密码学-DES实验报告
现代密码学-DES加密算法 实验报告
现代密码学实验报告院系:班级:姓名:学号:前言密码学(Cryptology)是研究秘密通信的原理和破译秘密信息的方法的一门学科。
密码学的基本技术就是对数据进行一组可逆的数学变换,使未授权者不能理解它的真实含义.密码学包括密码编码学(Cryptography)和密码分析学(Cryptanalyst)两个既对立又统一的主要分支学科。
研究密码变化的规律并用之于编制密码以保护信息安全的科学,称为密码编码学.研究密码变化的规律并用之于密码以获取信息情报的科学,称为密码分析学,也叫密码破译学.密码学在信息安全中占有非常重要的地位,能够为信息安全提供关键理论与技术.密码学是一门古老而深奥的学问,按其发展进程,经历了古典密码和现代密码学两个阶段。
现代密码学(Modern Cryptology)通常被归类为理论数学的一个分支学科,主要以可靠的数学方法和理论为基础,为保证信息的机密性、完整性、可认证性、可控性、不可抵赖性等提供关键理论与技术。
DES加密算法的实现实验目的理解对称加密算法的原理和特点。
实验原理DES是一种分组加密算法,所谓分组加密算法就是对一定大小的明文或密文来做加密或解密动作。
而在DES这个加密系统中,每次加密或解密的分组大小均为64位,所以DES没有密文扩充的问题。
对大于64位的明文只要按每64位一组进行切割,而对小于64位的明文只要在后面补“0"即可。
另一方面,DES所用的加密或解密密钥也是64位大小,但因其中有8个位是用来作奇偶校验的,所以64位中真正起密钥作用的只有56位,密钥过短也是DES 最大的缺点。
DES加密与解密所用的算法除了子密钥的顺序不同外,其他部分完全相同。
实验环境运行Windows或Linux操作系统的PC机。
实验代码:—--————-——-——本实验采用56位密钥加密64位数据—-———--———--#include <stdlib.h〉#include 〈stdio.h〉#include "bool。
DES加密算法的简单实现实验报告
DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。
通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。
二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。
DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。
它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。
DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。
其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。
轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。
三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。
初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。
3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。
4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
轮置换的规则也可以通过查表的方式给出。
5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。
des算法实验报告
des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。
二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。
其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。
1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。
2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。
S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。
3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。
其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。
三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。
明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。
2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。
3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。
b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。
c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。
d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。
密码学-DES实验报告
南京信息工程大学实验(实习)报告实验(实习)名称实验(实习)日期得分指导教师------系计算机专业软件工程年2011 班次 3 姓名唐一鑫学号24一.实验目的1.理解对称加密算法的原理和特点2.理解DES算法的加密原理二.实验内容第一阶段:初始置换IP。
在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。
最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。
第二阶段:16次迭代变换。
DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。
其算法的核心是算法所规定的16次迭代变换。
DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。
用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。
第三阶段:逆(初始)置换。
他是初始置换IP的逆置换,记为IP-1。
