简谐振动的动力学特征课件
合集下载
大学物理(简谐振动篇)ppt课件
通过图表展示实验结果,如位移-时间 图、速度-时间图等,以便更直观地分 析振动特性。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
简谐振动的动力学特征及运动学-PPT
• 动力学方程
d2 dt
x
2
2
x
0
9
§4-1 简谐振动的动力学特征
x Acos(t )
T 2π 取 0
x xt图
A
o
T
A
v vt 图
t
v A sin(t ) A
o
Tt
A cos(t π ) A
2
a a t图
a A 2 cos(t ) A 2
o
Tt
A 2 cos(t π ) A 2
两振动位相之差
=2- 1
•当=2k ,k=0,±1,±2…,两振动步调相同,称同相
•当=(2k+1) , k=0,±1,±2...
两振动步调相反,称反相
•0<<
2 超前于1 或 1滞后于2
位相差反映了两个振动不同程度的参差错落
•谐振动的位移、速度、加速度之间的位相关系
x
A cos( t
A sin(
§4-2 简谐振动的运动学
例题 质点沿x轴作谐振动, 周期T=s, t=0时, xo 2m ,o 2 2m / s,求振动方程。
解: x =Acos( t+ )
2 2
T
A
xo2
o2 2
2
cos 2
2
sin 2
2
3
4
得x 2cos( 2t 3 )m
4 32
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
令
'
0
2
x Asin(t ' )
简谐振动的运动规律也可用正弦函数表示.
02简谐振动的运动学精品PPT课件
19
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的
运动为简谐运
动.
第4章 机械振动
4–2 简谐振动的运动学
20
y
vm t π
2
t an
A
0
a
v
x
x Acos(t )
vm A v A sin(t )
an A 2
a A 2 cos(t )
雌性蚊子 雄性蚊子 苍蝇 黄蜂
355~415 455~600 330 220
第4章 机械振动
4–2 简谐振动的运动学
例 如图所示系统(细线的质 量和伸长可忽略不计),细线 静止地处于铅直位置,重物位 于O 点时为平衡位置.
若把重物从平衡位置O 略 微移开后放手, 重物就在平衡 位置附近往复的运动.这一振 动系统叫做单摆. 求单摆小角 度振动时的周期.
12
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x A cos(t 0 ) o
v A sin(t 0 ) A
v v
T 2
xt 图
v T t
3、位相和初位相 t 0
1) t 0 (x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
4–2 简谐振动的运动学
1
一 简谐振动的运动学方程
d2x 2x 0
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
简谐振动及其特征PPT教学课件
平衡位置:振动物体能够静止时的位置。
(1)振动中的位移x都是以平衡位置为起点 的,因此,方向就是从平衡位置指向末位置的 方向,大小就是这两位置间的距离,两个“端 点”位移最大,在平衡位置位化图线?
位移随时间变化 关系图是正弦或 余弦曲线.
简谐运动中位移、加速度、速度、动 量、动能、势能的变化规律
d、振子的振幅是____振子在6秒内
f 5
et、/通s c过点的的路位程移_________回. 复力方向____
大小___加速度方向___大小___.
f、d点的位移____回复力____
加速度___速度______.
g、势能最大的点有_________.
动能最大的点有_________.
h、t=2.5s时,振子的位移方向____.
振子在振动过程中,所受重力与支持力 平衡,振子在离开平衡位置 O 点后,只受 到弹簧的弹力作用,这个力的方向跟振子 离开平衡位置的位移方向相反,总是指向 平衡位置,所以称为回复力。
胡克定律
在弹簧发生弹性形变时,弹簧振
子的回复力F与振子偏离平衡位置 的位移x大小成正比,且方向总是
相反,即:
F kx
简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐 振动是理想化的振动。
2、回复力与位移成正比而方向相反,总是指 向平衡位置。
3、简谐运动是一种理想化的运动,振动过程 中无阻力,所以振动系统机械能守恒。
4、简谐运动是一种非匀变速运动。 5、位移随时间变化关系图是正弦或余弦曲线.
