阿波罗尼斯圆性质及其应用 1
阿波罗尼斯圆及其直接应用 (解析版)
1专题一:阿波罗尼斯圆介绍及其直接应用主干知识:1、阿波罗尼斯圆的定义在平面上给定两点,A B ,设P 点在同一平面上且满足PAPBλ=,当0λ>且1λ≠时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(1λ=时P 点的轨迹是线段AB 的中垂线)2、阿波罗尼斯圆的方程【定理1】设()()()1,,,0,,0P x y A a B a -.若PAPBλ=(0λ>且1λ≠),则点P 的轨迹方程是2222221211a x a y λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,其轨迹是以221,01a λλ⎛⎫+ ⎪-⎝⎭为圆心,半径为221a r λλ=-的圆.例题讲解例1.(2022·河北盐山中学高二期中)已知两定点()2,1A -,()2,1B -,如果动点P满足PA =,则点P 的轨迹所包围的图形的面积等于___________.【分析】设(,)P x y ,根据题设条件,结合两点距离公式列方程并整理即可得P 的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设(,)P x y ,由题设得:2222(2)(1)2[(2)(1)]x y x y ++-=-++,∴22(6)(3)40x y -++=,故P的圆,∴图形的面积等于40π.故答案为:40π例2.(2022四川涪陵月考)若ABC ∆满足条件4, 2 AB AC BC ==,则ABC ∆面积的最大值为__________.【分析】设BC x =,则2AC x =,由余弦定理得出cos B ,根据三角形任意两边之和大于第三边得出x 的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC x =,则2AC x =,由余弦定理可得22216(2)163cos 248x x x B x x+--==⨯⨯由三角形任意两边之和大于第三边得2442x x x x +>⎧⎨+>⎩,解得443x <<,即216169x <<14sin 222ABCS x B ∆∴=⋅⋅⋅===当2809x =时,ABC ∆面积取最大值163故答案为:163答案第2页,共3页例3.在平面直角坐标xOy 中,已知点()()1,0,4,0A B ,若直线0x y m -+=上存在点P 使得12PA PB =,则实数m 的取值范围是_______.【分析】根据12PA PB =得出点P 的轨迹方程,又点P 在直线0x y m -+=上,则点P 的轨迹与直线必须有公共点,进而解决问题.【详解】解:设(,)P x y则PA PB ==因为12PA PB ==,同时平方,化简得224x y +=,故点P 的轨迹为圆心在(0,0),半径2为的圆,又点P 在直线0x y m -+=上,故圆224x y +=与直线0x y m -+=必须有公共点,2≤,解得m -≤例4.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P满足PA PB=22PA PB +的最大值为()A.16+B.8+C.7+D.3【分析】设()()1,0,1,0A B -,(),P x y,由PA PB=P 的轨迹为以()2,0为圆心,半()222221PA PB x y +=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设()()1,0,1,0A B -,(),P x y ,因为PA PB=,即()2223x y-+=,所以点P 的轨迹为以()2,0因为()()()222222221121x y x y x y PA PB =++++-+=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,所以()(222max27x y+=+=+,所以()22max2116x y ⎡⎤++=+⎣⎦22PA PB +的最大值为16+3故选:A.例5.(2022四川·成都外国语学校高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB=,则实数m 的取值范围是()A.22⎣⎦B.542⎡⎢⎣⎦C.2⎛ ⎝⎦D.2⎥⎣⎦【分析】设(),P x y ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设(),P x y ,因为点()1,0A -,()2,0B ,2PA PB =,=22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得:22m ≤≤,所以实数m 的取值范围是2⎥⎣⎦,。
阿波罗尼斯圆性质及其应用探究
阿波罗尼斯圆性质及其应用探究背景展示 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一。
1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,λ=PBPA当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1=λ时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明..角坐标系中点为原点建立平面直轴,所在的直线为证明:以AB x AB ()()(),不妨设y x P a B a A ,,0,,0,-()()22222222,,,,PA PA PB PA PB x a y x a y PBλλλ⎡⎤=∴==∴++=-+⎣⎦()()()()0112112222222=-++--+-∴a ax y x λλλλ()()2222222222221211,01112⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-∴=-+-+-+∴λλλλλλλa y a x a ax y x λλλλλ=⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-∴PB PA a y a x 的解都满足又以上过程均可逆,2222221211 .120,11222为半径的圆上运动为圆心,以在以综上,动点-=⎪⎪⎭⎫ ⎝⎛-+λλλλa r a C P 3.阿波罗尼斯圆的性质.性质1点A 、点B 在圆心C 的同侧;当1>λ时,点B 在圆C 内,点A 在圆C 外; 当10<<λ时,点A 在圆C 内,点B 在圆C 外。
().,11,012111122222的右侧当然也在点的右侧,在点点所示,时,如图证明:当A B C a a a a a ∴>-+∴>-=--+>λλλλλλ.,1212112222222的内部在圆点的关系与圆、下面讨论点C B a a a a C A B ∴⎪⎭⎫⎝⎛-<⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-λλλλλ.,12121122222222的外部在圆点C A a a a a ∴⎪⎭⎫ ⎝⎛->⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+--λλλλλλ()().,11,01211210222222的左侧当然也在点的左侧,在点点所示,时,如图当B A C a a a a a ∴-<-+∴<-=---+<<λλλλλλλ .,1212112222222的外部在圆点的关系与圆、下面讨论点C B a a a a C A B ∴⎪⎭⎫⎝⎛->⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-λλλλλ .,12121122222222的内部在圆点C A a a a a ∴⎪⎭⎫⎝⎛-<⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+--λλλλλλ.的同侧在圆心、综上可得定点C B A当1>λ时,点B 在圆C 内,点A 在圆C 外; 当10<<λ时,点A 在圆C 内,点B 在圆C 外。
阿波罗尼斯圆及其应用
阿波罗尼斯圆及其应用数学理论1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,λ=PBPA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明及相关性质定理:B A ,为两已知点,Q P ,分别为线段AB 的定比为)1(≠λλ的内外分点,则以PQ 为直径的圆O 上任意点到B A ,两点的距离之比为.λ证 (以1>λ为例) 设λ===QBAQ PB AP a AB ,,则 1,1,1,1-=-=+=+=λλλλλλa BQ a AQ a PB a AP . 由相交弦定理及勾股定理知,1,1222222222-=+=-=⋅=λλλa BC AB AC a BQ PB BC 于是,1,122-=-=λλλa AC a BC .λ=BC AC 而C Q P ,,同时在到B A ,两点距离之比等于λ的曲线(圆)上,不共线的三点所确定的圆是唯一的,因此,圆O 上任意一点到B A ,两点的距离之比恒为.λ性质1.当1>λ时,点B 在圆O 内,点A 在圆O 外;当10<<λ时,点A 在圆O 内,点B 在圆O 外。
性质2.因AQ AP AC ⋅=2,过AC 是圆O 的一条切线。
若已知圆O 及圆O 外一点A ,可以作出与之对应的点,B 反之亦然。
性质3.所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,面积为.122⎪⎭⎫ ⎝⎛-λλπa 性质4.过点A 作圆O 的切线C AC (为切点),则CQ CP ,分别为ACB ∠的内、外角平分线。
性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF ∠ 数学应用1.(03北京春季)设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到点A 的距离与到点B 的距离之比为定值),0(>a a 求点P 的轨迹.2.(05江苏)圆1O 和圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 和圆2O 的切线N M PN PM ,(,分别为切点),使得PN PM 2=,试建立适当坐标系,求动点P 的轨迹方程.3.(06四川)已知两定点).0,1(),0,2(B A -如果动点P 满足PB PA 2=,则点P 的轨迹所围成的图形的面积是________________.4.(08江苏)满足条件BC AC AB 2,2==的ABC ∆面积的最大值是___________.5.在等腰ABC ∆中,BD AC AB ,=是腰AC 上的中线,且,3=BD 则ABC ∆面积的最大值是___________.6.已知P A ),0,2(-是圆16)4(:22=++y x C 上任意一点,问在平面上是否存在一点B ,使得?21=PB PA 若存在,求出点B 坐标;若不存在,说明理由.变式:已知圆16)4(:22=++y x C ,问在x 轴上是否存在点A 和点B ,使得对于圆C 上任意一点P ,都有?21=PB PA 若存在,求出B A ,坐标;若不存在,说明理由.7.在ABC ∆中,AD AC AB ,2=是A ∠的平分线,且.kAC AD =(1)求k的取值范围;的面积为1,求k为何值时,BC最短. (2)若ABCWelcome To Download !!!欢迎您的下载,资料仅供参考!。
阿波罗尼斯圆的性质及其应用
阿波罗尼斯圆的性质及其应用
阿波罗尼斯圆是椭圆的一种,它的方程如下: $$x^2+y^2=a^2$$ 阿波罗尼斯圆的性质: 1. 阿波罗尼斯圆的中心位于原点,半径为a。
2. 阿波罗尼斯圆的对称轴是x轴和y轴。
3. 阿波罗尼斯圆的曲率半径是常数,其总是等于a。
4. 阿波罗尼斯圆的弦长是a的函数。
5. 阿波罗尼斯圆的周长是2πa。
阿波罗尼斯圆的应用: 1. 在物理学中,阿波罗尼斯圆可以用来描述圆形物体的运动,如月球运行围绕太阳的轨道就是一个阿波罗尼斯圆。
2. 在工程学中,阿波罗尼斯圆可以用来设计滑动平台、圆型工作台等。
3. 在数学中,阿波罗尼斯圆可以用来解决各种几何问题,如求圆的相关面积、弦长、面积等。
阿波罗尼斯圆的轨迹与周期性
阿波罗尼斯圆的轨迹与周期性阿波罗尼斯圆是一种特殊的曲线,其轨迹和周期性引起了众多数学家和物理学家的关注。
它有着许多有趣的性质和应用,本文将对阿波罗尼斯圆的轨迹与周期性进行探讨和阐述。
一、阿波罗尼斯圆的定义及性质阿波罗尼斯圆是以两个定点F1和F2以及一个固定长度d为条件而定义的。
在平面上,对于任意一点P到两个定点F1和F2的距离之差等于d。
换句话说,它满足PF2 - PF1 = d的条件。
阿波罗尼斯圆的轨迹是所有满足这个条件的点P的集合。
通过分析可以得出,当d的取值不同时,阿波罗尼斯圆会呈现出不同的形状。
具体而言,当d大于两个定点之间的距离时,阿波罗尼斯圆是一个封闭的椭圆。