在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16)三.流程图&原理图流程图DES原理图四.实验结果五.实验总结通过这次的实验我知道了des的基本原理虽然DES已经过时了,但是他的原理和思想并没有过时,学号DES有助于学好当下比较流行的AES源程序:#include<iostream>#include <string>using namespace std;const static char IP[64] =//初始置换{58, 50, 42, 34, 26, 18, 10, 2,60, 52, 44, 36, 28, 20, 12, 4,62, 54, 46, 38, 30, 22, 14, 6,64, 56, 48, 40, 32, 24, 16, 8,57, 49, 41, 33, 25, 17, 9, 1,59, 51, 43, 35, 27, 19, 11, 3,61, 53, 45, 37, 29, 21, 13, 5,63, 55, 47, 39, 31, 23, 15, 7};const static char EP1[56] =//密钥置换(原64位去掉奇偶校验位后){57, 49, 41, 33, 25, 17, 9,1, 58, 50, 42, 34, 26, 18,10, 2, 59, 51, 43, 35, 27,19, 11, 3, 60, 52, 44, 36,63, 55, 47, 39, 31, 23, 15,7, 62, 54, 46, 38, 30, 22,14, 6, 61, 53, 45, 37, 29,21, 13, 5, 28, 20, 12, 4};const static char LOOP[16] =//左移{1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};const static char EP2[48] =//选择子密钥{14, 17, 11, 24, 1, 5,3, 28, 15, 6, 21, 10,23, 19, 12, 4, 26, 8,16, 7, 27, 20, 13, 2,41, 52, 31, 37, 47, 55,30, 40, 51, 45, 33, 48,44, 49, 39, 56, 34, 53,46, 42, 50, 36, 29, 32};static const char EC[48] =//放大换位{32, 1, 2, 3, 4, 5,4, 5, 6, 7, 8, 9,8, 9, 10, 11, 12, 13,12, 13, 14, 15, 16, 17,16, 17, 18, 19, 20, 21,20, 21, 22, 23, 24, 25,24, 25, 26, 27, 28, 29,28, 29, 30, 31, 32, 1};const static char SBox[8][4][16] =//8个S盒{{// S1{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } },{// S2{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } },{// S3{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } },{// S4{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } },{// S5{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } },{// S6{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } },{// S7{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } },{// S8{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }}};const static char PP[32] =//P盒置换{16, 7, 20, 21, 29, 12, 28, 17,1, 15, 23, 26,5, 18, 31, 10,2, 8, 24, 14,32, 27, 3, 9,19, 13, 30, 6,22, 11, 4, 25,};const static char LP[64] =//末置换{40, 8, 48, 16, 56, 24, 64, 32,39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46, 14, 54, 22, 62, 30,37, 5, 45, 13, 53, 21, 61, 29,36, 4, 44, 12, 52, 20, 60, 28,35, 3, 43, 11, 51, 19, 59, 27,34, 2, 42, 10, 50, 18, 58, 26,33, 1, 41, 9, 49, 17, 57, 25};static bool M[64], tmp[32], *Li = &M[0], *Ri = &M[32];static bool SubKey[16][48];//16个子密钥class CDES//定义DES类{public://void Mode();//模式void Encryption(char out[8],char In[8]);//加密函数void Decryption(char out[8],char In[8]);//解密函数};void ByteToBit(bool *Out, const char *In, int bits)//字符转换成字节{int i;for(i=0;i<bits;i++){// In[i]的第N位右移N位并和0x01按位"与"运算(N=1~8) Out[i]=(In[i/8]>>(i%8))&1;}}void BitToByte(char *Out,const bool *In,int bits)//字节转换成字符{int i;memset(Out,0,(bits+7)/8);for(i=0;i<bits;i++){Out[i/8]|=In[i]<<(i%8);}}void RotateL(bool*In,int len,int loop)//循环左移{static bool tmp[256];memcpy(tmp,In,loop);memcpy(In,In+loop,len-loop);memcpy(In+len-loop,tmp,loop);}void Xor(bool*InA,const bool*InB,int len)//异或{int i;for(i=0;i<len;i++){InA[i]^=InB[i];}}void Transform(bool*Out,bool*In,const char*Table,int len)//各个置换转换{int i;static bool tmp[256];for(i=0;i<len;i++){tmp[i]=In[Table[i]-1];}memcpy(Out,tmp,len);}void S_func(bool Out[32],const bool In[48])//将48位转换成32位{int j,m,n;//膨胀后的比特串分为8组,每组6比特。
密码学案例实验报告书
