激光器的原理及应用-PPT(精)
合集下载
2024年度激光原理及应用PPT课件
4
激光的相干性比普通光 强很多,可用于精密测 量和全息照相等领域。
激光器组成及工作原理
激光器组成
激光器一般由工作物质、激励源和光学谐振腔三部分组成。
2024/3/24
工作原理
在激励源的作用下,工作物质中的电子被激发到高能级,形 成粒子数反转分布。当这些电子从高能级跃迁到低能级时, 会辐射出与激励源频率相同的光子,并在光学谐振腔内得到 放大和反馈,最终形成稳定的激光输出。
激光雷达
测距、成像、识别等多元化应 用
激光显示
高清晰度、大色域、节能环保
激光制造
高精度、高效率、无接触加工
2024/3/24
10
激光器类型及其特
03
点分析
2024/3/24
11
固体激光器
01
02
03
工作原理
通过激励固体增益介质( 如晶体、玻璃等)中的粒 子,实现粒子数反转并产 生激光。
2024/3/24
根据实际需要,还可选择佩戴耳塞、手套 等个人防护装备,以降低激光对其他部位 的危害。
2024/3/24
24
未来发展趋势预测
06
与挑战分析
2024/3/24
25
新型激光器研发方向探讨
2024/3/24
新型材料激光器
探索新型增益介质,如量子点、二维材料等,提高激光器的性能 。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
1960年,美国物理学家 梅曼制造出第一台红宝 石激光器
现代激光技术突破与创新
光纤激光器
高功率、高效率、光束质量好
量子级联激光器
覆盖中红外到太赫兹波段
2024/3/24
激光的相干性比普通光 强很多,可用于精密测 量和全息照相等领域。
激光器组成及工作原理
激光器组成
激光器一般由工作物质、激励源和光学谐振腔三部分组成。
2024/3/24
工作原理
在激励源的作用下,工作物质中的电子被激发到高能级,形 成粒子数反转分布。当这些电子从高能级跃迁到低能级时, 会辐射出与激励源频率相同的光子,并在光学谐振腔内得到 放大和反馈,最终形成稳定的激光输出。
激光雷达
测距、成像、识别等多元化应 用
激光显示
高清晰度、大色域、节能环保
激光制造
高精度、高效率、无接触加工
2024/3/24
10
激光器类型及其特
03
点分析
2024/3/24
11
固体激光器
01
02
03
工作原理
通过激励固体增益介质( 如晶体、玻璃等)中的粒 子,实现粒子数反转并产 生激光。
2024/3/24
根据实际需要,还可选择佩戴耳塞、手套 等个人防护装备,以降低激光对其他部位 的危害。
2024/3/24
24
未来发展趋势预测
06
与挑战分析
2024/3/24
25
新型激光器研发方向探讨
2024/3/24
新型材料激光器
探索新型增益介质,如量子点、二维材料等,提高激光器的性能 。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
1960年,美国物理学家 梅曼制造出第一台红宝 石激光器
现代激光技术突破与创新
光纤激光器
高功率、高效率、光束质量好
量子级联激光器
覆盖中红外到太赫兹波段
2024/3/24
半导体激光器的原理及其应用PPT
可靠性
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。
光纤激光器.ppt
这种“任意形状”的光纤激光器有望实现更高的激 光功率输出。
3.光纤激光器的泵浦结构
4.光纤激光器和其它激光器比较
和二氧化碳激光器比较 • 有更高峰值功率的脉冲激光,可以加工的材料种类更多; • 使用方便,采用光纤传输可以有更大的扫描范围; • 能量转换效率高,光纤激光器的电光转换效率为25%,而二氧化碳
光纤激光器
• 光纤激光器的发展历程 • 光纤激光器的基本原理 • 光纤激光器与其它激光器比较 • 几种实用的光纤激光器及其应用
1.光纤激光器的发展历程
2.光纤激光器的基本原理
• 工作物质:掺杂光纤; • 谐振腔:光纤环与两个反射镜组成; • 泵浦源:一般采用半导体激光器泵浦。
2.1 双包层稀土掺杂光纤
• redPOWERTM 紧凑激 光模块 (2W-10W)
• 最大输出可达10W, 波长1μm
5.2 大功率双掺杂光纤激光器 2
• IPG公司的大功率光纤 激光器YLR-SM Series
• 100W to 1.5kW output Optical Power