小结
机 1、定义
B O O B’ B’ O
向右 向左 向左 减小 增大 减小
向左 向右 向右 减小 增大 减小 向左 向左 向右 增大 减小 增大 增大 减小 增大 减小 增大 减小
简谐运动详解ppt课件
(3)在平衡位置上方时,弹簧处于压缩状态(也可能拉伸),
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
简谐振动的动力学特征
= A [cosω0t cosα1 sinω0t sinα1] + A2 [cosω0t cosα2 sinω0t sinα2 ] 1 = ( A cosα1 + A2 cosα2 ) cosω0t ( A sinα1 + A2 sinα2 ) sinω0t 1 1
令:
Acosα = A cosα1 + A2 cosα2 1 Asinα = A sinα1 + A2 sinα2 1
x = cos(ω0t +α)
2 2 & x a = v = && = Aω0 cos(ω0t +α ) = Aω0 cos(ω0t +α +π ) π 设: φx = ω0t +α , φv = ω0t +α + , φa = ω0t +α +π 2 π π 则, φv φx = , φa φv = , φa φx = π
x = Acos(ω0t +α)
1 2 2 1 2 1 Ek = kA sin (ω0t +α ), Ep = kx = kAcos2 (ω0t +α ) 2 2 2
弹簧振子的总能为: 故,弹簧振子的总能为:E = E
k
+ Ep
由此可见:动能和势能互相转化. 由此可见:动能和势能互相转化.
22
2 例 若单摆的振幅为 θ0 ,试证明悬线所受的最大拉力等于 mg(1+θ0 )
23
24
§9-4 简谐振动的合成 一,同方向同频率简谐振动的合成
设质点参与同方向同频率的两个简谐振动: 设质点参与同方向同频率的两个简谐振动:
x1 = A cos(ω0t +α1 ) 1
第九章简谐振动 ppt课件
在-π到π之间取值:
22
3
取哪一个值要看初始条件,由于:
v A si n t ()
所以: v0Asin
由于t=0时,质点向正 x 方向运动,所以 v0>0
因此,应取:
3
于是,此简谐振动的表达式: x0.1c2ots() (S)I
3
利用旋转矢量法求解很直观,
根据初始条件就可画出如图所 示的振幅矢量的初始位置,从 而得到:
周期T: Period A co t s ) A ( co ( t T s ) []
A co ts (2 )
T2 T2/
频率ν: 1 T 2
Phase 描述运动状态的量
(3)初相位: t
φ为初相位,Initial Phase 11
5、位移、速度和加速度的相位关系
xA c o ts()
2
2
E 1 kA2
Ek
Ep
2
A o A
弹性力是保守力,总机械能守恒,即总能量不随时间变化。
29
动能的时间平均值:
E kT 10 T1 2k2 A si2(n t)dt
k2ATsi2(n t)dt1k2A
2T0
4
势能的时间平均值:
E PT 10 T1 2k2 A c o 2( st )dt
k2 A T
c
o 2tsdt1k2 A
2 T0
4
30
总能的时间平均值:
EEk
Ep
1kA2 2
1
EK
Ep
E 2
结论:
* 弹簧振子的动能和势能的平均值相等,且 等于总机械能的一半。
* 任一简谐振动总能量与振幅的平方成正比
简谐振动的运动学讲解PPT课件
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运 动.
第17页/共32页
x Acos(t )
t 0
o
A
x0 x
x0 Acos
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运 动.
第18页/共32页
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x轴
x1
A1
cos(t
1
)
x A cos(t )
2
2
2
(t 2 ) (t 1)
2
1
第25页/共32页
2 1
0同步 x
超前
π 反相 为其它 落后
x
x
o
to
o
t
t
第26页/共32页
例 一质量为0.01 kg的物体作简谐运动,其振幅 为0.08 m,周期为4 s,起始时刻物体在x=0.04 m 处,向ox轴负方向运动(如图).试求 (1)t=1.0 s时,物体所处的位置和所受的力;
2
0.04 π)
3
m
t 1.0 s 代入上式得
x 0.069 m
F kx m 2 x 1.70103 N
A π 3
0.08 0.04 o 0.04 0.08
x/m
第28页/共32页
(2)由起始位置运动到x = -0.04 m处所需要的最短时间.
