x y x y x y x y++==-+--,故③不是和谐分式, 2222()()()()a b a b a b a b a b a b a b-+--==+++,故④不是和谐分式, 故答案为:②;(2)分式219x x ax -++为和谐分式,且a 为整数,10a ∴=,6a =,6a =-;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分找的是最简公分母,故答案为:小强通分找的是最简公分母;小强: 原式22344a a ab b b b=-⨯- 22244()a a b a b b=-- 2244()()a a a b a b b --=- 24[()]()a a a b a b b --=- 24()()a a a b a b b -+=- 24()ab a b b =- 4()a a b b=-. 【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可; (2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-. ∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----.∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.(1)一 ;(2)解答过程见解析,当2x =时,原式=4.【分析】(1)根据除法没有分配律,判断即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:(1)该同学解答过程从第一步开始错误的;故答案为:一;(2)2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭ 2(1)2(1)(1)(1)x x x x x x x +--=÷-- 2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 要使原式有意义,1x ≠,0,1-,则当2x =时,原式22421==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(1);(2)32【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)
一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b +A .4B .3C .2D .13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .65.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( )A .112m ≤< B .312m ≤<C .322m ≤< D .522m ≤<7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-9.若ab ,则下列分式化简中,正确的是( )A .22a ab b+=+ B .22a ab b -=- C .33a a b b = D .22a a b b=10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( )A .12B .2C .12-D .2-12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 14.已知2a b=,则a ba b +-=_____.15.关于x 的分式方程211mx =-+无解,则m 的取值是_______. 16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________;(2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a ,…其中第n 个分式是__________(n 为正整数).18.已知215a a+=,那么2421a a a =++________. 19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.20.计算:22x x xyx y x -⋅=-____________________. 三、解答题21.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送) 22.解下列分式方程(1)42122x x x x ++=--; (2)()()21112x x x x =+++-. 23.解方程: (1)81877--=--x x x; (2)21124x x x -=--. 24.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=-- (5)2124111x x x +=+-- 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b,故不符合题意;【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.A解析:A 【分析】分母是整式且整式中含有字母,根据这点判断即可. 【详解】 ∵3x中的分母是3,不含字母, ∴3x不是分式; ∵1n中的分母是n ,是整式,且是字母, ∴1n是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b+中的分母是15,不含字母, ∴15a b+不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y是分式;∵()22aba b +中的分母是2()a b +,是整式,含字母a ,b ,∴()22aba b +是分式;共有4个, 故选A . 【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.3.D解析:D设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C 【分析】先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】∵211x x ++=22-12(1)-112111x x x x x ++==-+++,又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C . 【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.A解析:A 【分析】根据新定义,把2x y *=转化为分式的运算即可. 【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xyx y-得, 122xy xy =, 故选:A . 【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.3≤b<4【分析】首先解分式方程求得a的值然后根据不等式组的解集确定x的范围再根据只有3个整数解确定b的范围【详解】解:解方程两边同时乘以a得:2-a+2a=3解得:a=1∴关于x的不等式组则解集是解析:3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.3【分析】首先由可设a=2kb=k然后将其代入即可求得答案【详解】解:∵∴设a=2kb=k∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k法设出未知数解析:3【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案. 【详解】 解:∵2a b=, ∴设a =2k ,b =k , ∴a b a b +-=22k k k k+-=3. 故答案为:3.【点睛】 本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键. 16.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+, 整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解.【点睛】本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.26.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:()()1.5800.3800.534m mm m-⎧⎪⎨-+≤⎪⎩≥,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键;。