一、实验背景随着信息技术的飞速发展,信息安全问题日益突出。
密码学作为保障信息安全的核心技术,在数据加密、身份认证、数字签名等领域发挥着重要作用。
为了加深对密码学原理的理解,提高实际应用能力,我们开展了本次密码学案例实验。
二、实验目的1. 掌握DES加密算法的基本原理和操作步骤。
2. 熟悉RSA加密算法的原理和应用。
3. 学习数字签名技术的应用。
4. 培养动手实践能力,提高解决实际问题的能力。
三、实验内容1. DES加密算法(1)实验目的:了解DES加密算法的基本原理,掌握DES加密和解密过程。
(2)实验内容:① 设计一个简单的DES加密程序,实现明文到密文的转换。
② 设计一个简单的DES解密程序,实现密文到明文的转换。
(3)实验步骤:① 编写DES加密程序,输入明文和密钥,输出密文。
② 编写DES解密程序,输入密文和密钥,输出明文。
2. RSA加密算法(1)实验目的:了解RSA加密算法的基本原理,掌握RSA加密和解密过程。
(2)实验内容:① 设计一个简单的RSA加密程序,实现明文到密文的转换。
② 设计一个简单的RSA解密程序,实现密文到明文的转换。
(3)实验步骤:① 编写RSA加密程序,输入明文和密钥对,输出密文。
② 编写RSA解密程序,输入密文和私钥,输出明文。
3. 数字签名技术(1)实验目的:了解数字签名技术的基本原理,掌握数字签名的生成和验证过程。
(2)实验内容:① 设计一个简单的数字签名程序,实现签名生成和验证。
(3)实验步骤:① 编写数字签名程序,输入明文、私钥和签名算法,输出签名。
② 编写数字签名验证程序,输入明文、公钥和签名,验证签名是否正确。
四、实验结果与分析1. DES加密算法实验结果通过编写DES加密和解密程序,成功实现了明文到密文和密文到明文的转换。
实验结果表明,DES加密算法在保证数据安全的同时,具有较高的效率。
2. RSA加密算法实验结果通过编写RSA加密和解密程序,成功实现了明文到密文和密文到明文的转换。
des加密算法实验报告
DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。
DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。
本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。
2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。
密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。
2.将56位密钥分为两个28位的子密钥。
3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。
4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。
2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。
2.将置换后的明文分为左右两部分L0和R0,每部分32位。
3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。
–将扩展后的48位数据与轮密钥Ki进行异或操作。
–将异或结果按照S盒进行替代操作,得到替代后的32位数据。
–对替代后的32位数据进行置换,得到置换后的32位数据。
–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。
–将R(i-1)赋值给L(i)。
4.将最后一轮迭代后得到的数据合并为64位数据。
5.对合并后的64位数据进行逆置换,得到加密后的64位密文。
3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。
DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。
des 加密算法实验报告
des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。
DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。
本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。
二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。
其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。
每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。
DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。
三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。
实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。
2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。
3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。
函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。
4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。
四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。
为了提高安全性,可以采用Triple-DES等加强版算法。
2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。
但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。
3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。
des算法 实验报告
des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。
DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。
本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。
一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。
其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。
1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。