法一 设由起始位置运动到x= -0.04 m处所需要的最短 时间为t
A cos(t π)
2
o
A
a A 2 cos(t )
高三物理简谐振动PPT课件
简谐振动
1
简谐运动的基本概念 1.定义
物体在受到跟偏离平衡位置的位移大小成正比,并且总 指向平衡位置的回复力的作用下的振动,叫简谐运动。 表达式为:F= -kx
(1)简谐运动的位移必须是指偏离平衡位置的位移。也 就是说,在研究简谐运动时所说的位移的起点都必须在 平衡位置处。
(2)回复力是一种效果力。是振动物体在沿振动方向 上所受的合力。
振 幅
f
微波炉、打夯机、跳板跳水、打秋千…
0 f′
⑵防止共振的有:机床底座、航海、 军队过桥、高层建筑、火车车厢…
共振曲线
10
gk005.2008年高考江苏卷12B. (3) 12.B⑶(选修模块3—4)描述简谐运动特征的公式 是x= Asinωt .自由下落的篮球经地面反弹后上 升又落下.若不考虑空气阻力及在地面反弹时的能 量损失,此运动不是 (填“是”或“不是”)简谐 运动. 解析: 简谐运动的特征公式为x = Asinωt,其中A是振幅; 自由落体由反弹起来的过程中,回复力始终为重力, 恒定不变,与偏离平衡位置的位移不是成正比的, 不符合简谐运动的规律。
T与摆球质量m、振幅A都无关。其中l为摆长,表示从 悬点到摆球质心的距离,要区分摆长和摆线长。
(3)小球在光滑圆弧上的往复滚动,和单摆完全等同. 只要摆角足够小,这个振动就是简谐运动。 这时周期公式中的l应该是圆弧半径R和小 球半径r的差。
(4)秒摆的周期为2秒
9
三、 受迫振动与共振 1.受迫振动 物体在驱动力(即周期性外力)作用下的振动叫受迫振动.
(3)在水平方向上振动的弹簧振子的回复力是弹簧的 弹力;在竖直方向上振动的弹簧振子的回复力是弹簧 弹力和重力的合力。
8
2. 单摆 (1)单摆振动的回复力是重力的切向分力,不能说成是 重力和拉力的合力。在平衡位置振子所受回复力是零,但 合力是向心力,指向悬点,不为零。
1
简谐运动的基本概念 1.定义
物体在受到跟偏离平衡位置的位移大小成正比,并且总 指向平衡位置的回复力的作用下的振动,叫简谐运动。 表达式为:F= -kx
(1)简谐运动的位移必须是指偏离平衡位置的位移。也 就是说,在研究简谐运动时所说的位移的起点都必须在 平衡位置处。
(2)回复力是一种效果力。是振动物体在沿振动方向 上所受的合力。
振 幅
f
微波炉、打夯机、跳板跳水、打秋千…
0 f′
⑵防止共振的有:机床底座、航海、 军队过桥、高层建筑、火车车厢…
共振曲线
10
gk005.2008年高考江苏卷12B. (3) 12.B⑶(选修模块3—4)描述简谐运动特征的公式 是x= Asinωt .自由下落的篮球经地面反弹后上 升又落下.若不考虑空气阻力及在地面反弹时的能 量损失,此运动不是 (填“是”或“不是”)简谐 运动. 解析: 简谐运动的特征公式为x = Asinωt,其中A是振幅; 自由落体由反弹起来的过程中,回复力始终为重力, 恒定不变,与偏离平衡位置的位移不是成正比的, 不符合简谐运动的规律。
T与摆球质量m、振幅A都无关。其中l为摆长,表示从 悬点到摆球质心的距离,要区分摆长和摆线长。
(3)小球在光滑圆弧上的往复滚动,和单摆完全等同. 只要摆角足够小,这个振动就是简谐运动。 这时周期公式中的l应该是圆弧半径R和小 球半径r的差。
(4)秒摆的周期为2秒
9
三、 受迫振动与共振 1.受迫振动 物体在驱动力(即周期性外力)作用下的振动叫受迫振动.
(3)在水平方向上振动的弹簧振子的回复力是弹簧的 弹力;在竖直方向上振动的弹簧振子的回复力是弹簧 弹力和重力的合力。
8
2. 单摆 (1)单摆振动的回复力是重力的切向分力,不能说成是 重力和拉力的合力。在平衡位置振子所受回复力是零,但 合力是向心力,指向悬点,不为零。
最新简谐运动课件-(共28张PPT)课件ppt
②x-------位移:由平衡位置指向振动质点所在位置的有向线段, 是
矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个
力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x大小成正比,且方
A.小球由O向C运动的过程中,加速度越来越大,速 度越来越大
B.小球由C到O运动的过程中,加速度越来越小,速 度越来越大
C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周 期
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位
置开始向右运动,经过1.7s时,振子的运动情况是(B )
频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
思考题:
1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。
2、频率越大,振幅就越大吗?