新人教版初中数学八年级数学上册第五单元《分式》检测卷(答案解析)(2)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2-B .2C .3-D .34.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 5.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3D .3-6.计算221(1)(1)x x x +++的结果是( )A .1B .1+1xC .x +1D .21(+1)x7.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x--=D .22m nn m-=- 8.下列各式计算正确的是( ) A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba bb -÷=- D .()325339a ba b -=-9.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .110.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 11.如果111a b a b +=+,则b a a b+的值为( ) A .2B .1C .1-D .2-12.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<<二、填空题13.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.14.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人. 15.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y =+_____. 16.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 17.计算:20120192-⎛⎫-= ⎪⎝⎭______. 18.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a -=;⑤()()321m m mm a a a -÷=-.其中运算正确的有______.(填序号即可)19.已知215a a+=,那么2421a a a =++________. 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =;(3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.22.先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中12a =,112b -⎛⎫=- ⎪⎝⎭. 23.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解) 24.阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如:52211333=+=. 类似的,我们可以将下列的分式写成一个整数与一个新分式的和. 例如:111x x x+=+. 1(1)221111x x x x x +-+==+---. 材料2:为了研究字母x 和分式1x值的变化关系,小明制作了表格,并得到数据如下: x4-3-2-1- 0 1 2 3 4 1x0.25- 0.3- 0.5- 1-无意义10.50.30.25请根据上述材料完成下列问题:(1)把下面的分式写成一个整数与一个新分式的和的形式:2x x +=__________________;12x x +=-___________________; (2)当0x >时,随着x 的增大,分式2x x+的值___________(增大或减小); (3)当1x >-时,随着x 的增大,分式231x x ++的值无限趋近一个数,请写出这个数,并说明理由.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个? 26.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a aa a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简. 【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A. 【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.4.A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c--+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.5.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.6.B解析:B 【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.7.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x --=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.8.A解析:A 【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可. 【详解】A 、()23233412ab a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误; C 、()24222842a b a b b -÷=-,故这个选项错误; D 、()3263327a b a b -=-,故这个选项错误;故选:A . 【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.9.D解析:D 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案. 【详解】1131112311n n n n n n n x x x x x x x x+-+++++--++==,【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.10.