• 1060 to 1080nm Wavelength Range
5.8 高速短脉冲光纤激光器
美国Calmar公司10G皮 秒光纤激光器 PSL-10XX
• 波 长 范 围 : 1530-1565 nm可调或范围内固定
• 重复频率:5-11G可调或 10G固定,脉宽:1-10ps 可调或范围内固定,平 均输出功率:>20mW
• 高速短脉冲光源对于光 时分复用系统,光学取 样技术等有重要的意义,
DBR型窄线宽光纤激光器
5.6 窄线宽光纤激光器 1
• NP Photonics 公司的窄 线宽光纤激光器
• Very narrow linewidth (long coherent length) <3 kHz
3.光纤激光器的泵浦结构
4.光纤激光器和其它激光器比较
和二氧化碳激光器比较 • 有更高峰值功率的脉冲激光,可以加工的材料种类更多; • 使用方便,采用光纤传输可以有更大的扫描范围; • 能量转换效率高,光纤激光器的电光转换效率为25%,而二氧化碳
光纤激光器
• 光纤激光器的发展历程 • 光纤激光器的基本原理 • 光纤激光器与其它激光器比较 • 几种实用的光纤激光器及其应用
1.光纤激光器的发展历程
2.光纤激光器的基本原理
• 工作物质:掺杂光纤; • 谐振腔:光纤环与两个反射镜组成; • 泵浦源:一般采用半导体激光器泵浦。
2.1 双包层稀土掺杂光纤
• redPOWERTM 紧凑激 光模块 (2W-10W)
• 最大输出可达10W, 波长1μm
5.2 大功率双掺杂光纤激光器 2
• IPG公司的大功率光纤 激光器YLR-SM Series
• 100W to 1.5kW output Optical Power
• 1060 to 1080nm Wavelength Range
5.8 高速短脉冲光纤激光器
美国Calmar公司10G皮 秒光纤激光器 PSL-10XX
• 波 长 范 围 : 1530-1565 nm可调或范围内固定
• 重复频率:5-11G可调或 10G固定,脉宽:1-10ps 可调或范围内固定,平 均输出功率:>20mW
• 高速短脉冲光源对于光 时分复用系统,光学取 样技术等有重要的意义,
DBR型窄线宽光纤激光器
5.6 窄线宽光纤激光器 1
• NP Photonics 公司的窄 线宽光纤激光器
• Very narrow linewidth (long coherent length) <3 kHz
激光原理及应用ppt课件
• 声光调Q是一种广泛使用的 Q开关方式,其有重复频率高、性能可靠的优点。
激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
《激光器介绍》课件
激光器与人工智能、3D打印等技术结合,创造更多智能化和多样化的应用。
结论和总结
激光器是一项伟大的科技创新,它在多个领域的应用不断拓展。我们必须充 分了解其原理和注意事项,推动激光技术的发展和应用。
《激光器介绍》PPT课件
欢迎来到《激光器介绍》的PPT课件! 本课程将带您深入了解激光器的定义和 原理,以及其在不同领域的应用。让我们一起探索激光技术的无限潜力!
激光器的定义和原理
激光器是通过受激辐射产生的一种具有高度相干性、高照射强度和直行性的 光源。它的工作原理基于光子的双能态能级跃迁。
不同类型的激光器
戴眼镜
在使用激光器时,务必佩戴适当的激光安全眼镜以保护视力。
避免直射
避免将激光束直接照射到人体和易燃物上,以免引发安全事故。
操作规范
按照使用说明进行操作,确保激光器使用安全可靠。
激光器的发展趋势
1
更小更强
激光器体积将进一步缩小,但功率将持续增强,提供更多应用领域。
2
更高效更环保
激光器的效率将提高,能源消耗将减少,以促进可持续发展。
1 气体激光器
使用气体作为激发介质, 例如二氧化碳激光器和氩 离子激光器。
2 固体激光器
使用固态材料作为激发介 质,例如Nd:YAG激光器和 钛宝石激光器。
3 半导体激光器
使用半导体材料作为激发 介质,例如激光二极管和 垂直腔面发射激光器。
激光器的应用领域
医疗行业
激光器在手术、皮肤治疗和眼 科手术等领域有广泛应用。
通信领域
激光信号传输在光纤通信和激 光雷达等领域发挥重要作用。
制造业
激光切割、激光焊接和激光打 印等技术在制造业中得到广泛 应用。
激光器的优点与限制
激光原理与技术PPT(很全面)
激光束质量对应用的影响