当d等于这一距离时,阿波罗尼斯圆会变成一个抛物线。
当d小于这一距离时,阿波罗尼斯圆则是一个开放的双曲线。
二、阿波罗尼斯圆的周期性除了其特殊的轨迹,阿波罗尼斯圆还具有周期性的性质。
对于任意一点P处的角度θ,通过F1P和F2P可以确定一个界定角度ω。
当点P 绕阿波罗尼斯圆进行旋转时,角度θ和界定角度ω之间的关系始终保持不变。
这种周期性的性质可以通过数学的分析来证明。
首先,我们可以得出F1P + F2P = 2a,其中a表示椭圆的长轴长度。
然后,可以得出F1P - F2P = d。
通过将这两个等式相除,我们可以得到tan(θ/2) = d / 2a。
由此可见,角度θ和点P相对于阿波罗尼斯圆的位置有着确定的关系,从而证明了其周期性。
三、阿波罗尼斯圆的应用阿波罗尼斯圆作为一种特殊的曲线,具有广泛的应用价值。
首先,它在天文学领域中有着重要的地位。
阿波罗尼斯圆可以描述行星和卫星的轨道运动,帮助人们理解和预测天体的运动规律。
此外,阿波罗尼斯圆还可以应用于电磁波的研究。
在无线通信中,信号的传播路径可以通过阿波罗尼斯圆来模拟,从而可以优化信号传输的效果,提高通信质量。
在工程领域,阿波罗尼斯圆也有着一定的应用价值。
例如,在建筑设计中,可以通过阿波罗尼斯圆的轨迹来确定建筑物中的自然采光方案,实现光线的最佳分布。
微点1 阿波罗尼斯圆介绍及其直接应用(学生版)
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用【微点综述】动点的轨迹问题是高考中的一个热点和重点,尤其是阿波罗尼斯圆在高考中频频出现.处理此类问题的关键是通过建立直角坐标系,寻找动点满足的条件,得出动点的轨迹是一个定圆,从而把问题转化为直线和圆、圆和圆的位置关系问题,并在解决问题的过程中感悟转化与化归、化繁为简的数学思想方法.阿波罗尼斯(Apollonius 约公元前262~192),古希腊数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠.阿波罗尼斯年青时到亚历山大城跟随欧几里得的后继者学习,和当时的大数学家合作研究.他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书中,阿波罗尼斯圆是他的研究成果之一.1、阿波罗尼斯圆的定义在平面上给定两点,A B ,设P 点在同一平面上且满足PAPBλ=,当0λ>且1λ≠时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(1λ=时P 点的轨迹是线段AB 的中垂线)2、阿波罗尼斯圆的证明【定理1】设()()()1,,,0,,0P x y A a B a -.若PAPBλ=(0λ>且1λ≠),则点P 的轨迹方程是2222221211a x a y λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,其轨迹是以221,01a λλ⎛⎫+ ⎪-⎝⎭为圆心,半径为221a r λλ=-的圆.证明:由PA PB λ=及两点间距离公式,可得()()22222x a y x a y λ⎡⎤++=-+⎣⎦,化简可得()()()()2222222112110x y ax a λλλλ-+-+++-=①,(1)当1λ=时,得0x =,此时动点的轨迹是线段AB 的垂直平分线;(2)当1λ≠时,方程①两边都除以21λ-得()222222101a x x y a λλ++++=-,化为标准形式即为:2222221211a x a y λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,∴点P 的轨迹方程是以221,01a λλ⎛⎫+ ⎪-⎝⎭为圆心,半径为221a r λλ=-的圆.图①图②图③阿波罗尼斯圆的另一种形式:【定理2】,A B 为两已知点,,M N 分别为线段AB 的定比为()1λλ≠的内外分点,则以MN 为直径的圆C 上任意点P 到,A B 两点的距离之比为λ.证明:以1λ>为例.如图②,设2AB a =,AM ANMB NBλ==,则222,2111a a aAM BM a λλλλλ==-=+++,222,2111a a aAN BN a λλλλλ==-=---.过B 作AB 的垂线圆C 交于,Q R 两点,由相交弦定理及勾股定理得222 22222244,11a a QB MB BN QA AB QBλλλ=⋅==+=--,于是,QAQB QAQBλ∴=.,,M Q N同时在到,A B两点距离之比等于λ的圆上,而不共线的三点所确定的圆是唯一的,∴圆C上任意一点P到,A B两点的距离之比恒为λ.同理可证01λ<<的情形.3、阿波罗尼斯圆的相关性质由上面定理2的证明可得如下的性质:性质1:当1λ>时,点B在圆C内,点A在圆C外;当01λ<<时,点A在圆C内,点B在圆C外.性质2:因2AQ AM AN=⋅,故AQ是圆C的一条切线.若已知圆C及圆C外一点A,可以作出与之对应的点B,反之亦然.性质3:所作出的阿波罗尼斯圆的直径为241aMNλλ=-,面积为()222241aλλπ-.性质4:过点A作圆C的切线AQ(Q为切点),则,QM QN分别为AQB∠的内、外角平分线.性质5:阿波罗尼斯圆的直径两端是按比例内分AB和外分AB所得的两个分点,如图所示,M是AB的内分点,N是AB的外分点,此时必有PM平分APB∠,PN平分APB∠的外角.证明:如图①,由已知可得PA MA NAPB MB NBλ===(0λ>且1λ≠),PAMPBMS MAS MBλ∆∆==,又11sinsin,sin,22sinPAM PBMPA PM APMS PA PM APM S PB PM BPMPB PM BPMλ∆∆⋅∠=⋅∠=⋅∠∴=⋅∠,sin sin,,APM BPM APM BPM∴∠=∠∴∠=∠∴PM平分APB∠.由等角的余角相等可得BPN DPN∠=∠,PN∴平分APB∠的外角.性质6:过点B作圆C不与QR重合的弦EF,则AB平分EAF∠.证明:如图④,连结,ME MF,由已知,.ABEABFSFA EA EB EA EBFB EB FB FA S FBλ∆∆==∴==(0λ>且1λ≠),又11sinsin,sin,22sinABE ABFAB AE BAE EB AES AB AE BAE S AB AF BAFAB AF BAF FB AF ∆∆⋅∠=⋅∠=⋅∠∴==⋅∠,sin sin,,BAE BAF BAE BAF AB∴∠=∠∴∠=∠∴平分EAF∠.sin sin,,BAE BAF BAE BAF AB∴∠=∠∴∠=∠∴平分EAF∠.【典例刨析】例1.(2022·河北盐山中学高二期中)1.已知两定点()2,1A -,()2,1B -,如果动点P 满足PA =,则点P 的轨迹所包围的图形的面积等于___________.例2.(2022四川涪陵月考)2.若ABC ∆满足条件4, 2 AB AC BC ==,则ABC ∆面积的最大值为__________.3.已知圆O :229x y +=,点()5,0B -,在直线OB 上存在定点A (不同于点B ),满足对于圆O 上任意一点P ,都有PA PB 为一常数,试求所有满足条件的点A 的坐标,并求PAPB.4.在平面直角坐标xOy 中,已知点()()1,0,4,0A B ,若直线0x y m -+=上存在点P 使得12PA PB =,则实数m 的取值范围是_______.5.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P 满足PA PB=,则22PA PB +的最大值为()A .16+B .8+C .7+D .3例6.(2022四川·成都外国语学校高二月考)6.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是()A .⎣⎦B .542⎡⎢⎣⎦C .2⎛ ⎝⎦D .22⎤⎢⎥⎣⎦【针对训练】7.在平面直角坐标系xOy 中,已知圆22:1O x y +=,()221:44-+=O x y ,动点P 在直线0-=x b 上,过P 点分别作圆1,O O 的切线,切点分别为,A B ,若满足2PB PA =的点P 有且只有两个,则实数b 的取值范围是________.8.已知,A B 是平面上两个定点,平面上的动点,C D 满足||||CA DA CB DBm ==,若对于任意的3m ≥,不等式k CD AB ≤恒成立,则实数k 的最小值为______.9.已知点(0,1)A ,(1,0)B ,(,0)C t ,点D 是直线AC 上的动点,若||2||AD BD ≤恒成立,则最小正整数t =__________.10.在平面直角坐标系xOy 中,已知圆O :221x y +=,圆1O :22(4)4x y ++=,动点P 在直线l :0x b -+=上(0b <),过P 分别作圆O ,1O 的切线,切点分别为A ,B ,若满足2PB PA =的点P 有且只有一个,则实数b 的值为______.11.在平面直角坐标系xOy 中,,M N 是两定点,点P 是圆O :221x y +=上任意一点,满足:2PM PN =,则MN 的长为.(2022辽宁·高二期中)12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A ,B 的距离之比为定值(0λλ>且1)λ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,(2,0)A -,(4,0)B ,动点P 满足||1||2PA PB =.设点P 的轨迹为1C .(1)求曲线1C 的方程;(2)若曲线1C 和2222:(4)(6)(0)C x y r r -+-=> 无公共点,求r 的取值范围.。
(完整版)阿波罗尼斯圆及其应用
阿波罗尼斯圆及其应用数学理论1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1=λ时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明及相关性质定理:B A ,为两已知点,Q P ,分别为线段AB 的定比为)1(≠λλ的内外分点,则以PQ 为直径的圆O 上任意点到B A ,两点的距离之比为.λ证 (以1>λ为例)设λ===QBAQ PB AP a AB ,,则 1,1,1,1-=-=+=+=λλλλλλa BQ a AQ a PB a AP . 由相交弦定理及勾股定理知,1,1222222222-=+=-=⋅=λλλa BC AB AC a BQ PB BC 于是,1,122-=-=λλλa AC aBC .λ=BCAC 而C Q P ,,同时在到B A ,两点距离之比等于λ的曲线(圆)上,不共线的三点所确定的圆是唯一的,因此,圆O 上任意一点到B A ,两点的距离之比恒为.λ性质1.当1>λ时,点B 在圆O 内,点A 在圆O 外;当10<<λ时,点A 在圆O 内,点B 在圆O 外。
性质2.因AQ AP AC ⋅=2,过AC 是圆O 的一条切线。
若已知圆O 及圆O 外一点A ,可以作出与之对应的点,B 反之亦然。
性质3.所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,面积为.122⎪⎭⎫ ⎝⎛-λλπa 性质4.过点A 作圆O 的切线C AC (为切点),则CQ CP ,分别为ACB ∠的内、外角平分线。
性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF ∠数学应用1.(03北京春季)设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到点A 的距离与到点B 的距离之比为定值),0(>a a 求点P 的轨迹.2.(05江苏)圆1O 和圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 和圆2O 的切线N M PN PM ,(,分别为切点),使得PN PM 2=,试建立适当坐标系,求动点P 的轨迹方程.3.(06四川)已知两定点).0,1(),0,2(B A -如果动点P 满足PB PA 2=,则点P 的轨迹所围成的图形的面积是________________.4.(08江苏)满足条件BC AC AB 2,2==的ABC ∆面积的最大值是___________.5.在等腰ABC ∆中,BD AC AB ,=是腰AC 上的中线,且,3=BD 则ABC ∆面积的最大值是___________.6.已知P A ),0,2(-是圆16)4(:22=++y x C 上任意一点,问在平面上是否存在一点B ,使得21=PB PA 若存在,求出点B 坐标;若不存在,说明理由.变式:已知圆16)4(:22=++y x C ,问在x 轴上是否存在点A 和点B ,使得对于圆C 上任意一点P ,都有?21=PB PA 若存在,求出B A ,坐标;若不存在,说明理由.7.在ABC ∆中,AD AC AB ,2=是A ∠的平分线,且.kAC AD =(1)求k 的取值范围;(2)若ABC ∆的面积为1,求k 为何值时,BC 最短.。