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A、33xy是最简分式,所以33x xy y≠,故选项A不符合题意;B、624mmm=,故选项B不符合题意;C、22a ba b++是最简分式,所以22a ba ba b+≠++,故选项C不符合题意;D、3322()()()()a b a ba bb a a b--==---,正确,故选:D.【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.11.C解析:C【分析】先对111a b a b+=+变形得到()2a b ab+=,然后将b aa b+化成22a bab+,再结合完全平方公式得到()22a b abab+-,最后将()2a b ab+=代入即可解答.【详解】解:∵111b a a ba b ab ab ab a b++=+==+,即()2a b ab+=∴()22222221a b abb a b a a b ab ab aba b ab ab ab ab ab ab+-+--+=+=====-.故选C.【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.12.D【分析】根据负整数指数幂的运算法则可得110xx-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果. 【详解】解:∵1x 0-<<, ∴20x 1<<,0x 1=,11x 0x-=<, ∴120x x x -<<. 故选:D . 【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解.二、填空题13.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比. 【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a za x a y a z++=++,整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件. 根据题意可列等式:330%220%25%24%322b x b y b zb x b y b z++=++,整理得:9x-4y =19z . ∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B zA zB z⨯⨯+⨯⨯=⨯+⨯.∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键.14.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6 【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可. 【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意. 答:第一组有6人, 故答案为6. 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.15.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1 【分析】先进行分式计算,再解方程组,代入即可求解. 【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 16.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 17.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键.18.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.19.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒,∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△, ∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.22.a b --,32【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()2224422a ab a ab a =--+÷()2222a ab a =--÷a b =--, ∵1122b -⎛⎫=-=- ⎪⎝⎭∴当12a =,2b =-时,原式()13222=---=. 【点睛】 本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 23.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.24.(1)21x +,312x +-;(2)减小;(3)2,理由见解析 【分析】(1)把分子写成分母的倍数与另一个整式的和,再逆用分式的加减法则即可得到解答; (2)把2x x +变成21x +,再根据 1x随x 的变化趋势可以得解;(3)先得231211x x x +=+++,然后根据随着x 的值的增大, 11x +的值逐渐减小并趋于0可以得到解答.【详解】 解:(1)∵2221x x x x x x +=+=+,123233122222x x x x x x x x +-+-==+=+-----, 故答案为23112x x ++-,; (2)∵221x x x +=+,且由材料2可得: x>0时, 1x随x 的增大而减小, ∴当 x>0 时,随着x 的增大,分式2x x +的值减小; (3)2理由如下: 231211x x x +=+++, 随着x 的值的增大,11x +的值逐渐减小并趋于0, ∴随着x 的值的增大,231x x ++的值无限趋近于2. 【点睛】 本题考查分式运算的规律探索,根据材料得到一定规律并灵活运用于所给问题的解决是解题关键.25.(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.。
新人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)(2)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 3.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .34.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .45.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16006.若a 与b 互为相反数,则22201920212020a b ab+=( ) A .-2020 B .-2 C .1 D .27.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④8.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 9.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.3333x a a y x y y x+--+++等于( ) A .33x y x y -+ B .x y - C .22x xy y -+ D .22x y + 11.下列各式中错误的是( )A .2c d c d c d c d d a a a a -+-----== B .5212525a a a +=++ C .1x y x y y x -=--- D .2211(1)(1)1x x x x -=--- 12.020*******)(0.125)8+⨯的结果是( )AB2 C .2 D .0二、填空题13.