分析激光束质量对激光加工、光通信、激光雷达等应用的影响。
激光束的控制与整形
激光束控制技术
探讨通过光学元件、机械装置等手段对激光束进行控制的原理和 方法。
激光束整形技术
介绍将激光束整形为特定形状(如平顶、环形等)的原理和方法, 以及整形后激光束的特性。
激光束控制与整形的应用
阐述激光束控制与整形在材料加工、生物医学、光通信等领域的应 用实例。
激光Байду номын сангаас眼睛的危害
激光束直接照射眼睛,可能导致视网膜烧伤、视力下降甚至失明。防护措施包 括佩戴合适的激光防护眼镜,避免直接观看激光束。
激光对皮肤的危害
激光照射皮肤可能导致烧伤、色素沉着、皮肤癌等。防护措施包括穿戴防护服 、使用防晒霜等。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国国家标准学会(ANSI)等制定了激光安全标准, 对激光产品的分类、标识、使用等做出了规定。
液体激光器
染料激光器
使用有机染料作为增益介质,通 过泵浦光激发染料分子产生激光 ,具有宽调谐范围和短脉冲输出 能力。
液体激光核聚变
利用高功率激光束照射含有氘、 氚等聚变燃料的靶丸,实现核聚 变反应,是惯性约束聚变研究的 重要手段。
半导体激光器
边发射半导体激光器
电流注入半导体PN结,电子与空穴 复合释放能量形成激光输出,具有体 积小、效率高、寿命长等优点。
激光手术
利用激光的高精度和可控性,进行微 创手术操作,如眼科手术、皮肤科手 术等。
生物医学成像
利用激光的高亮度和方向性,对人体 内部组织进行光学成像,以辅助医学 诊断和治疗。
05
激光测量与检测技术
激光原理与技术PPT课件
激光手术
阐述激光手术在眼科、神 经外科等领域的应用及优 势,如精度高、创伤小等 。
05
CATALOGUE
激光测量与检测技术
激光干涉测量技术
1 2
干涉测量原理
利用激光的相干性,通过干涉条纹的变化来测量 长度、角度等物理量。
干涉测量系统组成
包括激光器、分束器、反射镜、探测器等部分。
3
干涉测量技术应用
时间特性
激光束的时间特性包括脉冲宽度、重复频率和稳定性等。其中,脉冲宽度决定 了激光的峰值功率和能量,重复频率则影响了激光的平均功率。稳定性则是确 保激光束在长时间内保持一致性的关键因素。
激光束的调制与偏转技术
调制技术
通过对激光束进行幅度、频率或相位等调制,可以实现信息 的加载和传输。常见的调制方式包括振幅调制、频率调制和 相位调制等。这些调制技术使得激光束能够携带更多的信息 ,并在通信、传感等领域得到广泛应用。
对皮肤的危害
长时间或高强度激光照射皮肤, 可能导致皮肤烧伤、色素沉着、 皮肤癌等严重后果。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国激光产品安全标准(ANSI)等制定了激光产品的 安全标准,包括激光等级分类、安全警示标识、使用说明等。
防护措施
使用激光产品时,应佩戴合适的防护眼镜或面罩,避免直接照射眼睛或皮肤;同 时,应在激光工作区域内设置明显的安全警示标识,提醒他人注意安全。
偏转技术
激光束的偏转技术主要是通过改变激光束的传播方向来实现 。常见的偏转方式包括机械偏转、电光偏转和声光偏转等。 这些偏转技术使得激光束能够灵活地指向目标,并在激光雷 达、光学扫描等领域发挥重要作用。
激光束的聚焦与整形技术
激光原理及应用ppt课件
15
• 激光未来
现代社会中,信息的作用越来越重要,谁掌握的信息越迅速、 越准确、越丰富,谁也就更加掌握了主动权,也就有更多成功的 机会。激光的出现引发了一场信息革命,从VCD、DVD光盘到激 光照排,激光的使用大大提高了效率,以及方便人们保存和提取 信息,激光革命意义非凡,已成为全球最具竞争力和吸引力的经 济体之一。中国拥有巨大的内需潜力,只要发展国内需求,经济 可望持续高速。目前,中国提升装备制造业水平、推进产业结构 优化升级的需求依旧十分紧迫;作为关键支撑技术的激光技术与 产业仍有较大发展空间,激光制造设备技术将在信息、能源、交 通运输、电子、冶金、机械等支柱产业中会得到更深入的应用, 进而提高这些行业的自主创新能力,形成新的经济增长点,在提 高市场竞争力中发挥重大作用。
根据早先报道,世界激光器市场可划分为三大区域:美国(包 括北美)占55%,欧洲占22%,日本及太平洋地区占23%。
在世界激光市场上日本在光电子技术方面占首位,美国占第 二位;在激光医疗及激光检测方面则美国占首位;而在激光材料 加工设备方面则是德国占首位。