阿波罗尼斯圆及其应用
阿波罗尼斯圆及其应用内江六中 陈廷勇【定义1】阿波罗尼斯圆:到平面上两定点距离比等于定值的动点轨迹为直线或圆(定值为1时是直线,定值不是1时为圆).【定义2】已知平面上两点A、B ,则所有满足P APB =k (k ≠1)的点P 的轨迹是一个以定比k 内分和外分定线段AB 的两个分点M 、N 的连线为直径的圆. 下面证明k >1的情况.〖证明〗〔几何法〕连接PM ,PN ,在直线AP 上取点C ,D ,使PC =PD =PB (如图),连接BC ,BD .则∠PBC =∠PCB ,∠PBD =∠PDB .∵AM MB =P A PB =APPC,∴MP ∥BC ,∴∠APM =∠ACB ,∠BPM =∠PBC . ∴∠APM =∠BPM =12∠APB .同理,∠BPN =∠CPN =12∠BPC .∴∠BPM +∠BPN =12∠APB +12∠BPC =π2.∴点P 的轨迹是以MN 为直径的圆.证毕.AB 的中垂线为y 轴建立平面直角坐标系. 设AB =2c ,P (x ,y ),则A (-c ,0),B (c ,0).由|P A ||PB |=k (k >1),得(x +c )2+y 2(x -c )2+y 2=k ⇒(k 2-1)x 2+(k 2-1)y 2-2c (k 2+1)x +c 2(k 2-1)=0⇒[x -c (k 2+1)k 2-1]2+y 2=(2kc k 2-1)2.∴点P 的轨迹是以点(c (k 2+1)k 2-1,0)为圆心,以2kck 2-1为半径的圆.【定义3】圆的反演点:已知⊙O 的半径为r ,从圆心O 出发任作一射线,在射线上任取两点A 、B ,若OA •OB =r 2,则称A ,B 是关于⊙O 的反演点.【方法1】圆的反演点的获取:①若A 在⊙O 外,过A 作⊙O 的两条切线,两切点的连线与OA 的交点B 就是点A 的反演点;②若A 在⊙O 内,连接OA ,过A 作OA 的垂线与圆交点处的两切线的交点B 即为点A 的反演点.【性质1】已知平面上两点A 、B ,则所有满足P APB =k (k ≠1)的点P 的轨迹是一个以定比k 内分和外分定线段AB 的两个分点M 、N 的连线为直径的圆.①当k >1时,点A 在圆外,点B 在圆内;②当0<k <1时,点A 在圆内,点B 在圆外.【性质2】已知⊙O 的直径为MN =2r ,在直线MN 上有两点A ,B 满足OA •OB =r 2,则⊙O 是以A ,B 为定点,MA MB 或NANB为比值的阿波罗尼斯圆,反之也成立.〖证明〗MA MB =NA NB ⇔OA -OM OM -OB =OA +ON OB +ON ⇔OA -r r -OB =OA +rOB +r⇔(OA -r )(OB +r )=(OA +r )(r -OB )⇔OA •OB =r 2.证毕.【性质3】MN 是⊙O 的一条直径,A 是直线MN 上异于O 的一定点,过A 任作一条异于MN 的直线交⊙O 于P ,Q 两点,点P 关于直线的对称点为P ′,直线P ′Q 与MN 交于B ,则A ,B 是⊙O 的一对反演点.特别地,过A 作⊙O 的两条切线,两切点分别为P ,Q ,连接PQ 与MN 相交于点B ,则A ,B 是⊙O 的一对反演点,过B 垂直于OA 的直线l 称为点A 对⊙O 的极线,A 称为l 的极点.〖证明〗连接QO 交⊙O 于R ,连接P ′R ,则∠QP ′R =90°,及P ,Q ,P ′,R 四点共圆. ∴∠QPP ′=∠QRP ′.又∠P AD +∠APD =∠P ′QR +∠QRP ′=90°, ∴∠OAQ =∠OQB ,又∠AOQ =∠BOQ ,∴ΔOAQ ∽ΔOQB .∴OA OQ =OQOBOA •OB =r 2.证毕. 【性质4】已知B ,A 是过半径为r 的⊙O 的圆心直线上一内一外两点(圆心除外),PQ 是过B 的任意一弦,且∠P AB =∠QAB ,则A ,B 是⊙O 的一对反演点.〖证明〗只考虑MN 不垂直AB 和重合的情况. 设AQ 与⊙O 的另一交点为P ′,∵∠P AB =∠QAB ,由圆的对称性知,P ,P ′关于AB 对称,∴PP ′⊥AB . 由性质2的证明方法,可得OA •OB =r 2.证毕.【性质5】MN 是以A ,B 为反演点的阿波罗尼斯圆在直线AB 上直径,P 是圆上异于M ,N 一点,则PM ,PN 分别为∠APB 内角平分线和外角平分线.〖证明〗在直线AP 上取点C ,D ,使PC =PD =PB (如图),连接BC ,BD . 则∠PBC =∠PCB ,∠PBD =∠PDB .∵MA MB =P A PB =P APC,∴MP ∥BC ,∴∠APM =∠ACB ,∠BPM =∠PBC . ∴∠APM =∠BPM .∴PM 是∠APB 的平分线. 同理,PN 是∠APB 的外角平分线.证毕.【性质6】过⊙O 外一点A 作其切线AP ,AQ ,OA 与⊙O 和PQ 分别交于I ,B ,MN 是过B 的任意弦,则I 为ΔAMN 的内心.〖证明〗连接OP ,∵AP ,AQ 是⊙O 的切线,∴PQ ⊥OA ,OP ⊥AP . ∴OA •OB =r 2,∴A ,B 是⊙O 的一对反演点.连接MI ,NI ,由性质5得,MI ,NI 分别为∠AMN , ∠ANM 的平分线.故I 为ΔAMN 的内心.【性质7】已知A ,B 是半径为r 的⊙O 的一对反演点(A 在⊙O 外),MN 是过B 的任意弦,则AB 平分∠MAN .〖证明〗同性质6的证明方法.【性质8】已知A ,B 是半径为r 的⊙O 的一对反演点(A 在⊙O 外),且AB =m ,⊙O 上任意一点P 到A ,B 的距离之比为λ,则m λ+1+mλ-1=2r .〖证明〗设MB =x ,NB =y ,则x +y =2r .由MA MB =NA NB =λ,得m -x x =m +y y =λ⇒x =m λ+1,y =m λ-1.∴m λ+1+mλ-1=2r . 〖注〗若A 在⊙O 内,则λm 1+λ+λm 1-λ=2r .【性质9】将通过伸缩变换为椭圆,可得如下结论:设A 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴MN 上异于中心O 的一个定点,过点A 任作一条异于MN 的直线交椭圆O 于P ,Q 两点,点P 关于直线MN 的对称点为P ′,直线P ′Q 与MN 交于B ,则OA •OB =a 2.【题型】①已知两条线段长度之比为定值;②过某动点向两定圆作切线,若切线张角相等;③向量的定比分点公式结合角平分线;④线段的倍数转化.〖注〗问题主要围绕两个反演点坐标,阿氏圆方程,阿氏圆上点到两反演点距离比四个方面设置,其中测度主要涉及两个反演点间距离,阿氏圆的半径,阿氏圆上点到两反演点距离比.1.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k >0且k ≠1)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 距离之比满足:P A =3PB ,当P 、A 、B 三点不共线时,ΔP AB 面积的最大值是( ) A .2 2 B .2 C . 3 D . 2 〖解析〗〔法一〕设A (-1,0),B (-1,0),P (x ,y ),则由P A =3PB ,得(x +1)2+y 2=3•(x -1)2+y 2⇒(x -2)2+y 2=3. 当点P 到AB 的距离最大,即等于3时,ΔP AB 的面积取得最大. ∴(S ΔPAB )max =12×|AB |×r =3.故选C .〔法二〕设以A ,B 为反演点的阿氏圆的半径为r ,则2r =23+1+23-1=23⇒r =3.∴(S ΔPAB )max =12×|AB |×r =3.故选C .2.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论: ①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |=2. 其中正确结论的序号是( )A .①②B .①③C .②③D .①②③〖解析〗设⊙C 的半径为r ∴⊙C :(x -1)2+(y -2)2=2. 令x =0,得A (2-1,0),B (2+1,0).∴|OA |=2-1,|OB |=2+1. ∴|OA |•|OB |=1=r O 2,∴A ,B 是⊙O 的一对反演点. ∵M ,N 是⊙O 上点,∴|NA ||NB |=|MA ||MB |.故①正确.设|NB ||NA |=k ,则由|AB |k +1+|AB |k -1=2r O ,得2k +1+2k -1=2⇒k =2+1. ∴|MB ||MA |=|NB ||NA |=2+1,|MA ||MB |=|NA ||NB |=12+1=2-1.∴|NB ||NA |-|MA ||MB |=2,|NB ||NA |+|MA ||MB |=22.故选A . 3.设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到点A 的距离与到点B 的距离之比为定值a (a >0),求点P 的轨迹.〖解析〗设P (x ,y ),由|P A ||PB |=a (a >0),得(x +c )2+y 2(x -c )2+y 2=a⇒(a 2-1)x 2+(a 2-1)y 2-2c (a 2+1)x +c 2(a 2-1)=0.当a =1时,方程化为x =0;当a ≠1时,方程化为[x -c (a 2+1)a 2-1]2+y 2=(2aca 2-1)2.∴当a =1时,点P 的轨迹为y 轴;当a ≠1时,点P 的轨迹是以点(c (a 2+1)a 2-1,0)为圆心,以2ac|a 2-1|为半径的圆.4.在平面直角坐标系xOy 中,设圆C 的半径为1,圆心在直线l :y =2x -4上.(1)若圆心C 也在直线y =x -1上,过点B (2,4)作圆C 的切线,求切线的方程;(2)若圆心C 的横坐标为a ,已知点A (0,3),若圆C 上存在点M ,使MA =2MO ,求a 的取值范围.〖解析〗(1)解⎩⎪⎨⎪⎧y =2x -4y =x -1,得⎩⎪⎨⎪⎧x =3y =2,∴⊙C 的圆心为C (3,2),半径r =1. ①当切线斜率不存在时,切线方程为x =2,满足题意.②当切线斜率存在时,设切线方程为y -4=k (x -2),即kx -y -2k +4=0, 则|3k -2-2k +4|k 2+1=1⇒k =-34.此时切线方程为3x +4y -22=0.综上,所求切线方程为x =2或3x +4y -22=0.(2)设M (x ,y ),则由MA =2MO ,得x 2+(y -3)2=2x 2+y 2,即x 2+(y +1)2=4. 记⊙D :x 2+(y +1)2=4,则D (0,-1),r D =2.又M 在⊙C 上,∴|r -r D |⩽|CD |⩽ r +r D ⇔1⩽|CD |⩽3. 又C (a ,2a -4),∴1⩽a 2+(2a -3)2⩽3⇒0⩽a ⩽125.【注】∵MA =2MO ,∴点M 的轨迹是以A ,O 为反演点的圆,且圆的圆心在AO 的延长线上.其半径r 满足:2r =32+1+32-1⇒r =2.设圆的圆心为D (0,b )(b <0),则AD →=(0,b -3),OD →=(0,b ).由AD →•OD →=r 2,得b (b -3)=4⇒b =-1或b =4.∴⊙D :x 2+(y +1)2=4.5.如图,圆C :x 2+y 2-(1+a )x -ay +a =0. (1)若圆C 与x 轴相切,求圆C 的方程;(2)已知a >1,圆C 与x 轴相交于两点M ,N (点M 在点N 的左侧),过点M 任作一条直线与圆O :x 2+y 2=4相交于两点A ,B ,问:是否存在实数a ,使得∠ANM =∠BNM ?〖解析〗(1)∵⊙C :(x -a +12)2+(y -a 2)2=2a 2-2a +14,∴C (a +12,),r =2a 2-2a +12.∵⊙C 与x 轴相切,∴|a |2=2a 2-2a +12⇒a =1.∴⊙C :(x -1)2+(y -12)2=14.(2)令y =0,得x 2-(a +1)x +a =0⇒x =1或x =a (a >1).∴M (1,0),N (a ,0).假设存在实数a ,使得∠ANM =∠BNM . ①当直线AB 不重合于x 轴时,设l AB :x =ty +1,A (ty 1+1,y 1),B (ty 2+1,y 2),则由⎩⎪⎨⎪⎧x =ty +1x 2+y 2=4,得(t 2+1)y 2+2ty -3=0.∴y 1+y 2=-2t t 2+1,y 1y 2=-3t 2+1.∵∠ANM =∠BNM ,∴k NA +k NB =0⇒y 1ty 1+1-a +y 2ty 2+1-a =0⇒2ty 1y 2+(1-a )(y 1+y 2)=0⇒2t (a -4)t 2+1=0.又t ∈R ,∴a =4.②当直线AB 重合于x 轴时,恒有∠ANM =∠BNM . 综上,存在实数a =4,使得∠ANM =∠BNM .【注】令y =0,得x 2-(a +1)x +a =0⇒x =1或x =a (a >1).∴M (1,0),N (a ,0). ∵∠ANM =∠BNM ,∴M ,N 是⊙O 的一对反演点.∴OM •ON =r 2⇒a =4. 