这一步骤主要是为了增加密文的随机性和混淆性。
2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。
每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。
其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。
3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。
二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。
1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。
每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。
2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。
DES加密实验报告
DES加密实验报告实验目的:1.了解DES加密算法的原理和流程;2.掌握DES加密算法的编程实现方法;3.探究不同密钥长度对DES加密效果的影响。
实验设备和材料:1.计算机;2. Python编程环境。
实验步骤:1.DES加密算法原理和流程:DES(Data Encryption Standard)是一种对称加密算法,采用分组密码体制,密钥长度为56位,数据块长度为64位。
DES加密算法的流程如下:a)初始置换(IP置换):将明文分为左右两个32位的子块,并经过初始置换表IP进行置换;b)迭代加密:将初始置换结果分为左右两个子块,进行16轮迭代操作;c)轮函数:每轮迭代中,右子块与扩展置换表进行扩展置换,并与轮密钥进行异或运算,然后经过S盒替换、P置换和异或运算得到新的右子块;d)逆初始置换(IP逆置换):将最后一轮的结果进行逆初始置换,得到密文。
2.DES加密算法编程实现:首先,导入`pycrypto`库并生成合适长度的密钥;其次,定义初始置换表IP,扩展置换表E,S盒置换表S1-S8,P置换表P,以及逆初始置换表IP_inverse;然后,定义`des_encrypt`函数实现DES加密算法的逻辑:a)根据IP置换表对输入明文进行初始置换;b)将初始置换结果分为左右两个子块;c)进行16轮迭代操作,每轮迭代中更新左右子块的值;d)对最后一轮迭代结果进行逆初始置换;e)返回加密后的密文。
3.探究不同密钥长度对DES加密效果的影响:初始化明文和密钥,调用`des_encrypt`函数进行加密,并输出加密结果;分别改变密钥长度为56位、64位、128位,再次进行加密操作,并输出加密结果;比较不同密钥长度下的加密结果,进行效果分析。
实验结果:使用DES加密算法对明文进行加密,得到相应的密文。
实验结论:1.DES加密算法可以对密文进行可靠保护,提高数据的安全性;2.较长的密钥长度有助于增强DES加密算法的安全性,但同时也会增加加密和解密的运算成本;3.在实际应用中,根据需求和实际情况,选择合适的密钥长度,平衡安全性和性能的需求。
DES实验报告范文
DES实验报告范文实验目的:了解DES算法的基本原理和加密过程;掌握DES算法的加密过程;了解DES算法的弱点并掌握略解决方法。
实验原理:DES(Data Encryption Standard)即数据加密标准,是一种对称加密算法。
它的基本原理是,通过将明文分组(64位)进行多次迭代,每次都经过相同的置换和替代操作,最终得到密文。
加密和解密都使用相同的过程和密钥。
实验步骤:1.密钥生成首先,用户需要选择一个64位的密钥,但该密钥只有56位是有效的,剩余8位用作奇偶校验位。
用户可以任意选择一个64位的二进制串,然后将满足奇偶校验的8位奇偶位加到末尾。
2.初始置换将64位的明文分成两个32位的部分,左边为L0,右边为R0。
进行一个固定的初始置换,将L0右边的32位和R0左边的32位合并,得到一个64位的二进制串。
3.子密钥生成通过对初始密钥进行置换等操作,生成16个子密钥(每个48位)。
每个子密钥与初始密钥无关。
4.迭代加密(16轮)迭代加密过程中,每次都涉及到对L和R的操作。
具体步骤如下:-对R进行扩展置换,扩展为48位,并将扩展后的结果与子密钥进行异或;-将异或结果分成8个6位的块,每个块对应一个S盒;-将S盒输出的结果经过置换P后与L异或,得到新的R;-将新的R赋值给R(R=R');-将旧的R赋值给L(L=R');-重复以上操作16轮。
5.逆初始置换将L16和R16按照逆初始置换的方式进行合并,得到一个64位的二进制串,即密文。
实验结果分析:经过实验,我们成功完成了DES算法的加密过程,并获得了加密后的密文。
通过解密过程,可以将密文重新转换为原始的明文。
实验总结:DES算法是一种较为经典的对称加密算法,由于其密钥长度较短,容易受到暴力破解的攻击。
为了提升安全性,可以对DES算法进行改进,如使用更长的密钥长度、增加迭代次数等。
此外,还可以使用其他更加先进的加密算法来替代DES算法,如AES算法等。
DES算法代码及实验报告
DES算法代码及实验报告DES算法(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,是密码学中最为经典的算法之一、DES算法的核心是Feistel结构,通过将明文分成多个块,然后对每个块进行一系列的置换和替换操作,最后得到密文。
本文将给出DES算法的代码实现,并进行实验报告。
一、DES算法的代码实现:以下是使用Python语言实现的DES算法代码:```pythondef str_to_bitlist(text):bits = []for char in text:binval = binvalue(char, 8)bits.extend([int(x) for x in list(binval)])return bitsdef bitlist_to_str(bits):chars = []for b in range(len(bits) // 8):byte = bits[b * 8:(b + 1) * 8]chars.append(chr(int(''.join([str(bit) for bit in byte]), 2)))return ''.join(chars)def binvalue(val, bitsize):binary = bin(val)[2:] if isinstance(val, int) elsebin(ord(val))[2:]if len(binary) > bitsize:raise Exception("Binary value larger than the expected size.")while len(binary) < bitsize:binary = "0" + binaryreturn binarydef permute(sbox, text):return [text[pos - 1] for pos in sbox]def generate_round_keys(key):key = str_to_bitlist(key)key = permute(self.permuted_choice_1, key)left, right = key[:28], key[28:]round_keys = []for i in range(16):left, right = shift(left, self.shift_table[i]), shift(right, self.shift_table[i])round_key = left + rightround_key = permute(self.permuted_choice_2, round_key)round_keys.append(round_key)return round_keysdef shift(bits, shift_val):return bits[shift_val:] + bits[:shift_val]def xor(bits1, bits2):return [int(bit1) ^ int(bit2) for bit1, bit2 in zip(bits1, bits2)]def encrypt(text, key):text_bits = str_to_bitlist(text)round_keys = generate_round_keys(key)text_bits = permute(self.initial_permutation, text_bits)left, right = text_bits[:32], text_bits[32:]for i in range(16):expansion = permute(self.expansion_table, right)xor_val = xor(round_keys[i], expansion)substitution = substitute(xor_val)permut = permute(self.permutation_table, substitution)temp = rightright = xor(left, permut)left = tempreturn bitlist_to_str(permute(self.final_permutation, right + left))```二、DES算法的实验报告:1.实验目的通过实现DES算法,加深对DES算法原理的理解,验证算法的正确性和加密效果。
des实验报告
des实验报告DES实验报告一、引言数据加密标准(Data Encryption Standard,DES)是一种对称密钥加密算法,由IBM公司于1975年研发并在1977年被美国政府采纳为联邦信息处理标准(FIPS)。
DES以其高度的安全性和可靠性成为当时最广泛使用的加密算法之一。
本实验旨在通过实际操作DES算法,深入了解其工作原理和加密过程。
二、实验目的1. 了解DES算法的基本原理和加密过程;2. 掌握使用Python编程语言实现DES算法的方法;3. 分析DES算法的优缺点及应用场景。
三、实验步骤1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,其余8位用于奇偶校验。
首先,我们需要生成一个有效的密钥。
通过随机数生成器生成一个64位的二进制串,然后去除奇偶校验位,得到56位的密钥。
2. 初始置换将明文分为左右两部分,每部分各32位。
然后,对每部分进行初始置换。
初始置换表IP将明文的每个比特位按照特定规则重新排列,得到一个新的64位二进制串。
3. 轮函数DES算法中的主要操作是轮函数,该函数包括扩展置换、密钥加密、S盒替换和P盒置换等步骤。
- 扩展置换:将32位的输入扩展为48位,扩展置换表E将输入的每个比特位按照特定规则重新排列。
- 密钥加密:使用子密钥对扩展置换的结果进行异或运算。
- S盒替换:将48位输入分为8个6位的块,经过8个不同的S盒进行替换,得到32位输出。
- P盒置换:对S盒替换的结果进行P盒置换,即将32位的输入按照特定规则重新排列。
4. 轮数迭代DES算法共有16轮迭代,每轮迭代包括轮函数和交换左右两部分的操作。
迭代过程中使用不同的子密钥对轮函数的输入进行加密。
5. 逆初始置换最后一轮迭代结束后,将左右两部分进行交换,并进行逆初始置换。
逆初始置换表IP-1将交换后的结果按照特定规则重新排列,得到最终的密文。
四、实验结果我们使用Python编程语言实现了DES算法,并对一组明文进行加密。
des算法的实验报告
des算法的实验报告DES算法实验报告DES(Data Encryption Standard)算法是一种对称密钥加密算法,广泛应用于信息安全领域。
本实验旨在通过实验DES算法的加密和解密过程,以及密钥长度对加密效果的影响,来深入了解DES算法的原理和应用。
实验一:加密和解密过程首先,我们使用一个明文进行加密实验。
选择一个64位的明文作为输入,同时使用一个64位的密钥进行加密。
经过DES算法加密后,得到的密文长度也为64位。
然后,我们使用相同的密钥对密文进行解密,得到原始的明文。
实验结果表明,DES算法能够对明文进行有效的加密,并且使用相同的密钥能够对密文进行解密,得到原始的明文。
这说明DES算法是一种可靠的加密算法,能够保护数据的安全性。
实验二:密钥长度对加密效果的影响在第二个实验中,我们对不同长度的密钥进行加密实验,观察加密效果的变化。
我们分别使用56位、64位和128位的密钥进行加密,然后比较不同长度密钥的加密效果。
实验结果显示,密钥长度对加密效果有显著影响。
使用128位的密钥进行加密,能够得到更加安全的密文,而使用56位的密钥进行加密,则容易受到攻击。
这表明密钥长度是影响DES算法加密效果的重要因素。
结论通过本实验,我们深入了解了DES算法的加密和解密过程,以及密钥长度对加密效果的影响。
DES算法是一种可靠的加密算法,能够有效保护数据的安全性。
同时,密钥长度对加密效果有显著影响,因此在实际应用中需要选择足够长度的密钥来保障数据的安全。
总之,DES算法在信息安全领域有着重要的应用价值,通过本实验的学习,我们对DES算法有了更深入的了解,为进一步研究和应用提供了重要的参考。
DES实验报告
实验一的报告DES简介英文Data Encryption Standard1977年美国国家标准局公布了IBM公司研制的一种数据加密算法:数据加密标准。
原定服役十年,由于在这期间,该加密标准没有受到真正的威胁,20多年来一直活跃在国际保密通信的舞台上。
近些年,随着计算机技术的提高,已经有了现实的威胁。
512位的密钥已经能被破解,但是要花很多的时间,计算量非常大,1024位长度密钥至今没能被破解。
DES作为一种高速对称加密算法,仍然具有重要意义,特别是DES(密钥系统)和公钥系统结合组成混合密码系统。
使DES和公钥系统(如RSA)能够各自扬长避短,提高了加密系统的安全和效率。
DES的加密解密的通用流程图对于DES,其实就是一种分组密码的一种,即对称密钥加密算法(收发双方使用相同密钥的密码),相信经过学习已经有了初步了解。
那么可以通过其加密与解密的通用流程来进一步巩固所学知识。
如图1图1 对称密钥加密算法流程图想要深一步学习DES,就要学会其算法结构。