14
当前,国内激光市场主要分为激光加工设备、光通信器件与 设备、激光测量设备、激光器、激光医疗设备、激光元部件等, 其产品主要应用于工业加工和光通信市场,两者占据了近7成的 市场空间。
23
• 激光侦察对抗 激光侦察在军事上占有十分重要的地位。利用激光技术进行多光谱摄
影(全息摄影),可以识别伪装目标。由于各种物体对各种光的吸收和反射 能力不同,可以在底片上引起不同感光反应而实现对目导弹 发射架。
激光对抗可对激光测距进行欺骗,使其无法测定其真实距离或使导弹 改变弹道。激光对抗还可对激光进行干扰。
6
通常,在具有一定温度的物质中,处于高能级En的原子数目恒少于处在 低能级Em的原子数目,此时光吸收将占优势。为了实现光放大,只有通过 外界能源(如采用气体放电或光辐射)的诱发,将低能级上的原子激发到高能
• 激光未来
现代社会中,信息的作用越来越重要,谁掌握的信息越迅速、 越准确、越丰富,谁也就更加掌握了主动权,也就有更多成功的 机会。激光的出现引发了一场信息革命,从VCD、DVD光盘到激 光照排,激光的使用大大提高了效率,以及方便人们保存和提取 信息,激光革命意义非凡,已成为全球最具竞争力和吸引力的经 济体之一。中国拥有巨大的内需潜力,只要发展国内需求,经济 可望持续高速。目前,中国提升装备制造业水平、推进产业结构 优化升级的需求依旧十分紧迫;作为关键支撑技术的激光技术与 产业仍有较大发展空间,激光制造设备技术将在信息、能源、交 通运输、电子、冶金、机械等支柱产业中会得到更深入的应用, 进而提高这些行业的自主创新能力,形成新的经济增长点,在提 高市场竞争力中发挥重大作用。
根据早先报道,世界激光器市场可划分为三大区域:美国(包 括北美)占55%,欧洲占22%,日本及太平洋地区占23%。
在世界激光市场上日本在光电子技术方面占首位,美国占第 二位;在激光医疗及激光检测方面则美国占首位;而在激光材料 加工设备方面则是德国占首位。
14
当前,国内激光市场主要分为激光加工设备、光通信器件与 设备、激光测量设备、激光器、激光医疗设备、激光元部件等, 其产品主要应用于工业加工和光通信市场,两者占据了近7成的 市场空间。
23
• 激光侦察对抗 激光侦察在军事上占有十分重要的地位。利用激光技术进行多光谱摄
影(全息摄影),可以识别伪装目标。由于各种物体对各种光的吸收和反射 能力不同,可以在底片上引起不同感光反应而实现对目导弹 发射架。
激光对抗可对激光测距进行欺骗,使其无法测定其真实距离或使导弹 改变弹道。激光对抗还可对激光进行干扰。
6
通常,在具有一定温度的物质中,处于高能级En的原子数目恒少于处在 低能级Em的原子数目,此时光吸收将占优势。为了实现光放大,只有通过 外界能源(如采用气体放电或光辐射)的诱发,将低能级上的原子激发到高能
半导体激光器原理及应用PPT课件
2019/11/4
.
22
半导体激光器的线宽
上面曲线给出了LD线宽与1/P之间的关系、和温度对线宽的影响
2019/11/4
.
23
半导体激光器的动态特性
半导体激光器有别于其它激光器的最重要特点之一在于它有被交变信号直接调 制的能力,这在信息技术中具有重要的意义。
与工作在直流状况的半导体激光器不同,在直接高速调制情况下会出现一些有 害的效应,成为限制半导体激光器调制带宽能力的主要因素。
.
半导体激光器等效电路
29
半导体激光器的热特性
引发机制: 在半导体激光器中,由于不可避免的存在着各种非辐射复合损耗、自由载流子吸 收等损耗机制,使外微分量子效率只能达到20%~30%,意味着相当部分注入的 电功率转换为了热量,引起激光器的升温。这会导致LD的阈值电流增大、发射波 长红移、模式不稳定、增加内部缺陷,严重影响器件的寿命。 解决办法:
(b)受激辐射:受激发射出的光子频率,相位和方向都与入射光子h 相同。
(c)受激吸收:原子接收辐射能 h 从基态能级E1越入受激能级E2。 产生激光的必要条件:受激辐射占主导地位
2019/11/4
.
3
自发辐射的特点
这种过程与外界作用无关。各原子的辐射都是独立地进行。因而所发光子的频 率、初相、偏振态、传播方向等都不同。不同光波列是不相干的。
2019/11/4
半导体激光器横模与侧模
有多侧模的半导体激光器的近场和远场
.
16
纵模谱的影响因素
2019/11/4
可见,若要选频,就要控制温度,要稳定功率输出,
也要选择恒温控制
.