若关于x 的分式方程233x m x x =---的解为正数,则常数m 的取值范围是______. 14.若32a b =,则22a b a+=____. 15.101()()2π-+-=______,011(3.14)2--++=______.16.2112111a a a a +-+--=___________. 17.已知方程3a 1a a 44a --=--,且关于x 的不等式组x a xb >⎧⎪⎨⎪≤⎩只有4个整数解,那么b 的取值范围是____________.18.如果分式126x x --的值为零,那么x =________ . 19.(1) 计算:(-a 2b )2=________;(2)若p +3=(-2020)0,则p =________; (3)若(x +2)0=1,则x 应满足的条件是________.20.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________ 三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?22.先化简,再求值:214111x x x -⎛⎫+÷ ⎪++⎝⎭,其中5x = 23.计算:(1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 24.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 26.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ ,故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 2.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 3.D解析:D【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 4.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.5.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.B解析:B【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可.【详解】∵a 与b 互为相反数,∴22=,a b a b -=,222222019202120192021220202020a b b b ab b++==--, 故选择:B .【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.7.C解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()a a 1a 1a a 1÷+-+=()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 8.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.A解析:A【分析】按同分母分式相减的法则计算即可.【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.11.C解析:C【分析】按同分母分式加减法则计算即可.【详解】 A.2c d c d c d c d d a a a a -+-----==,正确; B.52521252525a a a a a ++==+++,正确; C.x y x y x y x y y x x y x y x y+-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确. 故选:C【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减. 12.C解析:C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=.故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.二、填空题13.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===.故答案为:2.【点睛】此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.15.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12= 【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可. 16.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,整理,得:a2﹣3a﹣4=0,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,∴原不等式组的解集为﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4,故答案为:3≤b<4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.18.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】x-=,解方程即可得.根据分式的值为零可得10【详解】x-=,由题意得:10x=,解得1分式的分母不能为零,∴-≠,260xx≠,解得31∴=符合题意,x故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.19.-2x-2【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0由此求出p的值;(3)根据零次幂的定义得到x+20求出结果【详解】(1)(-a2b)2=故答案为:;(a b -2 x≠-2解析:42【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0,,由此求出p的值;(3)根据零次幂的定义得到x+2≠0求出结果.【详解】a b,(1)(-a2b)2=42故答案为:42a b ;(2)∵(-2020)0=1,∴p +3=(-2020)0=1,∴p=-2,故答案为:-2;(3)∵(x +2)0=1,∴x+2≠0,x ≠-2,故答案为:x ≠-2.【点睛】此题考查整式的积的乘方计算公式,零次幂的定义,熟记计算公式是解题的关键. 20.且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】 232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验; (2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.22.12x -;13【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里面的,然后代入求值即可【详解】 解:214111x x x -⎛⎫+÷ ⎪++⎝⎭ 2111114x x x x x ++⎛⎫=+⋅ ⎪++-⎝⎭ ()()21122x x x x x ++=⋅++- 12x =- 把5x =代入上式,得:1112523x ==-- 【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序正确计算是解题关键.23.