故存在实数a =4,使得∠ANM =∠BNM .6.已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0. (1)求直线l 所过定点A 的坐标.(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长. (3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.〖解析〗(1)∵l :(3m +1)x +(1-m )y -4=0⇔(3x -y )m +(x +y -4)=0, 令⎩⎪⎨⎪⎧3x -y =0x +y -4=0,得⎩⎪⎨⎪⎧x =1y =3.∴l 过定点A (1,3). (2)由平面几何知识知,当l ⊥AC 时,l 被⊙C 截得弦长最短.由题有C (0,4),r =2,∴k AC =-1,∴k l =1⇒3m +1m -1=1⇒m =-1.此时,C 到l 的距离为d =|AC |=2.∴最短弦长为2r 2-d 2=22. (3)由题知,l MC :y =4.假设存在定点N (t ,4)满足题意.设P (x ,y ),则|PM |2|PN |2=(x +3)2+(y -4)2(x -t )2+(y -4)2=6x +9+x 2+(y -4)2-2tx +t 2+x 2+(y -4)2.又由P 在⊙C 上,得x 2+(y -4)2=4.∴|PM |2|PN |2=6x +13-2tx +t 2+4.若|PM ||PN |为常数,则需6-2t =13t 2+4⇔t =-43或t =-3. 当t =-3时,N (-3,4)与M 重合,不符合题,舍去. 当t =-43时,N (-43,4),此时|PM ||PN |=32.综上可知,在直线MC 上存在定点N (-43,4),使得|PM ||PN |为常数32.【注】由题知,l MC :y =4.若|PM ||PN |为常数,则知N 是⊙C 的反演点中一点.设N (t ,4)(-3<t <0),则|MC |=3,|NC |=-t .∴由|MC |•|NC |=r 2,得-3t =4⇒ t =-43.∴N (-43,4),|MN |=53.设|PM ||PN |=k ,则53k +1+53k -1=4⇒k =32或k =-23(舍). 故在直线MC 上存在定点N (-43,4),使得|PM ||PN |为常数32.7.如图,在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,点Q (0,1),过点P (0,4)的直线l 与圆O 交于不同的两点A ,B (不在y 轴上).(1)若直线l 的斜率为3,求AB 的长度;(2)设直线QA ,QB 的斜率分别为k 1,k 2,求证:k 1+k 2为定值,并求出该定值; (3)设AB 的中点为M ,是否存在直线l ,使得MO =62MQ ?若存在,求出直线l 的方程;若不存在,说明理由.〖解析〗(1)由题知,l :y =3x +4.∴O 到l 的距离为d =432+12=410.∴|AB |=2r 2-d 2=22-(410)2=4155.(2)设l :y =kx +4,A (x 1,kx 1+4),B (x 2,kx 2+4), 由⎩⎪⎨⎪⎧y =kx +4x 2+y 2=4,得(k 2+1)x 2+8kx +12=0. ∴Δ=64k 2-48(k 2+1)=16(k 2-3)>0,x 1+x 2=-8k k 2+1,x 1x 2=12k 2+1.∴k 1+k 2=kx 1+3x 1+kx 2+3x 2=2k +3(x 1+x 2)x 1x 2=2k -2k =0.∴k 1+k 2为定值,定值为0.【注】由题知,l PQ :x =0,|OP |=4,|OQ |=1,r =2. ∴|OP |•|OQ |=r 2,∴P ,Q 是⊙O 的一对反演点.∴QA 与⊙O 的另交点B ′是B 关于y 轴的对称点,QB 与⊙O 的另交点A ′是A 关于y 轴的对称点. ∴QA 与QB 关于y 轴对称.∴k 1+k 2=0. (3)〔法一〕设M (x ,y ),则由MO =62MQ , 得x 2+y 2=62x 2+(y -1)2⇒x 2+y 2-6y +3=0⇒x 2+(y -3)2=6. 由(2)知,M (-4k k 2+1,4k 2+1),∴(-4k k 2+1)2+(4k 2+1)2-6×4k 2+1+3=0⇒k =±153,与k 2>3矛盾.∴满足条件的l 不存在. 〔法二〕设M (x ,y ),则由MO =62MQ , 得x 2+y 2=62x 2+(y -1)2⇒x 2+y 2-6y +3=0⇒x 2+(y -3)2=6. 又OM →=(x ,y ),PM →=(x ,y -4),OM →⊥PM →,∴OM →•PM →=x 2+y (y -4)=0⇒x 2+y 2-4y =0⇒x 2+(y -2)2=4(0⩽y <1).解⎩⎪⎨⎪⎧x 2+y 2-6y +3=0x 2+y 2-4y =0,得⎩⎨⎧x =±152y =32.又0⩽y <1,该方程组无解,即满足条件的M 不存在.∴满足条件的l 不存在.8.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方. (1)求圆C 的标准方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.〖解析〗(1)设C (a ,0)(a >-52),则|4a +10|5=2⇒a =0或a =-5(舍).∴⊙C :x 2+y 2=4.(2)①当l AB 的斜率为不为0时,设l AB :x =my +1,A (my 1+1,y 1),B (my 2+1,y 2),N (t ,0),由⎩⎪⎨⎪⎧x =my +1x 2+y 2=4,得(m 2+1)y 2+2my -3=0.∴y 1+y 2=-2m m 2+1,y 1y 2=-3m 2+1.若x 轴平分∠ANB ,则k AN +k BN =0⇒y 1my 1+1-t +y 2my 2+1-t =0⇒2my 1y 2-(t -1)(y 1+y 2)=0⇒-6mm 2+1+2m (t -1)m 2+1=0⇒m (t -4)=0,又m ∈R ,∴t =4.②当直线AB 重合于x 轴时,恒有∠ANM =∠BNM . 综上,存在点N (4,0),使得x 轴平分∠ANB .【注】由题知,l OM :y =0.∵∠ANO =∠BNO ,∴M ,N 是⊙O 的一对反演点,且N 在OM 的延长线上. 设N (t ,0)(t >1),则OM =1,ON =t .∴OM •ON =r 2⇒t =4. 故存在点N (4,0),使得x 轴平分∠ANB .。
阿波罗尼斯圆及其应用(整理)
阿波罗尼斯圆的应用1.“阿波罗尼斯圆”:在平面上给定两点',A A ,设P 点在同一平面上且满足,'λ=PA PA当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1=λ时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的相关性质性质1.当1>λ时,点'A 在圆O 内,点A 在圆O 外; 当10<<λ时,点A 在圆O 内,点'A 在圆O 外。
性质2.所作出的阿波罗尼斯圆的半径为|AA'|1r λλ=-性质3:'OA rr OA ==λ λ越大,圆越小.例1:已知P 点在边长为2的正方形ABCD 的内切圆上运动,则BP AP 2+的最小值是_______ 解析:22',1,2,'=∴====OA r OA OA r r OA λ '2,2'PA PA PA PA=∴==λ,5'2)'(22=≥+=+B A BP PA BP PA练习1:已知P 在边长为2的正三角形ABC 的内切圆上运动,则BP AP 2+的最小值是_______27练习2:已知点P 在圆4:22=+y x O 上运动,)4,4(),0,4(B A ,求BP AP 2+的最小值例2:(06四川)已知两定点).0,1(),0,2(B A -如果动点P 满足PB PA 2=,则点P 的轨迹所围成的图形的面积是________________.练习1:满足条件BC AC AB 2,2==的ABC ∆面积的最大值是___________.练习2.在等腰ABC ∆中,BD AC AB ,=是腰AC 上的中线,且,3=BD 则ABC ∆面积的最大值是___________.例3:已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB=1,AD=CD=2,ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成角相等,则点M 的轨迹长度为_________94π练习:在正方体1111D C B A ABCD -中,33=AB ,点E ,F 在线段1DB 上,且,1FB EF DE ==点M 是正方体表面上一个动点,点P,Q 是空间两个动点,若2||||||||==QF QE PF PE 且4||=PQ ,则MQ MP ⋅的最小值为____________38-练习2:已知△ABC 的面积为1,∠A 的角平分线交对边BC 于D , AB=2AC ,且AD=kAC ,则当k=________时,边BC 的长度最短.5102=k 分析:面积为定值,AB=2AC ,所以A 的轨迹为阿氏圆,设圆交BC 和延长线为D 、E ,易得AD 即为∠A 的角平分线,且当AO 垂直BC 时BC 有最小值,设圆半径为r ,OC r r OB ===2λ,r r OB OD rOC r OB =-=∴==,2,2 r AD r 2,25AC ==勾股定理得: 5102252===∴r r ACADk 3、已知向量,a b 满足:||3,||2||,b a b a ==-若||3a b λ+≥恒成立,则实数λ的取值范围是_______.例4. (2015年高考数学湖北卷)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③2NB MA NAMB+=号是 .(写出所有正确结论的序号)解:(1)易知半径2r =,所以圆的方程为()(22122x y -+=;(2)易知()()21,21A B ,设(),P x y 为圆C 上任意一点,则()()()()()()()()222221422221221221422221221221x y yyPA PBy y x y +-+-----====+-++-+--,故①正确;())21212NB MANA MB-=-=,②正确;))212122NB MANA MB+=+=yxOTC NA MB5、已知点(0,2),(1,1)A B --,P 是圆C:222x y +=上的一个动点.求||||PB PA 的最大值. 6、已知向量||6,||||,2,b a a c b a c m ==--=是||()a tb t R +∈的最小值,求m 的最大值.。
阿波罗尼斯圆及其应用
阿波罗尼斯圆及其应用数学理论1.“阿波罗尼斯圆”:在平面上给定两点B A,,设P 点在同一平面上且满足,PBPA当且1时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明及相关性质定理:B A,为两已知点,Q P,分别为线段AB 的定比为)1(的内外分点,则以PQ 为直径的圆O 上任意点到B A,两点的距离之比为.证(以1为例)设QBAQ PBAP a AB,,则1,1,1,1a BQ aAQa PBa AP.由相交弦定理及勾股定理知,1,1222222222aBCAB ACaBQPB BC于是,1,122aACaBC.BCAC而C Q P ,,同时在到B A,两点距离之比等于的曲线(圆)上,不共线的三点所确定的圆是唯一的,因此,圆O 上任意一点到B A,两点的距离之比恒为.性质1.当1时,点B 在圆O 内,点A 在圆O 外;当10时,点A 在圆O 内,点B 在圆O 外。
性质2.因AQ AP AC2,过AC 是圆O 的一条切线。
若已知圆O 及圆O 外一点A ,可以作出与之对应的点,B 反之亦然。
性质3.所作出的阿波罗尼斯圆的直径为122aPQ,面积为.122a性质4.过点A 作圆O 的切线C AC(为切点),则CQ CP,分别为ACB 的内、外角平分线。
性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF 数学应用1.(03北京春季)设)0)(0,(),0,(c c B c A 为两定点,动点P 到点A 的距离与到点B 的距离之比为定值),0(aa 求点P 的轨迹.2.(05江苏)圆1O 和圆2O 的半径都是1,421O O ,过动点P 分别作圆1O 和圆2O 的切线N M PN PM ,(,分别为切点),使得PN PM2,试建立适当坐标系,求动点P 的轨迹方程.3.(06四川)已知两定点).0,1(),0,2(B A 如果动点P 满足PB PA 2,则点P 的轨迹所围成的图形的面积是________________.4.(08江苏)满足条件BC AC AB 2,2的ABC 面积的最大值是___________.5.在等腰ABC 中,BD AC AB ,是腰AC 上的中线,且,3BD 则ABC 面积的最大值是___________.6.已知P A ),0,2(是圆16)4(:22yxC 上任意一点,问在平面上是否存在一点B ,使得21PB PA 若存在,求出点B 坐标;若不存在,说明理由.变式:已知圆16)4(:22yx C ,问在x 轴上是否存在点A 和点B ,使得对于圆C 上任意一点P ,都有?21PBPA 若存在,求出B A,坐标;若不存在,说明理由.7.在ABC 中,AD AC AB ,2是A 的平分线,且.kAC AD(1)求k的取值范围;(2)若ABC的面积为1,求k为何值时,BC最短.Welcome To Download 欢迎您的下载,资料仅供参考!。