17
半导体激光器的光束发散角
激光原理与技术完整ppt课件
1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲放电激励输出紫 外光,峰值功率可达数十兆 瓦,脉宽小于10nS,重复频 率数十Hz~数千Hz,主要用 作染料激光器的泵浦源, 也可用于光谱分析、检测、 医学及光化学方面。常见 波长:337.1nm、357.7nm 氮分子激光器VSL337ND-S Nitrogen Laser
典型激光器
3. 半导体激光器
典型激光器
(4)连续波可调谐钛蓝宝石激光器
3900S CW Tunable Ti:sapphire Laser
The high-performance, tunable, solid state IR laser
输出波长从675到1100nm 由Ar laser或LD泵浦532nm激光器泵浦 TEM00输出功率可达3.5W cw Applications Spectroscopy 光谱学 Fiber laser research 光纤激光器研究 Telecommunications research 远程通信研究 Semiconductor studies 半导体研究
典型激光器
激光器分类
按激光工作介 质:
• 激光运转方 式:
– 连续 – 脉冲 • 单脉冲 • 重复频 率 • 准连续
• 按化学组成:
– – – – – 原子激光器 分子激光器 离子激光器 自由电子激光器 准分子激光器
固体激光器 (光纤激光器) 气体激光器 半导体激光器 染料激光器 自由电子激光 器
• 激光调制方式
– 自由运转 – 调Q – 锁模
典型激光器
1. 固体激光器
分为晶体和玻璃两类,在基质材料中掺入激活离 子而制成。 目前已实现激光振荡的不同基质——掺杂体系的 工作物质有200多种,但是,性能好,使用广泛的主 要有下面三种。 (1)钕玻璃激光器 在玻璃中掺入稀土元素钕 做工作物质 = 1.053 μm 由于可获得大体积均匀性良好的钕玻璃,因而可 制成大型器件,获得高能量和功率的激光,现已制 成输出功率1014W激光器。
光电子技术
激光器的原理及应用
姓名:xx 学号:xx
导师:xx
2016年9月12日
主要内容
激光器的原理 典型激光器 激光器的应用
激光器的原理
激光器的基本结构: 1、工作物质 2、泵浦源 3、谐振腔——增大光波在增益介质中的传播 距离
激光器的原理
激光工作物质 是指用来实现粒子数反转并产生光的受激 辐射放大作用的物质体系,有时也称为激光增益媒质,它 们可以是固体(晶体、玻璃)、气体(原子气体、离子气 体、分子气体)、半导体和液体等媒质。对激光工作物质 的主要要求,是尽可能在其工作粒子的特定能级间实现较 大程度的粒子数反转,并使这种反转在整个激光发射作用 过程中尽可能有效地保持下去;为此,要求工作物质具有 合适的能级结构和跃迁特性。
激光器的原理
光学共振腔 通常是由具有一定几何形状和光学反射特性 的两块反射镜按特定的方式组合而成。作用为:①提供光 学反馈能力,使受激辐射光子在腔内多次往返以形成相干 的持续振荡。②对腔内往返振荡光束的方向和频率进行限 制,以保证输出激光具有一定的定向性和单色性。共振腔 作用①,是由通常组成腔的两个反射镜的几何形状(反射 面曲率半径)和相对组合方式所决定;而作用②,则是由 给定共振腔型对腔内不同行进方向和不同频率的光,具有 不同的选择性损耗特性所决定的。
典型激光器
2. 气体激光器
工作物质:各种混合气体,光学均匀性好。 气体激光器在单色性、光束稳定性方面比固体、半 导体、液体激光器优越。
谱线已达数千种 (160nm~4mm)
工作方式:连续运转(大多数) 多数气体激光器有瞬时功率不高的弱点。 原因:通常气体气压低,单位体积内粒子 数少。
典型激光器
(1)氦-氖激光器
激光测距
利用激光的单色性和相干性好、方向性强等特点,以实现高精 度的计量和检测,如测量长度、距离、速度、角度等。