在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。
矢量 ③ “-”表示回复力与位移的方向相反.
5.简谐运动的特点:
1、简谐振动是最简单、最基本的运动,简谐振动是理想化的振动。 2、回复力与位移成正比而方向相反,总是指向平衡位置。 3、简谐运动是一种理想化的运动,振动过程中无阻力,所以振动
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个
力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x大小成正比,且方
A.小球由O向C运动的过程中,加速度越来越大,速 度越来越大
B.小球由C到O运动的过程中,加速度越来越小,速 度越来越大
C.小球由O到B运动的过程中,要克服弹力做功 D.小球由D点运动到C再返回D,所用的时间是1/4周 期
6、一个弹簧振子的振动周期是0.25s,当振子从平衡位
置开始向右运动,经过1.7s时,振子的运动情况是(B )
频率是表示振动快慢的物理量,频率越大表示 振动越快,频率越小表示振动越慢。
思考题:
1、振幅就是最大位移吗?
振幅是一个标量,指物体偏离平衡位置的最大距离。它没 有负值,也无方向,所以振幅不同于最大位移。
2、频率越大,振幅就越大吗?
在简谐运动中,振幅跟频率或周期无关。在一个稳定的振 动中,物体的振幅是不变的。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。
简谐运动的回复力和能量 课件
5.理想化模型 (1)力的角度:简谐运动所受回复力不考虑摩擦阻力. (2)能量角度:简谐运动没有考虑因克服阻力做功带来 的能量损耗.
一、简谐运动的判断
例1:弹簧下端挂一质量为M的钢球,如右图所示,试证 明此系统在竖直方向上做的机械振动为简谐运动.
证明:设弹簧的劲度系数为k,在弹性限度内把钢球向下 拉一段距离至A点.如图甲所示. 在钢球振动中到达平衡位置O点下方某一点B,此时振 子的位移为x. 在平衡位置时,弹簧伸长x0. 由平衡方程Mg-kx0=0. 在B点F回=Mg-k(x+x0)=-kx. 由于B是振动中的任一位置,可见钢球受 合外力与它的位移的关系符合简谐运动 的受力特点.即该振动为简谐运动.
(4)式中“k”虽是系数,但有单位,其单位由F和x的单 位决定,为N/m. (5)简谐运动中,回复力F=-kx,因x=Asin(ωt+φ).故 F=-kAsin(ωt+φ),可见回复力随时间按正弦规律变 化,简谐运动是一个变加速运动. (6)判断一个振动是否为简谐运动可根据此振动的回复 力是否满足F=-kx来判断.如果一个振动系统,它的回 复力满足F=-kx,则此振动一定为简谐运动.
二、简谐运动的回复力
例2:如右图所示,物体A置于物体B上,一轻弹簧一端固定,另一 端与B相连,在弹性限度范围内,A和B在光滑水平面上往复运 动(不计空气阻力),并保持相对静止.则下列说法正确的是( ) A.A和B均做简谐运动 B.作用在A上的静摩擦力大小与弹簧的形变量成正比 C.B对A的静摩擦力对A做功,而A对B的静摩擦力对B不做功 D.B对A的静摩擦力始终对A做正功,而A对B的静摩擦力对B 做负功
置 的 距 离k为mg .
由简谐运动的特点知最高点离平
衡 位 置 的mg距.k离 也 为
大学物理111简谐振动课件
1. 平衡位置 2. 建立坐标 3.受力分析
弹性力 f kx
4.牛顿运动方程
kx
ma
m
d2 dt
x
2
令 k 2 整理得
m
d 2 x 2 x 0 简谐振动动力学方程
dt 2
解微分方程可得
x A cos(t 0 )
简谐振动运动学方程
二、简谐振动的三个特征量
1.振幅 物体离开平衡位置的最大位移的绝对值 A, 由初始条件决定,描述振动的空间范围。
2.周期 振动状态重复一次所需要的时间,描述振 动的快慢.
Acos[(t T ) 0] Acos(t 0)
T 2π T 2π
1
T
物体在单位时间内发生完全振动的次
数,称振动的频率.
2π 称圆频率(角频率).
k T 2 m 1 k
m
k
2 m
反映了系统的固有特性,分别称为谐振子系统 的固有圆频率、固有周期和固有频率.
圆频率 k 由系统决定,与初始条件无关
m
振幅 反映振动的强弱,由初始条件决定.