(1)0;(2)112m -;(3)x 【分析】 (1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 24.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.25.11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+.【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算. 26.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可; (2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解;(2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭ =2232121x x xx x x x +--÷+++ =2222112x x x x x x -+++-=2(2)(1)12x x x x x -++-=(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学·分式一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=AA A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式.① 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db ca d cb a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为:cc ••=•=÷b da db a dc b a② 分式的乘方:把分子、分母分别乘方。
式子表示为:n n nb a b a =⎪⎭⎫⎝⎛③ 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为:c ba cb ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为:bdbcad d c ±=±b a整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
④ 分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
七、整数指数幂① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即:n m n m a a +=⋅a ()mn nma a = ()n n nb b a a = n m n m a a -=÷a (0≠a )n n b a b a =⎪⎭⎫ ⎝⎛nn a 1=-na 0≠a ) 10=a (0≠a ) (任何不等于零的数的零次幂都等于1)其中m ,n 均为整数。
八、分式方程的解的步骤:⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程) ⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
九、列分式方程——基本步骤: ① 审—仔细审题,找出等量关系。
② 设—合理设未知数。
③ 列—根据等量关系列出方程(组)。
④ 解—解出方程(组)。
注意检验 ⑤ 答—答题。
分式计算题精选一.选择题(共2小题)1.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.2.(2011•齐齐哈尔)分式方程=有增根,则m的值为()A.0和3 B.1C.1和﹣2 D.3二.填空题(共15小题)3.计算的结果是_________.4.若,xy+yz+zx=kxyz,则实数k=_________5.已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b=_________ 6.计算(x+y)•=_________.7.化简,其结果是_________.8.化简:=_________.9.化简:=_________.10.化简:=_________.11.若分式方程:有增根,则k=_________.12.方程的解是_________.13.已知关于x的方程只有整数解,则整数a的值为_________.15.若关于x的分式方程无解,则a=_________.16.已知方程的解为m,则经过点(m,0)的一次函数y=kx+3的解析式为_________.17.小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶,若设他上周三买了x袋牛奶,则根据题意列得方程为_________.三.解答题(共13小题)18.计算:19.化简:.20.A玉米试验田是边长为a米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B玉米试验田是边长为(a﹣1)米的正方形,两块试验田的玉米都收获了500千克.(1)哪种玉米的单位面积产量高?21.化简:=_________.22.化简:.23.计算:.24.计算.25.解方程:.26.解方程:28.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.29.解方程:(1)(2).30.解方程:(1)﹣=1;(2)﹣=0.2014寒假初中数学分式计算题精选参考答案与试题解析一.选择题(共2小题)1.(2012•台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:压轴题.分析:根据公共汽车的平均速度为x千米/时,得出出租车的平均速度为(x+20)千米/时,再利用回来时路上所花时间比去时节省了,得出分式方程即可.解答:解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为(x+20)千米/时,根据回来时路上所花时间比去时节省了,得出回来时所用时间为:×,根据题意得出:=×,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,本题的关键是把握题意,利用回来时路上所花时间比去时节省了,得出方程是解题关键.2.(2011•齐齐哈尔)分式方程=有增根,则m的值为()A.0和3 B.1C.1和﹣2 D.3考点:分式方程的增根;解一元一次方程.专题:计算题.分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解答:解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0时,分式方程变形为﹣1=0,此时分式无解,与x=﹣2矛盾,故m=0舍去,即m的值是3,故选D.点评:本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.二.填空题(共15小题)3.计算的结果是.考点:分式的混合运算.专题:计算题.分析:根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2﹣1分解因式,约分即可得到化简结果.解答:解:=÷(﹣)=•=故答案为:点评:此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.4.若,xy+yz+zx=kxyz,则实数k=3考点:分式的混合运算.专题:计算题.分析:分别将去分母,然后将所得两式相加,求出yz+xz+xy=3xyz,再将xy+yz+zx=kxyz 代入即可求出k的值.