激光焊接
高能激光(能产生约5500 oC的高温)把大块硬质材料焊接在一起。
激光快速成型
激光雕刻
激光核聚变
这是激光核聚变靶室,在靶室内十束激光同时聚向一个产生核聚变反应的小燃料 样品上,引发核聚变。
由不同组分的半导体材料做成 激光有源区和约束区的激光器。 特点:体积最小、重量最轻, 使用寿命长,有效使用时间 超过10万小时。 输出波长范围:紫外、可见、红外 输出功率:mW、W、kW。
典型激光器
DFB半导体激光器示意图
DBR半导体激光器示意图
典型激光器
垂直腔面发射半导体激光器(VCSEL)
量子级联激光器 (quantum cascade lasers, QCLs)
激光器的原理
激励(泵浦)系统 是指为使激光工作物质实现并维持粒子 数反转而提供能量来源的机构或装置。根据工作物质和激 光器运转条件的不同,可以采取不同的激励方式和激励装 置,常见的有以下四种。①光学激励(光泵)。是利用外界 光源发出的光来辐照工作物质以实现粒子数反转的,整个 激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚 光器组成。②气体放电激励。是利用在气体工作物质内发 生的气体放电过程来实现粒子数反转的,整个激励装置通 常由放电电极和放电电源组成。③化学激励。是利用在工 作物质内部发生的化学反应过程来实现粒子数反转的,通 常要求有适当的化学反应物和相应的引发措施。④核能激 励。是利用小型核裂变反应所产生的裂变碎片、高能粒子 或放射线来激励工作物质并实现粒子数反转的。
典型激光器
(2)红宝石激光器 工作物质:红宝石晶体
输出波长: 输出线宽:
694.3nm 0.01 ~ 0.1nm
工作方式:连续、脉冲 发 散 角 : 10-3rad,一般为多模输出; 泵浦功率>阈值10~20%→单模
典型激光器
(3)掺钕钇铝石榴石( Nd :YAG)
工作物质:YAG晶体内掺进稀土元素钕 输出波长: = 1064nm、914nm、1319nm 工作方式:连续、高重复率脉冲 因可掺进较高浓度的钕,故工作物质单位体积能提供较高 的激光功率,激光器也可作的比较小,若半导体激光器作泵浦 源的器件体积更小。
光谱分析
2. 医学应用 眼科 普通外科 牙科 皮肤科
激光器的应用
3. 军事应用 激光测距 激光制导 4. 日常应用 激光打印机 激光防伪 5. 通信领域的应用 空间激光通信 光纤通信 激光侦察 激光武器 大气激光通信
电脑光驱
激光霓虹灯
条形码扫描器
激光武器的杀伤机理
一是烧蚀效应-局部高温 二是激波效应三是辐射效应-强电磁场
典型激光器
(3)氩离子气体激光器
氩/氪离子激光器,Stabilite 2017 Argon/Krypton Ion Laser 输出波长: =488nm; =514.5 nm ;
在可见光区输出功率最高 输出功率从几瓦~几百瓦。
典型激光器
氦-镉激光器
以镉金属蒸气为发光 物质,主要有两条连续谱线, 俄罗斯PLASMA公司的氦 镉激光器 即波长为325nm的紫外辐射 和441.6nm的蓝光,典型输 出功率分别为1~25mW和 1~100mW。主要应用领域包 括活字印刷、血细胞计数、 集成电路芯片检验及激光诱 导荧光实验等。
激光武器的优点
1.无需进行弹道计算 2.无后座 3.操作简便,机动灵活,使用范围广 4.无放射性污染,性价比高
光通信原理示意图
光通信用的激光器差不多全部是半导体 激光器,只有少量的CATV系统采用 1310纳米或1550纳米LD泵浦固体激光 器。 通信用的激光器主要有两类:光纤放大 器用的泵浦光源和发射机用的信号光源 。 应用于自由空间光通信(FSO)的激光 器有850nm和1550nm两种
激光医疗
激光通讯
由于光波的频率比电波的 频率高好几个数量级,一 根极细的光纤能承载的信 息量,相当于图片中这么 粗的电缆所能承载的信息 量。
激光武器
激光展示
谢谢观赏!