如图2图2 DES 算法结构图公开密钥算法收发双方使用不同密钥的密码,就叫非对称密码,下面从其加密解密的通用流程图作一个简单介绍。
如图3图3公开密钥算法通用流程图公开密钥有两个重要特点:仅根据密码算法和加密密钥来确定解密密钥在计算上不可行,两个密钥中的任何一个都可用来加密,另一个用来解密。
公开密钥的加密解密过程如下:明文 密文1、网路中的每个端系统都产生一对用于将接收到的报文进行加密和解密的密钥。
2、每个系统都把公钥公布,私钥就自己保管。
3、如果甲想给乙发送一个报文,甲就用乙的公开密钥来加密报文。
4、乙收到报文就用自己的私钥解密。
对称密钥与公开密钥的区别与联系必须保密,公钥可以公开,关于管理和发布对称加密比较复杂。
对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。
DES报告
信息安全实验报告报告1 对称密码算法DES王雨骄08211688实验报告1 对称密码算法DES一、实验目的通过用DES算法对实际的数据进行加密和解密来深刻了解DES的运行原理。
二、实验原理DES属于分组加密算法,即在明文加密和密文解密过程中,信息都是按照固定长度分组后进行处理的。
混淆和扩散是它采用的两个最重要的安全特性。
混淆是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者同级。
扩散室值明文和密钥中每一位信息的变动会影响到糯米问中血多为信息的变动,从而隐藏统计上的特性,增加密码的安全。
DES算法将明文分成64为大小的众多数据块,及分组长度为64位。
用56为密钥对明文加密,形成64为密文。
加密过程为限将输入的数据进行初始换为(IP),将按置换表变换的数据评分为左右两部分。
左边为L0,右边为R0,对R0进行由密钥生成的第一轮子密钥控制下的变换f,记为f(R0,K1),再与L0逐位异或,结果记为R1,R0作为下一轮的L1。
如此循环16轮,最后得到L16,R16,并进行逆初始变换(IP-1),可得到加密数据。
解密过程与此类似,但子密钥的使用顺序与加密相反。
、DES的三个基本函数为:初始置换、f函数、逆初始置换函数。
初始置换和逆初始置换按照IP表及IP-1进行,所用是将输入的64为数据打乱顺序和恢复顺序。
F函数:f函数是多个置换函数和替代函数的组合函数,它将32位比特的输入变换为32位的输出。
R i经过扩展运算E变换为扩展为48的E(R i),与K i+1进行欲火运算后输出的结果分成8组,每组6比特的并联B,B=B1B2B3B4B5B6B7B8,在经过8个S盒的选择压缩运算转换为4为,8个4位合并为32位后在经过P变换输出为32位f(R i,K i+1)。
DES的另一个重要的功能模块是子密钥的生成。
输入的初始密钥值为64位,但DES算法规定,其中第8、16、……、64位是奇偶校验位,不参与DES运算。
DES加密解密实验报告
DES加密解密实验报告DES(Data Encryption Standard),是一种对称密钥加密算法,由IBM在1975年推出。
DES密钥长度为56位,分为加密和解密两个过程。
实验目的:1.了解DES算法的原理和流程。
2.通过实际操作,掌握DES算法的加密和解密过程。
3.分析DES算法的安全性和应用场景。
实验步骤:1.选择合适的明文和密钥。
明文可以是一段文字或者数字,密钥为56位的二进制数。
2.对明文进行填充。
DES算法要求明文长度必须为64位,如果不满足则需要进行填充。
3.初始置换(IP)过程。
将64位明文按照特定的规则进行置换,得到加密前的明文。
4.将置换后的明文分为左右两部分,每部分32位。
5.进行16轮的加密操作,每轮包括以下步骤:a.将右半部分作为下一轮的左半部分。
b.根据其中一种特定规则,对右半部分进行扩展和置换操作,得到48位的数据。
c.将48位的数据和轮密钥进行异或操作,得到新的48位数据。
d.将新得到的48位数据分为8个6位数据,并进行S盒置换操作,得到4位数据。
e.将4位数据按照特定规则进行置换,得到32位数据。
f.将32位数据和左半部分进行异或操作,得到新的32位数据。
6.经过16轮的加密操作之后,左右两部分交换位置。
7.最终进行反置换(FP)操作,得到密文。
实验结果:1.明文填充:HELLO->HELLO0。
2.初始置换:HELLO0->LHLOEO0。
3.左右两部分:LHLOEO0。
4.加密过程(以第一轮为例):a.L1=RO,R1=LO实验分析:DES算法通过16轮迭代加密操作,混淆了明文的结构,提高了加密的安全性。
加密过程中涉及到扩展、置换、异或、S盒置换等操作,增加了破解的难度。
同时,DES密钥长度为56位,相对较短,存在被暴力破解的可能性。
DES算法广泛应用于各种网络通信、数据存储和传输中。
然而,由于DES密钥长度较短,安全性受到了质疑,逐渐被更安全的算法所替代,如AES算法。
DES加密算法实验报告
DES加密算法实验报告DES( Data Encryption Standard)算法是一种对称加密算法,是现代密码学的基础。
DES算法将64位明文数据分为两个32位的部分,将两部分通过一系列复杂的运算和替换操作,最终输出64位的密文。
DES算法的加密过程主要包括初始置换、16轮Feistel网络、逆初始置换等步骤。
首先是初始置换,将明文数据进行位重排列,使得加密的效果更加均匀。
然后是16轮Feistel网络的操作,每一轮都包括密钥的生成和密钥的运算。
密钥的生成过程是将64位的密钥进行重排列和选择运算,生成每一轮所需要的子密钥。
密钥的运算过程是将子密钥与32位明文数据进行异或操作,然后再通过一系列的替换和置换运算,得到新的32位数据。
最后是逆初始置换,将加密后的数据进行反向重排列,得到最终的64位密文数据。
实验中,对于给定的明文和密钥,我们首先需要将明文和密钥转换成二进制形式。
然后根据初始置换表和选择运算表,将明文和密钥进行重排列。
接下来进入16轮Feistel网络的循环中,每一轮都按照密钥的生成和运算过程进行操作。
最后通过逆初始置换表,将加密后的数据进行反向重排列,得到最终的密文。
DES算法的优点是运算速度较快,加密强度较高,安全可靠,广泛应用于网络通信和数据保密领域。
但DES算法也存在一些缺点,主要是密钥长度较短,为56位,容易受到暴力破解攻击;DES算法的设计和实现已经有一定历史了,现在已经有更安全和更高效的算法可供选择。
在实验中,我使用Python语言编写了DES算法的加密程序,在给定的明文和密钥下进行了测试。
实验结果表明,DES算法可以成功加密数据,并且在解密过程中能够准确还原原始数据。
总结来说,DES加密算法是一种经典的对称加密算法,通过初始置换、Feistel网络和逆初始置换等步骤,可以将明文数据加密成密文数据。
DES算法在保证加密强度和运算速度的同时,也有一些缺点需要注意。
因此,在实际应用中需要根据具体的需求和安全要求选择合适的加密算法。
现代密码学——DES算法(实验报告)
课程名称现代密码学实验实验项目名称 DES算法【实验目的】1.理解对称加密算法的原理和特点。
2.理解DES算法的加密原理。
【实验环境】1.实验人数:每组2人2.系统环境:Windows3.网络环境:交换网络结构4.实验工具:VC++6.0、密码工具【实验原理】一.对称密钥加密机制对称密钥加密机制即对称密码体系,也称为单钥密码体系和传统密码体系。