高考数学阿波罗尼斯圆及其应用 阿波罗尼斯圆介绍及其直接应用(含答案)
阿波罗尼斯圆及其应用阿波罗尼斯圆介绍及其直接应用阿波罗尼斯圆及其应用阿波罗尼斯圆介绍及其直接应用【微点综述】动点的轨迹问题是高考中的一个热点和重点,尤其是阿波罗尼斯圆在高考中频频出现.处理此类问题的关键是通过建立直角坐标系,寻找动点满足的条件,得出动点的轨迹是一个定圆,从而把问题转化为直线和圆、圆和圆的位置关系问题,并在解决问题的过程中感悟转化与化归、化繁为简的数学思想方法.阿波罗尼斯(Apollonius 约公元前262~192),古希腊数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠.阿波罗尼斯年青时到亚历山大城跟随欧几里得的后继者学习,和当时的大数学家合作研究.他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书中,阿波罗尼斯圆是他的研究成果之一.1.阿波罗尼斯圆的定义在平面上给定两点A ,B ,设P 点在同一平面上且满足PAPB=λ,当λ>0且λ≠1时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(λ=1时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明【定理1】设P x ,y ,A 1-a ,0 ,B a ,0 .若PA PB =λ(λ>0且λ≠1),则点P 的轨迹方程是x -λ2+1λ2-1a 2+y 2=2aλλ2-1 2,其轨迹是以λ2+1λ2-1a ,0 为圆心,半径为r =2aλλ2-1的圆.证明:由PA =λPB 及两点间距离公式,可得x +a 2+y 2=λ2x -a 2+y 2 ,化简可得1-λ2 x 2+1-λ2 y 2+21+λ2 ax +1-λ2 a 2=0①,(1)当λ=1时,得x =0,此时动点的轨迹是线段AB 的垂直平分线;(2)当λ≠1时,方程①两边都除以1-λ2得x 2+y 2+2a 1+λ2 x 1-λ2+a 2=0,化为标准形式即为:x -λ2+1λ2-1a 2+y 2=2aλλ2-1 2,∴点P 的轨迹方程是以λ2+1λ2-1a ,0 为圆心,半径为r =2aλλ2-1的圆.图① 图② 图③阿波罗尼斯圆的另一种形式:【定理2】A ,B 为两已知点,M ,N 分别为线段AB 的定比为λλ≠1 的内外分点,则以MN 为直径的圆C 上任意点P 到A ,B 两点的距离之比为λ.证明:以λ>1为例.如图②,设AB =2a ,AM MB =AN NB =λ,则AM =2aλ1+λ,BM =2a -2aλ1+λ=2a1+λ,AN =2aλλ-1,BN =2aλλ-1-2a =2aλ-1.过B 作AB 的垂线圆C 交于Q ,R 两点,由相交弦定理及勾股定理得QB 2=MB ⋅BN =4a 2λ2-1,QA 2=AB 2+QB 2=4a 2λ2λ2-1,于是QB =2a λ2-1,QA =2aλ2-1,∴QA QB =λ.∵M ,Q ,N 同时在到A ,B 两点距离之比等于λ的圆上,而不共线的三点所确定的圆是唯一的,∴圆C 上任意一点P 到A ,B 两点的距离之比恒为λ.同理可证0<λ<1的情形.3.阿波罗尼斯圆的相关性质由上面定理2的证明可得如下的性质:性质1:当λ>1时,点B 在圆C 内,点A 在圆C 外;当0<λ<1时,点A 在圆C 内,点B 在圆C 外.性质2:因AQ 2=AM ⋅AN ,故AQ 是圆C 的一条切线.若已知圆C 及圆C 外一点A ,可以作出与之对应的点B ,反之亦然.性质3:所作出的阿波罗尼斯圆的直径为MN =4aλλ2-1 ,面积为4πa 2λ2λ2-12.性质4:过点A 作圆C 的切线AQ (Q 为切点),则QM ,QN 分别为∠AQB 的内、外角平分线.性质5:阿波罗尼斯圆的直径两端是按比例内分AB 和外分AB 所得的两个分点,如图所示,M 是AB 的内分点,N 是AB 的外分点,此时必有PM 平分∠APB ,PN 平分∠APB 的外角.证明:如图①,由已知可得PA PB =MA MB =NA NB =λ(λ>0且λ≠1),∵S ΔPAM S ΔPBM =MA MB=λ,又S ΔPAM =12PA ⋅PM sin ∠APM ,S ΔPBM =12PB ⋅PM sin ∠BPM ,∴PA ⋅PM sin ∠APMPB ⋅PM sin ∠BPM=λ,∴sin ∠APM =sin ∠BPM ,∴∠APM =∠BPM ,∴PM 平分∠APB .由等角的余角相等可得∠BPN =∠DPN ,∴PN 平分∠APB 的外角.性质6:过点B 作圆C 不与QR 重合的弦EF ,则AB 平分∠EAF .证明:如图④,连结ME ,MF ,由已知FA FB =EA EB =λ,∴EB FB =EA FA.∵S ΔABE S ΔABF =EBFB (λ>0且λ≠1),又S ΔABE =12AB ⋅AE sin ∠BAE ,S ΔABF =12AB ⋅AF sin ∠BAF ,∴AB ⋅AE sin ∠BAE AB ⋅AF sin ∠BAF =EB FB =AEAF,∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .【典例刨析】1.(2022·河北盐山中学高二期中)已知两定点A -2,1 ,B 2,-1 ,如果动点P 满足PA =2PB ,则点P 的轨迹所包围的图形的面积等于___________.2.(2022四川涪陵月考)若ΔABC 满足条件AB =4,AC =2BC ,则ΔABC 面积的最大值为__________.3.已知圆O :x 2+y 2=9,点B -5,0 ,在直线OB 上存在定点A (不同于点B ),满足对于圆O 上任意一点P ,都有PAPB 为一常数,试求所有满足条件的点A 的坐标,并求PAPB.4.在平面直角坐标xOy 中,已知点A 1,0 ,B 4,0 ,若直线x -y +m =0上存在点P 使得PA =12PB ,则实数m 的取值范围是_______.5.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(λ>0,且λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P 满足PAPB =3,则PA 2+PB 2的最大值为( )A.16+83B.8+43C.7+43D.3+36.(2022四川·成都外国语学校高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数k k >0 且k ≠1 的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点A -1,0 ,B 2,0 ,圆C :x -2 2+y -m 2=14m >0 ,在圆上存在点P 满足PA =2PB ,则实数m 的取值范围是( )A.22,62B.54,212C.0,212D.52,212【针对训练】7.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:x -4 2+y 2=4,动点P 在直线x +3y -b =0上,过P 点分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是________.8.已知A ,B 是平面上两个定点,平面上的动点C ,D 满足|CA |CB=|DA|DB =m ,若对于任意的m ≥3,不等式CD≤k AB 恒成立,则实数k 的最小值为______.9.已知点A (0,1),B (1,0),C (t ,0),点D 是直线AC 上的动点,若|AD |≤2|BD|恒成立,则最小正整数t =__________.10.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,圆O 1:(x +4)2+y 2=4,动点P 在直线l :x -22y +b =0上(b <0),过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有一个,则实数b 的值为______.11.在平面直角坐标系xOy 中,M ,N 是两定点,点P 是圆O :x 2+y 2=1上任意一点,满足:PM =2PN ,则MN 的长为.12.(2022辽宁·高二期中)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A ,B 的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,A (-2,0),B (4,0),动点P 满足|PA ||PB |=12.设点P 的轨迹为C 1.(1)求曲线C 1的方程;(2)若曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,求r 的取值范围.参考答案1.【答案】40π【分析】设P (x ,y ),根据题设条件,结合两点距离公式列方程并整理即可得P 的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设P (x ,y ),由题设得:(x +2)2+(y -1)2=2[(x -2)2+(y +1)2],∴(x -6)2+(y +3)2=40,故P 的轨迹是半径为40的圆,∴图形的面积等于40π.故答案为:40π2.【答案】163【分析】设BC =x ,则AC =2x ,由余弦定理得出cos B ,根据三角形任意两边之和大于第三边得出x 的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC =x ,则AC =2x ,由余弦定理可得cos B =16+x 2-(2x )22×4×x =16-3x 28x由三角形任意两边之和大于第三边得x +2x >4x +4>2x ,解得43<x <4,即169<x 2<16∴S ΔABC =12⋅4⋅x ⋅sin B =2x 1-cos 2B =2x 1-16-3x 2 264x 2=2569-916x 2-809 2当x 2=809时,ΔABC 面积取最大值163故答案为:163【点睛】本题主要考查了求三角形面积的最值,涉及余弦定理的应用,属于中档题.3.【答案】A -95,0 ,PA PB=35【分析】根据两点距离的坐标运算可得10λ2+2a x +34λ2-a 2-9=0,进而得10λ2+2a =034λ2-a 2-9=0 ,即可求解.【详解】设P (x ,y ),A (a ,0),a ≠-5,设PA PB=λ>0故PA PB=x -a 2+y 2x +52+y2=λ,且x 2+y 2=9,化简得:10λ2+2a x +34λ2-a 2-9=0,该式对任意的x ∈-3,3 恒成立,故10λ2+2a =034λ2-a 2-9=0 ,解得a =-95λ=35或a =-5λ=1 (舍去),故PA PB=35,A -95,0 4.【答案】-22,22【分析】根据PA =12PB 得出点P 的轨迹方程,又点P 在直线x -y +m =0上,则点P 的轨迹与直线必须有公共点,进而解决问题.【详解】解:设P (x ,y )则PA =(x -1)2+(y -0)2,PB =(x -4)2+(y -0)2,因为PA =12PB ,所以有(x -1)2+(y -0)2=12(x -4)2+(y -0)2,同时平方,化简得x 2+y 2=4,故点P 的轨迹为圆心在(0,0),半径2为的圆,又点P 在直线x -y +m =0上,故圆x 2+y 2=4与直线x -y +m =0必须有公共点,所以|m |1+1≤2,解得-22≤m ≤2 2.【点睛】本题考查了点的轨迹问题、直线与圆的位置关系的问题,解题的关键是能从题意中转化出动点的轨迹,并能求出点的轨迹方程.5.【答案】A【分析】设A -1,0 ,B 1,0 ,P x ,y ,由PA PB=3,可得点P 的轨迹为以2,0 为圆心,半径为3的圆,又PA 2+PB 2=2x 2+y 2+1 ,其中x 2+y 2可看作圆x -2 2+y 2=3上的点x ,y 到原点0,0 的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设A -1,0 ,B 1,0 ,P x ,y ,因为PA PB=3,所以x +1 2+y 2x -12+y2=3,即x -2 2+y 2=3,所以点P 的轨迹为以2,0 为圆心,半径为3的圆,因为PA 2+PB 2=x +1 2+y 2+x -1 2+y 2=2x 2+y 2+1 ,其中x 2+y 2可看作圆x -2 2+y 2=3上的点x ,y 到原点0,0 的距离的平方,所以x 2+y 2 max =2+3 2=7+43,所以2x 2+y 2+1 max =16+83,即PA 2+PB 2的最大值为16+83,故选:A .6.