工作物质:氦氖混合气体
激光由氖原子发射,氦气起改善气体放电条件, 提高激光器输出功率的作用。
输出波长:常用的为 =632.8nm
根据选择的工作条件激光器可以输出近红外、 红光、黄光、绿光。 (=3.作物质: CO2 、He、N2、Xe的混合气体 激光由CO2分子发射,其它气体协助改善 激光器的工作条件, 提高激光器输出功率 水平和使用寿命。 输出波长: =10.6μm CO2 激光器是输出功 率最高的气体激光器, 有连续输出50kW;脉 冲输出1012W的激光器。
典型激光器
铜蒸气激光器
一般通过电子碰撞激励, 两条主要的工作谱线是波长 510.5nm的绿光和578.2nm的 黄光,典型脉冲宽度10~50nS, 重复频率可达100KHz。当前 水平一个脉冲的能量为1mJ左右。 这就是说,平均功率可达100W, 而峰值功率则高达100KW。
典型激光器
(3)氮分子激光器
基于电子在半导体量子阱中导 带子带间跃迁和声子辅助共振 隧穿原理的新型单极半导体器 件。
典型激光器
光纤耦合(尾纤型-pigtail package)半导体激光器件 ProLite型光纤耦合单发射激光器
激光原理 . 绪论
激光器的应用
1. 工业应用 精密测量(距离、位移) 激光加工(切割、焊接、打孔、雕刻)
典型激光器
3. 半导体激光器
典型激光器
(4)连续波可调谐钛蓝宝石激光器
3900S CW Tunable Ti:sapphire Laser
The high-performance, tunable, solid state IR laser
输出波长从675到1100nm 由Ar laser或LD泵浦532nm激光器泵浦 TEM00输出功率可达3.5W cw Applications Spectroscopy 光谱学 Fiber laser research 光纤激光器研究 Telecommunications research 远程通信研究 Semiconductor studies 半导体研究
典型激光器
激光器分类
按激光工作介 质:
• 激光运转方 式:
– 连续 – 脉冲 • 单脉冲 • 重复频 率 • 准连续
• 按化学组成:
– – – – – 原子激光器 分子激光器 离子激光器 自由电子激光器 准分子激光器
固体激光器 (光纤激光器) 气体激光器 半导体激光器 染料激光器 自由电子激光 器
• 激光调制方式
– 自由运转 – 调Q – 锁模
典型激光器
1. 固体激光器
分为晶体和玻璃两类,在基质材料中掺入激活离 子而制成。 目前已实现激光振荡的不同基质——掺杂体系的 工作物质有200多种,但是,性能好,使用广泛的主 要有下面三种。 (1)钕玻璃激光器 在玻璃中掺入稀土元素钕 做工作物质 = 1.053 μm 由于可获得大体积均匀性良好的钕玻璃,因而可 制成大型器件,获得高能量和功率的激光,现已制 成输出功率1014W激光器。
光电子技术
激光器的原理及应用
姓名:xx 学号:xx
导师:xx
2016年9月12日
主要内容
激光器的原理 典型激光器 激光器的应用
激光器的原理
激光器的基本结构: 1、工作物质 2、泵浦源 3、谐振腔——增大光波在增益介质中的传播 距离
激光器的原理
激光工作物质 是指用来实现粒子数反转并产生光的受激 辐射放大作用的物质体系,有时也称为激光增益媒质,它 们可以是固体(晶体、玻璃)、气体(原子气体、离子气 体、分子气体)、半导体和液体等媒质。对激光工作物质 的主要要求,是尽可能在其工作粒子的特定能级间实现较 大程度的粒子数反转,并使这种反转在整个激光发射作用 过程中尽可能有效地保持下去;为此,要求工作物质具有 合适的能级结构和跃迁特性。
激光器的原理
光学共振腔 通常是由具有一定几何形状和光学反射特性 的两块反射镜按特定的方式组合而成。作用为:①提供光 学反馈能力,使受激辐射光子在腔内多次往返以形成相干 的持续振荡。②对腔内往返振荡光束的方向和频率进行限 制,以保证输出激光具有一定的定向性和单色性。共振腔 作用①,是由通常组成腔的两个反射镜的几何形状(反射 面曲率半径)和相对组合方式所决定;而作用②,则是由 给定共振腔型对腔内不同行进方向和不同频率的光,具有 不同的选择性损耗特性所决定的。
典型激光器
2. 气体激光器
工作物质:各种混合气体,光学均匀性好。 气体激光器在单色性、光束稳定性方面比固体、半 导体、液体激光器优越。
谱线已达数千种 (160nm~4mm)
工作方式:连续运转(大多数) 多数气体激光器有瞬时功率不高的弱点。 原因:通常气体气压低,单位体积内粒子 数少。
典型激光器
(1)氦-氖激光器
激光测距
利用激光的单色性和相干性好、方向性强等特点,以实现高精 度的计量和检测,如测量长度、距离、速度、角度等。
激光焊接
高能激光(能产生约5500 oC的高温)把大块硬质材料焊接在一起。
激光快速成型
激光雕刻
激光核聚变
这是激光核聚变靶室,在靶室内十束激光同时聚向一个产生核聚变反应的小燃料 样品上,引发核聚变。