对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。
对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。
同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。
发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。
图1描述了对称密码(传统密码)系统原理框架,其中M表示明文;C表示密文;E表示加密算法;D表示解密算法;K表示密钥;I表示密码分析员进行密码分析时掌握的相关信息;B表示密码分析员对明文M的分析和猜测。
图1 传统密码系统原理框架图对称密码体系的优点:●加密效率高,硬件实现可达每秒数百兆字节(软件实现略慢一些)。
●密钥相对比较短。
●可以用来构造各种密码机制。
●可以用来建造安全性更强的密码。
对称密码体系的缺点:●通信双方都要保持密钥的秘密性。
●在大型网络中,每个人需持有许多密钥。
●为了安全,需要经常更换密钥。
二.DES加密算法简介1973年5月15日,美国国家标准局在联邦注册报上发表一则启事,公开征集用来保护传输和静止存储的计算机数据的密码算法,这一举措最终导致了数据加密标准DES的出现。
DES采用分组乘积密码体制,它是由IBM开发的,是对早期Lucifer密码体制的改进。
DES 在1975年3月17日首次在联邦记录中公布,而且声明对此算法征求意见。
到1977年2月15日拟议中的DES被采纳为“非密级”应用的一个联邦标准。
密码学实验报告-DES
密码学应用与实践课程实验报告实验1:实现DES密码体制2)子密钥的生成64比特的密钥生成16个48比特的子密钥。
其生成过程见图:3)解密DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。
即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:加密后的结果L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:得 L=R0, R=L0。
3.密钥生成(1)取得密钥从用户处取得一个64位(本文如未特指,均指二进制位))长的密码key ,去除64位密码中作为奇偶校验位的第8、16、24、32、40、48、56、64位,剩下的56位作为有效输入密钥.(2)等分密钥(3)密钥移位DES算法的密钥是经过16次迭代得到一组密钥的,把在1.1.2步中生成的A,B视为迭代的起始密钥. 比如在第1次迭代时密钥循环左移1位,第3次迭代时密钥循环左移2位. 第9次迭代时密钥循环左移1位,第14次迭代时密钥循环左移2位.第一次迭代:A(1) = ǿ(1) AB(1) = ǿ(1) B第i次迭代:A(i) = ǿ(i) A(i-1)B(i) = ǿ(i) B(i-1)(4)密钥的选取在(3)步中第i次迭代生成的两个28位长的密钥为把合并按照表4所示k的第一位为56位密钥的第14位,k的第2位为56位密钥的第17位,...,依此类推,k的最后一位最后一位是56位密钥的第32位。
生成与进行第i次迭代加密的数据进行按位异或的48位使用密钥:(5)迭代DES算法密钥生成需要进行16次迭代,在完成16次迭代前,循环执行(3)(4)步.最终形成16套加密密钥:key[0] , key[1] , key[2] ,…. key[14] , key[15] .(1)取得数据把明文数据分成64位的数据块,不够64位的数据块以适当的方式补足。
密码学案例实验报告
一、实验背景随着信息技术的飞速发展,网络安全问题日益突出,加密技术作为保障信息安全的重要手段,在各个领域都得到了广泛应用。
本实验报告旨在通过实际操作,加深对密码学原理和算法的理解,提高加密和解密的能力。
二、实验目的1. 了解密码学的基本概念和分类;2. 掌握DES、AES等常用加密算法的原理和流程;3. 能够运用密码学工具进行加密和解密操作;4. 分析密码破解技术,提高安全意识。
三、实验内容1. 实验一:DES加密算法(1)实验原理DES(Data Encryption Standard)是一种经典的对称加密算法,它采用64位密钥和64位明文,经过16轮加密操作,生成64位密文。
(2)实验步骤① 编写程序实现DES加密算法的加解密功能;② 使用密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。
2. 实验二:AES加密算法(1)实验原理AES(Advanced Encryption Standard)是一种广泛使用的对称加密算法,它支持128位、192位和256位密钥长度,具有速度快、安全性高等优点。
(2)实验步骤① 编写程序实现AES加密算法的加解密功能;② 使用不同长度的密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。
3. 实验三:密码破解技术(1)实验原理密码破解技术是指通过尝试各种可能的密钥,来破解加密信息的技术。
常见的密码破解方法有穷举攻击、字典攻击、暴力破解等。
(2)实验步骤① 使用密码破解工具对加密文本进行破解;② 分析破解结果,了解不同破解方法的特点和适用场景;③ 提高安全意识,防范密码破解攻击。
四、实验结果与分析1. 实验一和实验二的结果表明,DES和AES加密算法能够正确地对文本进行加密和解密,验证了算法的正确性。
2. 通过实验三,我们了解到密码破解技术的种类和特点,提高了安全意识。
在实际应用中,应选择合适的加密算法和密钥长度,以提高安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学实验(实习)报告实验(实习)名称实验(实习)日期得分指导教师------系计算机专业软件工程年2011 班次 3 姓名唐一鑫学号24一.实验目的1.理解对称加密算法的原理和特点2.理解DES算法的加密原理二.实验内容第一阶段:初始置换IP。
在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。
最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。
第二阶段:16次迭代变换。
DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。
其算法的核心是算法所规定的16次迭代变换。
DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。
用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。
第三阶段:逆(初始)置换。
他是初始置换IP的逆置换,记为IP-1。