【答案】D【分析】设P x ,y ,根据PA =2PB 求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设P x ,y ,因为点A -1,0 ,B 2,0 ,PA =2PB ,所以x +12+y 2=2x -2 2+y 2即x 2+y 2-6x +5=0,所以x -3 2+y 2=4,可得圆心3,0 ,半径R =2,由圆C :x -2 2+y -m 2=14可得圆心C 2,m ,半径r =12,因为在圆C 上存在点P 满足PA =2PB ,所以圆x -3 2+y 2=4与圆C :x -2 2+y -m 2=14有公共点,所以2-12≤3-2 2+m 2≤2+12,整理可得:94≤1+m 2≤254,解得:52≤m ≤212,所以实数m 的取值范围是52,212,故选:D .7.【答案】-203,4.【分析】设出点的坐标,将原问题转化为直线与圆相交的问题,求解关于b 的不等式即可求得实数b 的取值范围.【详解】由题意O (0,0),O 1(4,0).设P (x ,y ),则∵PB =2PA ,∴x -42+y 2-4=2x 2+y 2-1,∴(x -4)2+y 2=4(x 2+y 2),∴x 2+y 2+83x -163=0,圆心坐标为-43,0 ,半径为83,∵动点P 在直线x +3y -b =0上,满足PB =2PA 的点P 有且只有两个,∴直线与圆x 2+y 2+83x -163=0相交,∴圆心到直线的距离d =-43-b 1+3<83,∴-43-163<b <-43+163,即实数b 的取值范围是-203,4 .【点睛】本题主要考查圆的方程及其应用,等价转化的数学思想,直线与圆是位置关系的应用等知识,意在考查学生的转化能力和计算求解能力.8.【答案】34【分析】建立坐标系,得点C ,D 的轨迹方程,分离参量求范围即可求解【详解】不妨设AB =1,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则A 0,0 ,B 1,0 ,设C x ,y ,∴x 2+y 2x -1 2+y2=m ⇒x -m 2m 2-1 2+y 2=m 2m 2-1 2故动点C ,D 的轨迹为圆,由CD≤k AB 恒成立,则k ≥CD max =2m m 2-1=2m -1m≥34故答案为34【点睛】本题考查圆的轨迹方程,平面问题坐标化的思想,是难题9.【答案】4【解析】设点D x ,y ,根据|AD |≤2|BD|列出关于D x ,y 的关系式,再数形结合分析即可.【详解】设点D x ,y ,因为点D 是直线AC 上的动点,故y -1x =-1t⇒x +ty -t =0.由|AD |≤2|BD |得x 2+y -1 2≤4x -1 2+y 2 ,化简得x -43 2+y +13 2≥89.依题意可知,直线AC 与圆x -43 2+y +13 2=89至多有一个公共点,所以43-43t 1+t 2≥89,解得t ≥2+3或t ≤2- 3.所以最小正整数t =4.故答案为:4【点睛】本题主要考查了直线与圆和向量的综合运用,需要设点的坐标表达所给的信息,再数形结合利用圆心到直线的距离列式求解.属于中档题.10.【答案】-283.【分析】根据圆的切线的性质和三角形全等,得到PO 1 =2PO ,求得点P 的轨迹方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求解.【详解】由题意得:O (0,0),O 1(-4,0),设P (x ,y ),如下图所示∵PA 、PB 分别是圆O ,O 1的切线,∴∠PBO 1=∠PAO =90°,又∵PB =2PA ,BO 1=2AO ,∴△PBO 1∽△PAO ,∴PO 1 =2PO ,∴PO 1 2=4PO 2,∴(x +4)2+y 2=4(x 2+y 2),整理得x -43 2+y 2=649,∴点P (x ,y )的轨迹是以43,0 为圆心、半径等于83的圆,∵动点P 在直线l :x -22y +b =0上(b <0),满足PB =2PA 的点P 有且只有一个,∴该直线l 与圆x -43 2+y 2=649相切,∴圆心43,0 到直线l 的距离d 满足d =r ,即43+b 12+(22)2=83,解得b =203或-283,又因为b <0,所以b =-283.【点睛】本题主要考查了圆的切线的性质,以及直线与圆的位置关系的应用,其中解答中根据圆的切下的性质和三角形全等求得点P 的轨迹方程,再根据直线与圆相切,列出方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.11.【答案】32【分析】不妨就假设M ,N 在x 轴上,设M (m ,0),N (n ,0),P (x ,y ),由PM =2PN 可得x 2+y 2+2m -8n3x +4n 2-m 23=0,然后和方程x 2+y 2=1对比,就可以求出m ,n 【详解】由于M ,N 是两定点,不妨就假设M ,N 在x 轴上如图所示:设M (m ,0),N (n ,0),P (x ,y ),PM =2PN ,∴PM 2=4PN 2,∴(x -m )2+y 2=4(m -n )2+y 2 ,即x 2-2mx +m 2+y 2=4x 2-8nx +4n 2+4y 2,3x 2+(2m -8n )x +3y 2+4n 2-m 2=0,x 2+y 2+2m -8n 3x +4n 2-m 23=0与x 2+y 2=1表示同一个圆.∴2m -8n =0m 2-4n 23=1∴{m =2n =12或m =-2n =-12∴MN =32.故答案为:32.【点睛】本题考查的是圆的方程和点的轨迹方程的求法,较简单.12.【答案】(1)(x +4)2+y 2=16(2)(0,6)∪(14,+∞)【分析】(1)设P (x ,y ),然后根据|PA ||PB |=12列方程化简计算即可得曲线C 1的方程,(2)先求出两圆的圆心和半径,再由题意可得两圆外离或内含,从而可得C 1C 2 >4+r 或C 1C 2 <r -4,从而可求出r 的取值范围(1)设P (x ,y ),因为A (-2,0),B (4,0),动点P 满足|PA ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12,化简得x 2+y 2+8x =0,即(x +4)2+y 2=16,所以曲线C 1的方程为(x +4)2+y 2=16,(2)曲线C 1的圆心为C 1(-4,0),半径为4,⊙C 2:(x -4)2+(y -6)2=r 2(r >0)的圆心为C 2(4,6),半径为r ,因为曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,所以两圆外离或内含,所以C 1C 2 >4+r 或C 1C 2 <r -4,所以(-4-4)2+(0-6)2=10>4+r 或(-4-4)2+(0-6)2=10<r -4,所以0<r <6或r >14,所以r 的取值范围为(0,6)∪(14,+∞)。
阿波罗尼斯圆在物理学中的应用
阿波罗尼斯圆在物理学中的应用阿波罗尼斯圆是一个有着许多独特性质的几何形状,它在物理学领域中具有广泛应用。
本文将探讨阿波罗尼斯圆在物理学中的应用,并阐述其在光学、声学以及电磁学等方面的重要作用。
一. 光学中的应用阿波罗尼斯圆在光学中被广泛使用,尤其是在设计凸透镜时。
凸透镜是一种呈凸形的光学元件,能够将光线聚焦或发散。
通过研究阿波罗尼斯圆的曲率特性,可以更好地设计凸透镜的形状,以实现更高的光学性能。
例如,在望远镜的设计中,阿波罗尼斯圆被用来设计主透镜的形状。
通过精确计算曲率半径和透镜的中心位置,可以使望远镜的成像更加清晰和准确。
此外,阿波罗尼斯圆的使用还能有效地减少光学畸变,提高望远镜的分辨率和观测效果。
二. 声学中的应用除了光学,阿波罗尼斯圆在声学领域中也有重要的应用。
其中一个示例是在扩音器设计中的应用。
扩音器是一种将声音放大的装置,通过研究阿波罗尼斯圆的声学特性,可以设计出形状更加合理的扩音器。
阿波罗尼斯圆的设计可以使扩音器的声波更加均匀地传播,减少声音的衰减和畸变。
这种设计不仅能够提高扩音器的音质,还可以增加扩音器的音量和覆盖范围,满足不同环境下的音频需求。
三. 电磁学中的应用在电磁学中,阿波罗尼斯圆被广泛应用于天线的设计。
天线是一种将电磁波转换为电信号或电信号转换为电磁波的装置。
通过研究阿波罗尼斯圆的电磁波传播特性,可以更好地设计天线的形状和尺寸,以实现更好的信号接收和发送效果。
阿波罗尼斯圆的应用能够提高天线的方向性和增益,减少信号的衰减和干扰。
在通信领域,通过合理利用阿波罗尼斯圆的设计,可以提高信号传输的质量和可靠性,满足不同应用场景下的通信需求。
总结综上所述,阿波罗尼斯圆在物理学中的应用十分广泛且重要。
其在光学、声学和电磁学等领域的运用,提升了相关技术的性能和效果。
通过合理利用阿波罗尼斯圆的独特特性,可以为相关领域的研究和应用带来更多的机遇和突破。
随着科学技术的不断进步,相信阿波罗尼斯圆在物理学中的应用将会越来越深入,为人类带来更多的创新和发展。
阿波罗尼斯圆的轴对称性及其应用
阿波罗尼斯圆的轴对称性及其应用阿波罗尼斯圆是古希腊数学家阿波罗尼斯提出的一种特殊的椭圆曲线,具有许多独特的性质和应用。
其中,轴对称性是阿波罗尼斯圆最为重要的性质之一,本文将探讨阿波罗尼斯圆的轴对称性及其在几何学和工程学中的应用。
一、阿波罗尼斯圆的定义与性质阿波罗尼斯圆是由一个移动的点P和两个固定的焦点F1和F2组成的曲线。
其定义是点P到F1的距离与点P到F2的距离之比等于一个常数e的绝对值,即PF1/PF2 = e。
阿波罗尼斯圆是一种闭合曲线,其形状类似于椭圆,但焦点并不位于椭圆的中心点上。
阿波罗尼斯圆具有许多有趣的性质,其中最重要的是其轴对称性。
阿波罗尼斯圆是以一条直线(称为主轴)为对称轴,对称性质使得阿波罗尼斯圆在几何学和工程学中得到广泛的应用。
二、阿波罗尼斯圆的轴对称性阿波罗尼斯圆具有以主轴为对称轴的轴对称性质。
即对于任意一点P(x, y)在阿波罗尼斯圆上,如果其关于主轴的对称点为P'(-x, y),那么P'也必然在阿波罗尼斯圆上。
通过阿波罗尼斯圆的轴对称性,我们可以得到一些关于曲线的重要结论。
首先,对称性保证了阿波罗尼斯圆上的点在主轴两侧以相等的距离分布,这对于研究曲线的几何性质具有重要意义。
其次,轴对称性也使得我们可以通过知道曲线上一部分的特性来推断另一部分的特性,从而简化问题的求解过程。
三、阿波罗尼斯圆的应用阿波罗尼斯圆作为一种特殊的椭圆曲线,在几何学和工程学中有许多应用。
以下介绍几个典型的应用。
1.设计与建筑阿波罗尼斯圆的轴对称性使得它成为建筑与设计中常用的几何形状。
例如,一些钟表和灯具的设计中常使用阿波罗尼斯圆的形状,给人以优雅和和谐的感觉。
此外,阿波罗尼斯圆的轴对称性也被广泛用于设计拱门、穹顶等建筑元素,提升建筑物的美感和结构强度。
2.物体运动轨迹在物理学和天文学中,阿波罗尼斯圆的轴对称性也有广泛的应用。
例如,负责控制和预测天体运动的天文学家经常使用阿波罗尼斯圆来描述天体的轨道。
阿波罗尼斯圆介绍及其直接应用 (解析版)