由不同组分的半导体材料做成 激光有源区和约束区的激光器。 特点:体积最小、重量最轻, 使用寿命长,有效使用时间 超过10万小时。 输出波长范围:紫外、可见、红外 输出功率:mW、W、kW。
典型激光器
DFB半导体激光器示意图
DBR半导体激光器示意图
典型激光器
垂直腔面发射半导体激光器(VCSEL)
量子级联激光器 (quantum cascade lasers, QCLs)
激光器的原理
激励(泵浦)系统 是指为使激光工作物质实现并维持粒子 数反转而提供能量来源的机构或装置。根据工作物质和激 光器运转条件的不同,可以采取不同的激励方式和激励装 置,常见的有以下四种。①光学激励(光泵)。是利用外界 光源发出的光来辐照工作物质以实现粒子数反转的,整个 激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚 光器组成。②气体放电激励。是利用在气体工作物质内发 生的气体放电过程来实现粒子数反转的,整个激励装置通 常由放电电极和放电电源组成。③化学激励。是利用在工 作物质内部发生的化学反应过程来实现粒子数反转的,通 常要求有适当的化学反应物和相应的引发措施。④核能激 励。是利用小型核裂变反应所产生的裂变碎片、高能粒子 或放射线来激励工作物质并实现粒子数反转的。
典型激光器
(2)红宝石激光器 工作物质:红宝石晶体
输出波长: 输出线宽:
694.3nm 0.01 ~ 0.1nm
工作方式:连续、脉冲 发 散 角 : 10-3rad,一般为多模输出; 泵浦功率>阈值10~20%→单模
典型激光器
(3)掺钕钇铝石榴石( Nd :YAG)
工作物质:YAG晶体内掺进稀土元素钕 输出波长: = 1064nm、914nm、1319nm 工作方式:连续、高重复率脉冲 因可掺进较高浓度的钕,故工作物质单位体积能提供较高 的激光功率,激光器也可作的比较小,若半导体激光器作泵浦 源的器件体积更小。
光谱分析
2. 医学应用 眼科 普通外科 牙科 皮肤科
激光器的应用
3. 军事应用 激光测距 激光制导 4. 日常应用 激光打印机 激光防伪 5. 通信领域的应用 空间激光通信 光纤通信 激光侦察 激光武器 大气激光通信
电脑光驱
激光霓虹灯
条形码扫描器
激光武器的杀伤机理
一是烧蚀效应-局部高温 二是激波效应三是辐射效应-强电磁场
典型激光器
(3)氩离子气体激光器
氩/氪离子激光器,Stabilite 2017 Argon/Krypton Ion Laser 输出波长: =488nm; =514.5 nm ;
在可见光区输出功率最高 输出功率从几瓦~几百瓦。
典型激光器
氦-镉激光器
以镉金属蒸气为发光 物质,主要有两条连续谱线, 俄罗斯PLASMA公司的氦 镉激光器 即波长为325nm的紫外辐射 和441.6nm的蓝光,典型输 出功率分别为1~25mW和 1~100mW。主要应用领域包 括活字印刷、血细胞计数、 集成电路芯片检验及激光诱 导荧光实验等。
激光武器的优点
1.无需进行弹道计算 2.无后座 3.操作简便,机动灵活,使用范围广 4.无放射性污染,性价比高
光通信原理示意图
光通信用的激光器差不多全部是半导体 激光器,只有少量的CATV系统采用 1310纳米或1550纳米LD泵浦固体激光 器。 通信用的激光器主要有两类:光纤放大 器用的泵浦光源和发射机用的信号光源 。 应用于自由空间光通信(FSO)的激光 器有850nm和1550nm两种
激光医疗
激光通讯
由于光波的频率比电波的 频率高好几个数量级,一 根极细的光纤能承载的信 息量,相当于图片中这么 粗的电缆所能承载的信息 量。
激光武器
激光展示
谢谢观赏!
工作物质:氦氖混合气体
激光由氖原子发射,氦气起改善气体放电条件, 提高激光器输出功率的作用。
输出波长:常用的为 =632.8nm
根据选择的工作条件激光器可以输出近红外、 红光、黄光、绿光。 (=3.作物质: CO2 、He、N2、Xe的混合气体 激光由CO2分子发射,其它气体协助改善 激光器的工作条件, 提高激光器输出功率 水平和使用寿命。 输出波长: =10.6μm CO2 激光器是输出功 率最高的气体激光器, 有连续输出50kW;脉 冲输出1012W的激光器。
典型激光器
铜蒸气激光器
一般通过电子碰撞激励, 两条主要的工作谱线是波长 510.5nm的绿光和578.2nm的 黄光,典型脉冲宽度10~50nS, 重复频率可达100KHz。当前 水平一个脉冲的能量为1mJ左右。 这就是说,平均功率可达100W, 而峰值功率则高达100KW。
典型激光器
(3)氮分子激光器
基于电子在半导体量子阱中导 带子带间跃迁和声子辅助共振 隧穿原理的新型单极半导体器 件。
典型激光器
光纤耦合(尾纤型-pigtail package)半导体激光器件 ProLite型光纤耦合单发射激光器
激光原理 . 绪论
激光器的应用
1. 工业应用 精密测量(距离、位移) 激光加工(切割、焊接、打孔、雕刻)