也可用两式相加求出xyz的倒数之和,再求解会更简单.解答:解:若,则++==5,yz+2xz+3xy=5xyz;①++==7,3yz+2xz+xy=7xyz;②①+②得,4yz+4xz+4xy=5xyz+7xyz,4(yz+xz+xy)=12xyz,∴yz+xz+xy=3xyz∵xy+yz+zx=kxyz,∴k=3.故答案为:3.点评:此题主要考查学生对分式的混合运算的理解和掌握,解答此题的关键是先求出yz+xz+xy=3xyz.5.(2003•武汉)已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b= 109.考点:分式的混合运算.专题:规律型.分析:易得分子与前面的整数相同,分母=分子2﹣1.解答:解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109.点评:此题的关键是找到所求字母相应的规律.6.(1998•河北)计算(x+y)•=x+y.考点:分式的混合运算.专题:计算题.分析:把第一个分式的分母先进行因式分解,再算乘法化简,再算加法即可.解答:解:原式=.点评:此题要注意运算顺序:先算乘法,再算加法;也要注意y﹣x=﹣(x﹣y)的变形.7.(2011•包头)化简,其结果是.考点:分式的混合运算.分析:运用平方差公式、平方公式分别将分式分解因式,将分式除法转换成乘法,再约分化简,通分合并同类项得出最简值.解答:解:原式=••(a+2)+=+===.故答案为:点评:本题主要考查分式的混合运算,其中涉及平方差公式、平方公式、约分、通分和合并同类项等知识点.考点: 分式的混合运算. 专题: 计算题.分析: 先把括号里的式子通分,然后把除法运算转化成乘法运算,最后进行约分. 解答:解:原式=×=. 点评: 本题主要考查分式的混合运算,注意运算顺序.9.(2009•成都)化简:=.考点: 分式的混合运算. 专题: 计算题.分析: 把第二个分式的分子分母先因式分解,再把除法统一成乘法化简,最后算减法. 解答:解:=1﹣=1﹣==.点评: 此题运算顺序:先除后减,用到了分解因式、约分、合并同类项等知识点.10.(2008•包头)化简:=.考点:分式的混合运算. 专题:计算题. 分析: 能因式分解的分子或分母要先因式分解,先算小括号里的,再算除法. 解答:解:原式=[﹣]÷=÷=×故答案为.点评: 此题主要考查分式的化简、约分.对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特活应变,注意方法.11.(2012•攀枝花)若分式方程:有增根,则k= 1 .考点: 分式方程的增根. 专题: 计算题.分析: 把k 当作已知数求出x=,根据分式方程有增根得出x ﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k 的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.12.(2012•太原二模)方程的解是x=2.考点:解分式方程.分析:首先分时两边同时乘以x﹣3去分母,再去括号、移项、合并同类项、把x的系数化为1,可以算出x的值,然后要进行检验.解答:解:,去分母得:1+2(x﹣3)=﹣(x﹣1),去括号得:1+2x﹣6=﹣x+1,移项得:2x+x=1﹣1+6,合并同类项得:3x=6,把x的系数化为1得:x=2,检验:把x=2代入最简公分母x﹣3≠0,则x=2是分式方程的解,故答案为:x=2.点评:此题主要考查了分式方程的解法,关键是掌握(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.13.(2012•合川区模拟)已知关于x的方程只有整数解,则整数a的值为﹣2,0或4.考点:分式方程的解.分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.解答:解:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣5=﹣7,检验,将x=﹣7代入(x﹣1)(x+2)=40≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.故答案为:﹣2,0或4.点评:此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.14.若方程有增根x=5,则m=﹣5.考点:分式方程的增根.专题:计算题.分析:由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘(x﹣5)化为整式方程,再把增根5代入求解即可.解答:解:方程两边都乘x﹣5,得x=2(x﹣5)﹣m,∵原方程有增根,∴最简公分母x﹣5=0,解得x=5,把x=5代入,得5=0﹣m,解得m=﹣5.故答案为:﹣5.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.若关于x的分式方程无解,则a=0.考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x﹣1=0,求出x的值代入整式方程即可求出a的值.解答:解:去分母得:2x﹣2a+2x﹣2=2,由分式方程无解,得到2(x﹣1)=0,即x=1,代入整式方程得:2﹣2a+2﹣2=2,解得:a=0.故答案为:0.点评:此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.已知方程的解为m,则经过点(m,0)的一次函数y=kx+3的解析式为y=﹣x+3.考点:解分式方程;一次函数图象上点的坐标特征.专题:计算题.分析:首先解分式方程求出m的值,然后把(m,0)代入一次函数y=kx+3的解析式中,从而确定k的值,也就确定了函数的解析式.解答:解:∵,∴x﹣1=2,∴x=3,当x=3时,x﹣1≠0,∴m=3,把(3,0)代入解析式y=kx+3中∴3k+3=0,∴k=﹣1,∴y=﹣x+3.点评:此题考查了分式方程的解法,也考查了待定系数法确定一次函数的解析式,对于解分式方程时要注意验根.17.小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶,若设他上周三买了x袋牛奶,则根据题意列得方程为.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:关键描述语为:“每袋比周三便宜0.5元”;等量关系为:周三买的奶粉的单价﹣周日买的奶粉的单价=0.5.解答:解:周三买的奶粉的单价为:,周日买的奶粉的单价为:.所列方程为:.点评:列方程解应用题的关键步骤在于找相等关系.本题中用到的等量关系是:总金额=数量×单价.三.解答题(共13小题)18.(2010•新疆)计算:考点:分式的混合运算.专题:计算题.分析:分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.解答:解原式===x+2.点评:分式的混合运算中,通分和约分是解题的关键.19.(2009•常德)化简:.考点:分式的混合运算.专题:计算题.分析:先把小括号的通分,再把除法统一为乘法,化简即可.解答:解:原式====.点评:本题主要考查分式的混合运算,注意运算顺序,通分、约分是解题的关键.20.(2006•大连)A玉米试验田是边长为a米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B玉米试验田是边长为(a﹣1)米的正方形,两块试验田的玉米都收获了500千克.(1)哪种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?考点:分式的混合运算.专题:应用题.