由
x Acos t 0 v A sin t 0
x0 Acos0
t=0时 v0 A sin0 可得
A
x02
v02
2
初相位 0 已知初始振动状态,用旋转矢量确定
x0<0 v0<0
x0=0 v0<0
x0>0 v0<0
例6 某简谐振动的振动曲线如图,写出振动方程。 x(cm)
O
t(s)
-1
1
-2
解: 设振动方程为 x A cos(t 0 )
则由振动曲线: A=2 cm
xA
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理得:
d2 x dt 2
k m
x
0
l A
x x
与弹簧振子的动力学方程相同,故质点作简谐振动.
Ft mg ——称回复力.
单摆的动力学方程: md2d(tl2) mg
令
02
g l
d2
dt 2
02
0
单摆作简谐振动
O
FT
OW
3. 扭摆----金属丝和圆盘组成的系统 z
圆盘平衡位置时,OB与x轴重合,当发生小角扭动后释放
金属丝由于扭转弹性对圆盘施加一力矩,圆盘回到平衡
位置时所受力矩为零,但由转动惯性将转至x轴另一侧
回复扭转力矩 Mz c
由刚体定轴转动定律
令
02
c Iz
Iz
d2
dt 2
c
O
x B
y
d2
dt 2
02
0
刚体作简谐振动
0由系统本身的性质所决定.
[例题1] 弹簧下面悬挂物体,不计弹簧质量和阻力, 证明在平衡位置附近的振动是简谐振动. [解] 物体处于平衡位置有 mgkl
若物体在平衡位置处有一x的偏移
根据牛顿第二定律得 mdd2t2xk(xl)mg
§9.1 1 简谐振动基本概念
平衡位置——物体在做往复运动时,在某位置所受的 力(或力矩)等于零,则此位置称平衡位置.
回复力(回复力矩)——若作用于物体的力(或力矩)总与 物体相对于平衡位置的位移(线位移或角位移)成正比, 且力(或力矩)指向(或促使物体返回)平衡位置.则此作 用力(或力矩)称线性回复力(回复力矩).即
Fx x(x是相对原点的位移)
Mz c(角位移)
Fx x(x是相对原点的位移)
Mz c(角位移)
其 中 或 c 是 正 常 数 , 由 材 料 性 质 决 定 .
线性回复力(或力矩)的特征:力 Fx 是质点位移 x的线性 函数,且与位移 x 反向,即促使质点返回平衡位置
简谐振动——物体在线性回复力(或力矩)作用下围绕 平衡位置的运动叫简谐振动.
d2 dt
x
2
k m
x
0
简谐振动的动力学定义:
若物体运动的动力方程可表示为
d2 dt
x
2
02
x
0
(9.1.5)
且其中0 是由系统本身的性质所决定的,则此物体做
简谐振动. (9.1.5)称为简谐振动的动力学方程
2. 单摆 如图,铅直面内不计空气阻力,
绳不可伸长.,质点所受切向力为:
Ft msgin
很小时, sin
§9.1.2 简谐振动例子
1. 弹簧振子的振动 弹簧振子——轻弹簧与物
体m组成的系统.
物体只受弹性力作用
Fx kx k——劲度系数. 由牛顿第二定律有
m
d2 x dt 2
kx
或
d2 x dt 2
k m
x
0
m
=0
Ox
F
A
v
x -A
F
vF=0 x=0令源自2 0k m上式可写作:
d2 dt
x
2
02
x
0
0 由振动系统本身的性质决定.
第九章 振动
狭义——物体在平衡位置附近往返运动称为振动,或是
机械振动(如琴弦、锣鼓、机械钟表的摆轮等) 任何一个物理量在某一数值附近作周期性的变化
包括机械振动和电磁振动(如交流电路中的电流与电压)
•不同的振动的数学描述形式是相同的
研究内容:
• 振动物体可以是质点也可是刚体,本章是利用质点力 学和刚体力学的运动规律来研究振动这一特殊而又普遍 的运动形式
• 本章主要讨论简谐振动及其合成,简谐振动可以用单 一频率的简谐函数来表述,简要介绍阻尼振动和受迫振动
振动的分类 :
按振动规律:简谐、非简谐、随机振动. 按振动原因:自由、受迫、自激、阻尼. 按振动位移:角振动、线振动. 简谐振动是最简单、最基本的振动. 复杂的振动可分解为一些简谐振动的叠加.
§9.1简谐振动的动力学特征