阿波罗尼斯圆及其应用阿波罗尼斯圆介绍及其直接应用阿波罗尼斯圆及其应用阿波罗尼斯圆介绍及其直接应用【微点综述】动点的轨迹问题是高考中的一个热点和重点,尤其是阿波罗尼斯圆在高考中频频出现.处理此类问题的关键是通过建立直角坐标系,寻找动点满足的条件,得出动点的轨迹是一个定圆,从而把问题转化为直线和圆、圆和圆的位置关系问题,并在解决问题的过程中感悟转化与化归、化繁为简的数学思想方法.阿波罗尼斯(Apollonius 约公元前262~192),古希腊数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠.阿波罗尼斯年青时到亚历山大城跟随欧几里得的后继者学习,和当时的大数学家合作研究.他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书中,阿波罗尼斯圆是他的研究成果之一.1.阿波罗尼斯圆的定义在平面上给定两点A ,B ,设P 点在同一平面上且满足PAPB=λ,当λ>0且λ≠1时,P 点的轨迹是个圆,称之为阿波罗尼斯圆.(λ=1时P 点的轨迹是线段AB 的中垂线)2.阿波罗尼斯圆的证明【定理1】设P x ,y ,A 1-a ,0 ,B a ,0 .若PA PB =λ(λ>0且λ≠1),则点P 的轨迹方程是x -λ2+1λ2-1a 2+y 2=2aλλ2-1 2,其轨迹是以λ2+1λ2-1a ,0 为圆心,半径为r =2aλλ2-1的圆.证明:由PA =λPB 及两点间距离公式,可得x +a 2+y 2=λ2x -a 2+y 2 ,化简可得1-λ2 x 2+1-λ2 y 2+21+λ2 ax +1-λ2 a 2=0①,(1)当λ=1时,得x =0,此时动点的轨迹是线段AB 的垂直平分线;(2)当λ≠1时,方程①两边都除以1-λ2得x 2+y 2+2a 1+λ2 x 1-λ2+a 2=0,化为标准形式即为:x -λ2+1λ2-1a 2+y 2=2aλλ2-1 2,∴点P 的轨迹方程是以λ2+1λ2-1a ,0 为圆心,半径为r =2aλλ2-1的圆.图① 图② 图③阿波罗尼斯圆的另一种形式:【定理2】A ,B 为两已知点,M ,N 分别为线段AB 的定比为λλ≠1 的内外分点,则以MN 为直径的圆C 上任意点P 到A ,B 两点的距离之比为λ.证明:以λ>1为例.如图②,设AB =2a ,AM MB =AN NB =λ,则AM =2aλ1+λ,BM =2a -2aλ1+λ=2a1+λ,AN =2aλλ-1,BN =2aλλ-1-2a =2aλ-1.过B 作AB 的垂线圆C 交于Q ,R 两点,由相交弦定理及勾股定理得QB 2=MB ⋅BN =4a 2λ2-1,QA 2=AB 2+QB 2=4a 2λ2λ2-1,于是QB =2a λ2-1,QA =2aλ2-1,∴QA QB =λ.∵M ,Q ,N 同时在到A ,B 两点距离之比等于λ的圆上,而不共线的三点所确定的圆是唯一的,∴圆C 上任意一点P 到A ,B 两点的距离之比恒为λ.同理可证0<λ<1的情形.3.阿波罗尼斯圆的相关性质由上面定理2的证明可得如下的性质:性质1:当λ>1时,点B 在圆C 内,点A 在圆C 外;当0<λ<1时,点A 在圆C 内,点B 在圆C 外.性质2:因AQ 2=AM ⋅AN ,故AQ 是圆C 的一条切线.若已知圆C 及圆C 外一点A ,可以作出与之对应的点B ,反之亦然.性质3:所作出的阿波罗尼斯圆的直径为MN =4aλλ2-1 ,面积为4πa 2λ2λ2-12.性质4:过点A 作圆C 的切线AQ (Q 为切点),则QM ,QN 分别为∠AQB 的内、外角平分线.性质5:阿波罗尼斯圆的直径两端是按比例内分AB 和外分AB 所得的两个分点,如图所示,M 是AB 的内分点,N 是AB 的外分点,此时必有PM 平分∠APB ,PN 平分∠APB 的外角.证明:如图①,由已知可得PA PB =MA MB =NA NB =λ(λ>0且λ≠1),∵S ΔPAM S ΔPBM =MA MB=λ,又S ΔPAM =12PA ⋅PM sin ∠APM ,S ΔPBM =12PB ⋅PM sin ∠BPM ,∴PA ⋅PM sin ∠APMPB ⋅PM sin ∠BPM=λ,∴sin ∠APM =sin ∠BPM ,∴∠APM =∠BPM ,∴PM 平分∠APB .由等角的余角相等可得∠BPN =∠DPN ,∴PN 平分∠APB 的外角.性质6:过点B 作圆C 不与QR 重合的弦EF ,则AB 平分∠EAF .证明:如图④,连结ME ,MF ,由已知FA FB =EA EB =λ,∴EB FB =EA FA.∵S ΔABE S ΔABF =EBFB (λ>0且λ≠1),又S ΔABE =12AB ⋅AE sin ∠BAE ,S ΔABF =12AB ⋅AF sin ∠BAF ,∴AB ⋅AE sin ∠BAE AB ⋅AF sin ∠BAF =EB FB =AEAF,∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .∴sin ∠BAE =sin ∠BAF ,∴∠BAE =∠BAF ,∴AB 平分∠EAF .【典例刨析】1.(2022·河北盐山中学高二期中)已知两定点A -2,1 ,B 2,-1 ,如果动点P 满足PA =2PB ,则点P 的轨迹所包围的图形的面积等于___________.2.(2022四川涪陵月考)若ΔABC 满足条件AB =4,AC =2BC ,则ΔABC 面积的最大值为__________.3.已知圆O :x 2+y 2=9,点B -5,0 ,在直线OB 上存在定点A (不同于点B ),满足对于圆O 上任意一点P ,都有PAPB 为一常数,试求所有满足条件的点A 的坐标,并求PAPB.4.在平面直角坐标xOy 中,已知点A 1,0 ,B 4,0 ,若直线x -y +m =0上存在点P 使得PA =12PB ,则实数m 的取值范围是_______.5.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(λ>0,且λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P 满足PAPB =3,则PA 2+PB 2的最大值为( )A.16+83B.8+43C.7+43D.3+36.(2022四川·成都外国语学校高二月考)古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数k k >0 且k ≠1 的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点A -1,0 ,B 2,0 ,圆C :x -2 2+y -m 2=14m >0 ,在圆上存在点P 满足PA =2PB ,则实数m 的取值范围是( )A.22,62B.54,212C.0,212D.52,212【针对训练】7.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:x -4 2+y 2=4,动点P 在直线x +3y -b =0上,过P 点分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是________.8.已知A ,B 是平面上两个定点,平面上的动点C ,D 满足|CA |CB=|DA|DB =m ,若对于任意的m ≥3,不等式CD≤k AB 恒成立,则实数k 的最小值为______.9.已知点A (0,1),B (1,0),C (t ,0),点D 是直线AC 上的动点,若|AD |≤2|BD|恒成立,则最小正整数t =__________.10.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,圆O 1:(x +4)2+y 2=4,动点P 在直线l :x -22y +b =0上(b <0),过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有一个,则实数b 的值为______.11.在平面直角坐标系xOy 中,M ,N 是两定点,点P 是圆O :x 2+y 2=1上任意一点,满足:PM =2PN ,则MN 的长为.12.(2022辽宁·高二期中)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A ,B 的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,A (-2,0),B (4,0),动点P 满足|PA ||PB |=12.设点P 的轨迹为C 1.(1)求曲线C 1的方程;(2)若曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,求r 的取值范围.参考答案1.【答案】40π【分析】设P (x ,y ),根据题设条件,结合两点距离公式列方程并整理即可得P 的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设P (x ,y ),由题设得:(x +2)2+(y -1)2=2[(x -2)2+(y +1)2],∴(x -6)2+(y +3)2=40,故P 的轨迹是半径为40的圆,∴图形的面积等于40π.故答案为:40π2.【答案】163【分析】设BC =x ,则AC =2x ,由余弦定理得出cos B ,根据三角形任意两边之和大于第三边得出x 的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC =x ,则AC =2x ,由余弦定理可得cos B =16+x 2-(2x )22×4×x =16-3x 28x由三角形任意两边之和大于第三边得x +2x >4x +4>2x ,解得43<x <4,即169<x 2<16∴S ΔABC =12⋅4⋅x ⋅sin B =2x 1-cos 2B =2x 1-16-3x 2 264x 2=2569-916x 2-809 2当x 2=809时,ΔABC 面积取最大值163故答案为:163【点睛】本题主要考查了求三角形面积的最值,涉及余弦定理的应用,属于中档题.3.【答案】A -95,0 ,PA PB=35【分析】根据两点距离的坐标运算可得10λ2+2a x +34λ2-a 2-9=0,进而得10λ2+2a =034λ2-a 2-9=0 ,即可求解.【详解】设P (x ,y ),A (a ,0),a ≠-5,设PA PB=λ>0故PA PB=x -a 2+y 2x +52+y2=λ,且x 2+y 2=9,化简得:10λ2+2a x +34λ2-a 2-9=0,该式对任意的x ∈-3,3 恒成立,故10λ2+2a =034λ2-a 2-9=0 ,解得a =-95λ=35或a =-5λ=1 (舍去),故PA PB=35,A -95,0 4.【答案】-22,22【分析】根据PA =12PB 得出点P 的轨迹方程,又点P 在直线x -y +m =0上,则点P 的轨迹与直线必须有公共点,进而解决问题.【详解】解:设P (x ,y )则PA =(x -1)2+(y -0)2,PB =(x -4)2+(y -0)2,因为PA =12PB ,所以有(x -1)2+(y -0)2=12(x -4)2+(y -0)2,同时平方,化简得x 2+y 2=4,故点P 的轨迹为圆心在(0,0),半径2为的圆,又点P 在直线x -y +m =0上,故圆x 2+y 2=4与直线x -y +m =0必须有公共点,所以|m |1+1≤2,解得-22≤m ≤2 2.【点睛】本题考查了点的轨迹问题、直线与圆的位置关系的问题,解题的关键是能从题意中转化出动点的轨迹,并能求出点的轨迹方程.5.【答案】A【分析】设A -1,0 ,B 1,0 ,P x ,y ,由PA PB=3,可得点P 的轨迹为以2,0 为圆心,半径为3的圆,又PA 2+PB 2=2x 2+y 2+1 ,其中x 2+y 2可看作圆x -2 2+y 2=3上的点x ,y 到原点0,0 的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设A -1,0 ,B 1,0 ,P x ,y ,因为PA PB=3,所以x +1 2+y 2x -12+y2=3,即x -2 2+y 2=3,所以点P 的轨迹为以2,0 为圆心,半径为3的圆,因为PA 2+PB 2=x +1 2+y 2+x -1 2+y 2=2x 2+y 2+1 ,其中x 2+y 2可看作圆x -2 2+y 2=3上的点x ,y 到原点0,0 的距离的平方,所以x 2+y 2 max =2+3 2=7+43,所以2x 2+y 2+1 max =16+83,即PA 2+PB 2的最大值为16+83,故选:A .6.【答案】D【分析】设P x ,y ,根据PA =2PB 求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设P x ,y ,因为点A -1,0 ,B 2,0 ,PA =2PB ,所以x +12+y 2=2x -2 2+y 2即x 2+y 2-6x +5=0,所以x -3 2+y 2=4,可得圆心3,0 ,半径R =2,由圆C :x -2 2+y -m 2=14可得圆心C 2,m ,半径r =12,因为在圆C 上存在点P 满足PA =2PB ,所以圆x -3 2+y 2=4与圆C :x -2 2+y -m 2=14有公共点,所以2-12≤3-2 2+m 2≤2+12,整理可得:94≤1+m 2≤254,解得:52≤m ≤212,所以实数m 的取值范围是52,212,故选:D .7.【答案】-203,4.【分析】设出点的坐标,将原问题转化为直线与圆相交的问题,求解关于b 的不等式即可求得实数b 的取值范围.【详解】由题意O (0,0),O 1(4,0).设P (x ,y ),则∵PB =2PA ,∴x -42+y 2-4=2x 2+y 2-1,∴(x -4)2+y 2=4(x 2+y 2),∴x 2+y 2+83x -163=0,圆心坐标为-43,0 ,半径为83,∵动点P 在直线x +3y -b =0上,满足PB =2PA 的点P 有且只有两个,∴直线与圆x 2+y 2+83x -163=0相交,∴圆心到直线的距离d =-43-b 1+3<83,∴-43-163<b <-43+163,即实数b 的取值范围是-203,4 .【点睛】本题主要考查圆的方程及其应用,等价转化的数学思想,直线与圆是位置关系的应用等知识,意在考查学生的转化能力和计算求解能力.8.【答案】34【分析】建立坐标系,得点C ,D 的轨迹方程,分离参量求范围即可求解【详解】不妨设AB =1,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则A 0,0 ,B 1,0 ,设C x ,y ,∴x 2+y 2x -1 2+y2=m ⇒x -m 2m 2-1 2+y 2=m 2m 2-1 2故动点C ,D 的轨迹为圆,由CD≤k AB 恒成立,则k ≥CD max =2m m 2-1=2m -1m≥34故答案为34【点睛】本题考查圆的轨迹方程,平面问题坐标化的思想,是难题9.