分析:此题要先读懂题意,列出式子,再进行分式的混合运算.解答:解:(1)A玉米试验田面积是(a2﹣1)米2,单位面积产量是千克/米2;B玉米试验田面积是(a﹣1)2米2,单位面积产量是千克/米2;∵a2﹣1﹣(a﹣1)2=2(a﹣1)∵a﹣1>0,∴0<(a﹣1)2<a2﹣1∴<∴B玉米的单位面积产量高;(2)÷=×==.∴高的单位面积产量是低的单位面积产量的倍.点评:此题是一道简单的应用题,学生在利用面积公式列出分式才可化简.21.(2005•南充)化简:=.考点:分式的混合运算.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.解答:解:原式====.点评:分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.22.(2002•苏州)化简:.考点:分式的混合运算.专题:计算题.分析:本题的关键是正确进行分式的通分、约分,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:==.=1,故答案为1.点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.23.(1997•南京)计算:.考点:分式的混合运算.专题:压轴题.分析:先算括号里面的(通分后进行计算),同时把除法变成乘法,再约分即可.解答:解:原式=[+﹣]•=•=﹣1.点评:本题考查了分式的混合运算的应用,注意运算顺序:先算括号里面的,再算除法.24.(2012•白下区一模)计算.考点:分式的混合运算;分式的乘除法;分式的加减法.专题:计算题.分析:先把除法变成乘法,进行乘法运算,再根据同分母的分式相加减进行计算即可.解答:解:原式=﹣×,=﹣,=.=﹣.点评:本题考查可分式的加减、乘除运算的应用,主要考查学生的计算能力,分式的除法应先把除法变成乘法,再进行约分,同分母的分式相加减,分母不变,分子相加减.25.(2010•孝感)解方程:.考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,因为3﹣x=﹣(x﹣3),所以可得方程最简公分母为(x﹣3),方程两边同乘(x ﹣3)将分式方程转化为整式方程求解,要注意检验.解答:解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数项的不要漏乘常数项.26.(2011•衢江区模拟)解方程:考点:换元法解分式方程.专题:计算题.分析:设=y,则原方程化为y=+2y,解方程求得y的值,再代入=y求值即可.结果需检验.解答:解:设=y,则原方程化为y=+2y,解之得,y=﹣.当y=﹣时,有=﹣,解得x=﹣.经检验x=﹣是原方程的根.∴原方程的根是x=﹣.点评:用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.27.(2011•龙岗区三模)解方程:=0.考点:解分式方程.专题:计算题;压轴题.分析:观察可得方程最简公分母为x(x﹣1).方程两边同乘x(x﹣1)去分母转化为整式方程去求解.解答:解:方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得:x=1.检验:x=1代入x(x﹣1)=0.∴x=1是增根,原方程无解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.28.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.考点:解分式方程;分式的化简求值.专题:计算题.分析:①观察可得最简公分母为(x﹣1),去分母后将分式方程求解.同时对②进行化简,即:(1+)÷==x+1,再将①求得数值代入②求值即可.解答:解:①方程两边同乘x﹣1,得2(x﹣1)﹣1=x﹣1,解得x=2.经检验x=2是原方程的解.∵(1+)÷=×=x+1.②当x=2时,原式=2+1=3.点评:解分式方程要注意最简公分母的确定,同时求解后要进行检验;②中要化简后再代入求值.29.解方程:(1)(2).考点:解分式方程.专题:计算题.分析:(1)观察可得方程最简公分母为(x﹣2)(x+1);(2)方程最简公分母为(x﹣1)(x+1);去分母,转化为整式方程求解.结果要检验.解答:解:(1)方程两边同乘(x﹣2)(x+1),得(x+1)2+x﹣2=(x﹣2)(x+1),解得,经检验是原方程的解.(2)方程两边同乘(x﹣1)(x+1),得x﹣1+2(x+1)=1,解得x=0.经检验x=0是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.30.解方程:(1)﹣=1;(2)﹣=0.考点:解分式方程.专题:计算题.分析:(1)由x2﹣1=(x+1)(x﹣1),可知最简公分母是(x+1)(x﹣1);(2)最简公分母是x(x﹣1).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:(1)解:方程两边都乘(x+1)(x﹣1),得(x+1)2+4=x2﹣1,解得x=﹣3.检验:当x=﹣3时,(x+1)(x﹣1)≠0,∴x=﹣3是原方程的解.(2)解:方程两边都乘x(x﹣1),得3x﹣(x+2)=0解得:x=1.检验:当x=1时x(x﹣1)≠0,∴x=1是原方程的解.点评:当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.分式方程里单独的一个数和字母也必须乘最简公分母.作业一、选择题 (每题3分,共36分)1.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +- D .22222y xy x y x +--2. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b + B.1ab C.1a b + D.aba b+4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.4 5、已知ba ba b a ab b a -+>>=+则且,0622的值为( )A 、2B 、2±C 、2D 、2±3.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( ) A.相等 B.互为倒数 C.互为相反数 D.A 大于B6.不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x y x y -+ B.4523x y x y -+ C.61542x y x y -+ D.121546x yx y-+7、下列等式中不成立的是( )A 、yx y x --22=x -y B 、y x y x y xy x -=-+-222C 、y x y xy x xy -=-2D 、xyx y y x x y 22-=-8.计算4222xx x x x x⎛⎫-÷⎪-+-⎝⎭的结果是( ) A. -12x + B. 12x + C.-1 D.1 9、已知n >1,M =n n -1,N =n -1n ,P =nn +1,则M 、N 、P 的大小关系为( )A. M >N >PB. M >P >NC. P >M >ND. P >N >M10、若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a ≥3D.a ≤3 二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m .19.当x 时,分式x x--23的值为负数.当_____________=m 时,分式23)3)(1(2+---m m m m 的值为零; 已知m-n=5,mn=-4,则21m +21n = 。