在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16)三.流程图&原理图流程图DES原理图四.实验结果五.实验总结通过这次的实验我知道了des的基本原理虽然DES已经过时了,但是他的原理和思想并没有过时,学号DES有助于学好当下比较流行的AES源程序:#include<iostream>#include <string>using namespace std;const static char IP[64] =//初始置换{58, 50, 42, 34, 26, 18, 10, 2,60, 52, 44, 36, 28, 20, 12, 4,62, 54, 46, 38, 30, 22, 14, 6,64, 56, 48, 40, 32, 24, 16, 8,57, 49, 41, 33, 25, 17, 9, 1,59, 51, 43, 35, 27, 19, 11, 3,61, 53, 45, 37, 29, 21, 13, 5,63, 55, 47, 39, 31, 23, 15, 7};const static char EP1[56] =//密钥置换(原64位去掉奇偶校验位后){57, 49, 41, 33, 25, 17, 9,1, 58, 50, 42, 34, 26, 18,10, 2, 59, 51, 43, 35, 27,19, 11, 3, 60, 52, 44, 36,63, 55, 47, 39, 31, 23, 15,7, 62, 54, 46, 38, 30, 22,14, 6, 61, 53, 45, 37, 29,21, 13, 5, 28, 20, 12, 4};const static char LOOP[16] =//左移{1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};const static char EP2[48] =//选择子密钥{14, 17, 11, 24, 1, 5,3, 28, 15, 6, 21, 10,23, 19, 12, 4, 26, 8,16, 7, 27, 20, 13, 2,41, 52, 31, 37, 47, 55,30, 40, 51, 45, 33, 48,44, 49, 39, 56, 34, 53,46, 42, 50, 36, 29, 32};static const char EC[48] =//放大换位{32, 1, 2, 3, 4, 5,4, 5, 6, 7, 8, 9,8, 9, 10, 11, 12, 13,12, 13, 14, 15, 16, 17,16, 17, 18, 19, 20, 21,20, 21, 22, 23, 24, 25,24, 25, 26, 27, 28, 29,28, 29, 30, 31, 32, 1};const static char SBox[8][4][16] =//8个S盒{{// S1{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } },{// S2{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } },{// S3{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } },{// S4{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } },{// S5{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } },{// S6{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } },{// S7{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } },{// S8{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }}};const static char PP[32] =//P盒置换{16, 7, 20, 21, 29, 12, 28, 17,1, 15, 23, 26,5, 18, 31, 10,2, 8, 24, 14,32, 27, 3, 9,19, 13, 30, 6,22, 11, 4, 25,};const static char LP[64] =//末置换{40, 8, 48, 16, 56, 24, 64, 32,39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46, 14, 54, 22, 62, 30,37, 5, 45, 13, 53, 21, 61, 29,36, 4, 44, 12, 52, 20, 60, 28,35, 3, 43, 11, 51, 19, 59, 27,34, 2, 42, 10, 50, 18, 58, 26,33, 1, 41, 9, 49, 17, 57, 25};static bool M[64], tmp[32], *Li = &M[0], *Ri = &M[32];static bool SubKey[16][48];//16个子密钥class CDES//定义DES类{public://void Mode();//模式void Encryption(char out[8],char In[8]);//加密函数void Decryption(char out[8],char In[8]);//解密函数};void ByteToBit(bool *Out, const char *In, int bits)//字符转换成字节{int i;for(i=0;i<bits;i++){// In[i]的第N位右移N位并和0x01按位"与"运算(N=1~8) Out[i]=(In[i/8]>>(i%8))&1;}}void BitToByte(char *Out,const bool *In,int bits)//字节转换成字符{int i;memset(Out,0,(bits+7)/8);for(i=0;i<bits;i++){Out[i/8]|=In[i]<<(i%8);}}void RotateL(bool*In,int len,int loop)//循环左移{static bool tmp[256];memcpy(tmp,In,loop);memcpy(In,In+loop,len-loop);memcpy(In+len-loop,tmp,loop);}void Xor(bool*InA,const bool*InB,int len)//异或{int i;for(i=0;i<len;i++){InA[i]^=InB[i];}}void Transform(bool*Out,bool*In,const char*Table,int len)//各个置换转换{int i;static bool tmp[256];for(i=0;i<len;i++){tmp[i]=In[Table[i]-1];}memcpy(Out,tmp,len);}void S_func(bool Out[32],const bool In[48])//将48位转换成32位{int j,m,n;//膨胀后的比特串分为8组,每组6比特。