【答案】4【解析】设点D x ,y ,根据|AD |≤2|BD|列出关于D x ,y 的关系式,再数形结合分析即可.【详解】设点D x ,y ,因为点D 是直线AC 上的动点,故y -1x =-1t⇒x +ty -t =0.由|AD |≤2|BD |得x 2+y -1 2≤4x -1 2+y 2 ,化简得x -43 2+y +13 2≥89.依题意可知,直线AC 与圆x -43 2+y +13 2=89至多有一个公共点,所以43-43t 1+t 2≥89,解得t ≥2+3或t ≤2- 3.所以最小正整数t =4.故答案为:4【点睛】本题主要考查了直线与圆和向量的综合运用,需要设点的坐标表达所给的信息,再数形结合利用圆心到直线的距离列式求解.属于中档题.10.【答案】-283.【分析】根据圆的切线的性质和三角形全等,得到PO 1 =2PO ,求得点P 的轨迹方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求解.【详解】由题意得:O (0,0),O 1(-4,0),设P (x ,y ),如下图所示∵PA 、PB 分别是圆O ,O 1的切线,∴∠PBO 1=∠PAO =90°,又∵PB =2PA ,BO 1=2AO ,∴△PBO 1∽△PAO ,∴PO 1 =2PO ,∴PO 1 2=4PO 2,∴(x +4)2+y 2=4(x 2+y 2),整理得x -43 2+y 2=649,∴点P (x ,y )的轨迹是以43,0 为圆心、半径等于83的圆,∵动点P 在直线l :x -22y +b =0上(b <0),满足PB =2PA 的点P 有且只有一个,∴该直线l 与圆x -43 2+y 2=649相切,∴圆心43,0 到直线l 的距离d 满足d =r ,即43+b 12+(22)2=83,解得b =203或-283,又因为b <0,所以b =-283.【点睛】本题主要考查了圆的切线的性质,以及直线与圆的位置关系的应用,其中解答中根据圆的切下的性质和三角形全等求得点P 的轨迹方程,再根据直线与圆相切,列出方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.11.【答案】32【分析】不妨就假设M ,N 在x 轴上,设M (m ,0),N (n ,0),P (x ,y ),由PM =2PN 可得x 2+y 2+2m -8n3x +4n 2-m 23=0,然后和方程x 2+y 2=1对比,就可以求出m ,n 【详解】由于M ,N 是两定点,不妨就假设M ,N 在x 轴上如图所示:设M (m ,0),N (n ,0),P (x ,y ),PM =2PN ,∴PM 2=4PN 2,∴(x -m )2+y 2=4(m -n )2+y 2 ,即x 2-2mx +m 2+y 2=4x 2-8nx +4n 2+4y 2,3x 2+(2m -8n )x +3y 2+4n 2-m 2=0,x 2+y 2+2m -8n 3x +4n 2-m 23=0与x 2+y 2=1表示同一个圆.∴2m -8n =0m 2-4n 23=1∴{m =2n =12或m =-2n =-12∴MN =32.故答案为:32.【点睛】本题考查的是圆的方程和点的轨迹方程的求法,较简单.12.【答案】(1)(x +4)2+y 2=16(2)(0,6)∪(14,+∞)【分析】(1)设P (x ,y ),然后根据|PA ||PB |=12列方程化简计算即可得曲线C 1的方程,(2)先求出两圆的圆心和半径,再由题意可得两圆外离或内含,从而可得C 1C 2 >4+r 或C 1C 2 <r -4,从而可求出r 的取值范围(1)设P (x ,y ),因为A (-2,0),B (4,0),动点P 满足|PA ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12,化简得x 2+y 2+8x =0,即(x +4)2+y 2=16,所以曲线C 1的方程为(x +4)2+y 2=16,(2)曲线C 1的圆心为C 1(-4,0),半径为4,⊙C 2:(x -4)2+(y -6)2=r 2(r >0)的圆心为C 2(4,6),半径为r ,因为曲线C 1和⊙C 2:(x -4)2+(y -6)2=r 2(r >0)无公共点,所以两圆外离或内含,所以C 1C 2 >4+r 或C 1C 2 <r -4,所以(-4-4)2+(0-6)2=10>4+r 或(-4-4)2+(0-6)2=10<r -4,所以0<r <6或r >14,所以r 的取值范围为(0,6)∪(14,+∞)。
阿波罗尼斯圆及其应用
阿波罗尼斯圆及其应用数学理论1.“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且知足,λ=PB PA 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。
(1=λ时P 点的轨迹是线段AB 的中垂线) 2.阿波罗尼斯圆的证明及相关性质定理:B A ,为两已知点,Q P ,别离为线段AB 的定比为)1(≠λλ的内外分点,那么以PQ 为直径的圆O 上任意点到B A ,两点的距离之比为.λ证 (以1>λ为例)设λ===QBAQ PB AP a AB ,,那么 1,1,1,1-=-=+=+=λλλλλλa BQ a AQ a PB a AP . 由相交弦定理及勾股定理知,1,1222222222-=+=-=⋅=λλλa BC AB AC a BQ PB BC 于是,1,122-=-=λλλa AC aBC .λ=BCAC 而C Q P ,,同时在到B A ,两点距离之比等于λ的曲线(圆)上,不共线的三点所确信的圆是唯一的,因此,圆O 上任意一点到B A ,两点的距离之比恒为.λ性质1.当1>λ时,点B 在圆O 内,点A 在圆O 外;当10<<λ时,点A 在圆O 内,点B 在圆O 外。
性质2.因AQ AP AC ⋅=2,过AC 是圆O 的一条切线。
假设已知圆O 及圆O 外一点A ,能够作出与之对应的点,B 反之亦然。
性质3.所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,面积为.122⎪⎭⎫ ⎝⎛-λλπa 性质4.过点A 作圆O 的切线C AC (为切点),那么CQ CP ,别离为ACB ∠的内、外角平分线。
性质5.过点B 作圆O 不与CD 重合的弦,EF 则AB 平分.EAF ∠ 数学应用1.(03北京春天)设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到点A 的距离与到点B 的距离之比为定值),0(>a a求点P 的轨迹.2.(05江苏)圆1O 和圆2O 的半径都是1,421=O O ,过动点P 别离作圆1O 和圆2O 的切线N M PN PM ,(,别离为切点),使得PN PM 2=,试成立适当坐标系,求动点P 的轨迹方程.3.(06四川)已知两定点).0,1(),0,2(B A -假设是动点P 知足PB PA 2=,那么点P 的轨迹所围成的图形的面积是________________.4.(08江苏)知足条件BC AC AB 2,2==的ABC ∆面积的最大值是___________.5.在等腰ABC ∆中,BD AC AB ,=是腰AC 上的中线,且,3=BD 则ABC ∆面积的最大值是___________.6.已知P A ),0,2(-是圆16)4(:22=++y x C 上任意一点,问在平面上是不是存在一点B ,使得?21=PB PA 假设存在,求出点B 坐标;假设不存在,说明理由.变式:已知圆16)4(:22=++y x C ,问在x 轴上是不是存在点A 和点B ,使得关于圆C 上任意一点P ,都有?21=PB PA 假设存在,求出B A ,坐标;假设不存在,说明理由.7.在ABC ∆中,AD AC AB ,2=是A ∠的平分线,且.kAC AD =(1)求k 的取值范围;(2)若ABC ∆的面积为1,求k 为何值时,BC 最短.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿波罗尼斯圆性质及其应用
背景展示
阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一
(人教A版124页B组第3题)已知点M与两个定点O(0,0),A(3,0)点距离的比为,求点M的轨迹方程。
(人教A版144页B组第2题)已知点M与两个定点距离的比是一个正数m,求点M的轨迹方程,并说明轨迹是什么图形(考虑m=1和m)。
公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下著名结果:到平面上两定点距离比等于定值的动点轨迹为直线或圆.(定值为1时是直线,定值不是1时为圆)
定义:一般的平面内到两顶点A,B距离之比为常数()的点的轨迹为圆,此圆称为阿波罗尼斯圆
类型一:求轨迹方程
1.已知点M 与两个定点()0,0O ,()0,3A 的距离的比为2
1
,求点M 的轨迹方程
2.已知()02>=a a AB ,()0≥=λλMB
MA ,试分析M 点的轨迹
3.(2006年高考四川卷第6题)已知两定点A (-2,0),B (1,0),如果动点P 满足条件,则点P 的轨迹所包围的图形面积等于( ) A . B. C.
D.9
类型二:求三角形面积的最值
4.(2008江苏卷)满足条件AB = 2,AC =
BC 的∆ABC 的面积的最大值是
5.(2011浙江温州高三模拟)在等腰ABC 中,AB=AC ,D 为AC 的中点,BD=
3,则ABC 面积的最大值为
6.在ABC 中,AC=2,AB=mBC(m>1),恰好当B=时
ABC 面积的最大,m=
类型三:定点定值问题
已知圆O:,点B(-5,0),在直线OB上存在定点A(不同于点B),满足对于圆O上任意一点P,都有为一常数,试求所有满足条件的点A的坐标,并求
8.(2014湖北文科卷17题)已知圆O:,点A(-2.0),若定点B(b,0)(b
)和常数:对圆O上任意一点M,都有= ,
类型四:阿波罗尼斯圆的性质
9.
已知圆C:其中P为圆C上的动点,则PO+PB的最小值为
10.已知函数=2,若集合
类型五:阿波罗尼斯圆的应用
阿波罗尼斯圆与向量(阿氏圆+等和线)
11.已知+
,设
,若恒成立,则
的最大值为
12.(2018.1湖州、衢州、丽水三地市教学质量检测试卷17题).设点P 是ABC
∆所在平面内动点,满足CP CA CB λμ=+u u u r u u u r u u u r
,3+42λμ=(,R λμ∈),
==PA PB PC u u u r u u u r u u u r
.若3AB =,则ABC ∆的面积最大值是 .
阿波罗尼斯圆与三角形
13.(2018.5月宁波模拟16题)已知向量a ,b 满足,若恒成立,则实数
的取值范围为
14.(2018.4月杭州市第二次高考科目教学质量检测17题)在ABC 中,
恒成立,求
的最大值
15.在ABC ∆中,AD 、BE 分别为中线,若b a 35=,则BE
AD
的取值范围 .
阿波罗尼斯圆与几何体
16.(2014二模(理))在等腰梯形ABCD 中,E 、F 分别为底边CD AB ,的中点,把四边形AEFD 沿直线EF 折起后所在平面记为α,α∈P ,设PC PB ,与
α所成的角分别为1θ,2θ(1θ,2θ均不为0),21θθ=,则点P 的轨迹为
.
A.直线
B.圆
C.椭圆
D.抛物线
17.在四面体ABCD 中,已知BC AD ⊥,6=AD ,2=BC ,且2==CD
AC
BD AB ,则BCD A V -的最大值为 .
18.(2018.5月浙江高三五校联考17题)棱长为36的正四面体ABCD 的内切球上
有一个动点M ,则MB+的最小值
练习:
1. 已知向量3=b a b a =23≥+b a 恒成立,则实数λ的取值范围为 .
2. (2015湖北理科卷14题)如图,圆C 与x 轴相切与点()0,1T ,与y 轴正半轴交于两点B A ,(B 在A 的上方),2=AB (1)圆C 的标准方程为 .
过点A 任作一条直线与圆1:22=+y x O 相较于N M ,两点,下列三个结论: (2) ①
MB MA NB NA =;②2=-MB MA NA NB ;③22=+MB
MA
NA NB
其中正确结论的序号是 。
(写出所有正确结论的序号)
3. BC S '∆为等腰直角三角形,ο90='∠CB S ,26='S B ,A 为S B '中点,将
BC S '∆沿AC 翻折到SBC ∆位置,且B AC S --为直二面角,P 为空间中一个动
点.
(1)若SBC P 面∈,且
2=PC
PB
,求PBC ∆面积的最大值; (2)P 在三棱锥ABC S -表面上,E 为BC 中点,M 、N 为线段SE 两个三等分点,H 、G 为空间中的两个动点,
2==GN
GM
HN HM ,且334=HG ,求⋅的最小值。
B
A C
N
E
A B
C
S ' S M。